File: adler32_neon.c

package info (click to toggle)
node-yarnpkg 4.1.0%2Bdfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid, trixie
  • size: 24,752 kB
  • sloc: javascript: 38,953; ansic: 26,035; cpp: 7,247; sh: 2,829; makefile: 724; perl: 493
file content (215 lines) | stat: -rw-r--r-- 7,630 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
/* Copyright (C) 1995-2011, 2016 Mark Adler
 * Copyright (C) 2017 ARM Holdings Inc.
 * Authors:
 *   Adenilson Cavalcanti <adenilson.cavalcanti@arm.com>
 *   Adam Stylinski <kungfujesus06@gmail.com>
 * For conditions of distribution and use, see copyright notice in zlib.h
 */
#ifdef ARM_NEON
#include "neon_intrins.h"
#include "zbuild.h"
#include "adler32_p.h"

static void NEON_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
    static const uint16_t ALIGNED_(16) taps[64] = {
        64, 63, 62, 61, 60, 59, 58, 57,
        56, 55, 54, 53, 52, 51, 50, 49,
        48, 47, 46, 45, 44, 43, 42, 41,
        40, 39, 38, 37, 36, 35, 34, 33,
        32, 31, 30, 29, 28, 27, 26, 25,
        24, 23, 22, 21, 20, 19, 18, 17,
        16, 15, 14, 13, 12, 11, 10, 9,
        8, 7, 6, 5, 4, 3, 2, 1 };

    uint32x4_t adacc = vdupq_n_u32(0);
    uint32x4_t s2acc = vdupq_n_u32(0);
    uint32x4_t s2acc_0 = vdupq_n_u32(0);
    uint32x4_t s2acc_1 = vdupq_n_u32(0);
    uint32x4_t s2acc_2 = vdupq_n_u32(0);

    adacc = vsetq_lane_u32(s[0], adacc, 0);
    s2acc = vsetq_lane_u32(s[1], s2acc, 0);

    uint32x4_t s3acc = vdupq_n_u32(0);
    uint32x4_t adacc_prev = adacc;

    uint16x8_t s2_0, s2_1, s2_2, s2_3;
    s2_0 = s2_1 = s2_2 = s2_3 = vdupq_n_u16(0);

    uint16x8_t s2_4, s2_5, s2_6, s2_7;
    s2_4 = s2_5 = s2_6 = s2_7 = vdupq_n_u16(0);

    size_t num_iter = len >> 2;
    int rem = len & 3;

    for (size_t i = 0; i < num_iter; ++i) {
        uint8x16x4_t d0_d3 = vld1q_u8_x4(buf);

        /* Unfortunately it doesn't look like there's a direct sum 8 bit to 32
         * bit instruction, we'll have to make due summing to 16 bits first */
        uint16x8x2_t hsum, hsum_fold;
        hsum.val[0] = vpaddlq_u8(d0_d3.val[0]);
        hsum.val[1] = vpaddlq_u8(d0_d3.val[1]);

        hsum_fold.val[0] = vpadalq_u8(hsum.val[0], d0_d3.val[2]);
        hsum_fold.val[1] = vpadalq_u8(hsum.val[1], d0_d3.val[3]);

        adacc = vpadalq_u16(adacc, hsum_fold.val[0]);
        s3acc = vaddq_u32(s3acc, adacc_prev);
        adacc = vpadalq_u16(adacc, hsum_fold.val[1]);

        /* If we do straight widening additions to the 16 bit values, we don't incur
         * the usual penalties of a pairwise add. We can defer the multiplications
         * until the very end. These will not overflow because we are incurring at
         * most 408 loop iterations (NMAX / 64), and a given lane is only going to be
         * summed into once. This means for the maximum input size, the largest value
         * we will see is 255 * 102 = 26010, safely under uint16 max */
        s2_0 = vaddw_u8(s2_0, vget_low_u8(d0_d3.val[0]));
        s2_1 = vaddw_high_u8(s2_1, d0_d3.val[0]);
        s2_2 = vaddw_u8(s2_2, vget_low_u8(d0_d3.val[1]));
        s2_3 = vaddw_high_u8(s2_3, d0_d3.val[1]);
        s2_4 = vaddw_u8(s2_4, vget_low_u8(d0_d3.val[2]));
        s2_5 = vaddw_high_u8(s2_5, d0_d3.val[2]);
        s2_6 = vaddw_u8(s2_6, vget_low_u8(d0_d3.val[3]));
        s2_7 = vaddw_high_u8(s2_7, d0_d3.val[3]);

        adacc_prev = adacc;
        buf += 64;
    }

    s3acc = vshlq_n_u32(s3acc, 6);

    if (rem) {
        uint32x4_t s3acc_0 = vdupq_n_u32(0);
        while (rem--) {
            uint8x16_t d0 = vld1q_u8(buf);
            uint16x8_t adler;
            adler = vpaddlq_u8(d0);
            s2_6 = vaddw_u8(s2_6, vget_low_u8(d0));
            s2_7 = vaddw_high_u8(s2_7, d0);
            adacc = vpadalq_u16(adacc, adler);
            s3acc_0 = vaddq_u32(s3acc_0, adacc_prev);
            adacc_prev = adacc;
            buf += 16;
        }

        s3acc_0 = vshlq_n_u32(s3acc_0, 4);
        s3acc = vaddq_u32(s3acc_0, s3acc);
    }

    uint16x8x4_t t0_t3 = vld1q_u16_x4(taps);
    uint16x8x4_t t4_t7 = vld1q_u16_x4(taps + 32);

    s2acc = vmlal_high_u16(s2acc, t0_t3.val[0], s2_0);
    s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[0]), vget_low_u16(s2_0));
    s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[1], s2_1);
    s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[1]), vget_low_u16(s2_1));

    s2acc = vmlal_high_u16(s2acc, t0_t3.val[2], s2_2);
    s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t0_t3.val[2]), vget_low_u16(s2_2));
    s2acc_1 = vmlal_high_u16(s2acc_1, t0_t3.val[3], s2_3);
    s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t0_t3.val[3]), vget_low_u16(s2_3));

    s2acc = vmlal_high_u16(s2acc, t4_t7.val[0], s2_4);
    s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[0]), vget_low_u16(s2_4));
    s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[1], s2_5);
    s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[1]), vget_low_u16(s2_5));

    s2acc = vmlal_high_u16(s2acc, t4_t7.val[2], s2_6);
    s2acc_0 = vmlal_u16(s2acc_0, vget_low_u16(t4_t7.val[2]), vget_low_u16(s2_6));
    s2acc_1 = vmlal_high_u16(s2acc_1, t4_t7.val[3], s2_7);
    s2acc_2 = vmlal_u16(s2acc_2, vget_low_u16(t4_t7.val[3]), vget_low_u16(s2_7));

    s2acc = vaddq_u32(s2acc_0, s2acc);
    s2acc_2 = vaddq_u32(s2acc_1, s2acc_2);
    s2acc = vaddq_u32(s2acc, s2acc_2);

    uint32x2_t adacc2, s2acc2, as;
    s2acc = vaddq_u32(s2acc, s3acc);
    adacc2 = vpadd_u32(vget_low_u32(adacc), vget_high_u32(adacc));
    s2acc2 = vpadd_u32(vget_low_u32(s2acc), vget_high_u32(s2acc));
    as = vpadd_u32(adacc2, s2acc2);
    s[0] = vget_lane_u32(as, 0);
    s[1] = vget_lane_u32(as, 1);
}

static void NEON_handle_tail(uint32_t *pair, const uint8_t *buf, size_t len) {
    unsigned int i;
    for (i = 0; i < len; ++i) {
        pair[0] += buf[i];
        pair[1] += pair[0];
    }
}

Z_INTERNAL uint32_t adler32_neon(uint32_t adler, const uint8_t *buf, size_t len) {
    /* split Adler-32 into component sums */
    uint32_t sum2 = (adler >> 16) & 0xffff;
    adler &= 0xffff;

    /* in case user likes doing a byte at a time, keep it fast */
    if (len == 1)
        return adler32_len_1(adler, buf, sum2);

    /* initial Adler-32 value (deferred check for len == 1 speed) */
    if (buf == NULL)
        return 1L;

    /* in case short lengths are provided, keep it somewhat fast */
    if (len < 16)
        return adler32_len_16(adler, buf, len, sum2);

    uint32_t pair[2];
    int n = NMAX;
    unsigned int done = 0;

    /* Split Adler-32 into component sums, it can be supplied by
     * the caller sites (e.g. in a PNG file).
     */
    pair[0] = adler;
    pair[1] = sum2;

    /* If memory is not SIMD aligned, do scalar sums to an aligned
     * offset, provided that doing so doesn't completely eliminate
     * SIMD operation. Aligned loads are still faster on ARM, even
     * though there's no explicit aligned load instruction */
    unsigned int align_offset = ((uintptr_t)buf & 15);
    unsigned int align_adj = (align_offset) ? 16 - align_offset : 0;

    if (align_offset && len >= (16 + align_adj)) {
        NEON_handle_tail(pair, buf, align_adj);
        n -= align_adj;
        done += align_adj;

    } else {
        /* If here, we failed the len criteria test, it wouldn't be
         * worthwhile to do scalar aligning sums */
        align_adj = 0;
    }

    while (done < len) {
        int remaining = (int)(len - done);
        n = MIN(remaining, (done == align_adj) ? n : NMAX);

        if (n < 16)
            break;

        NEON_accum32(pair, buf + done, n >> 4);
        pair[0] %= BASE;
        pair[1] %= BASE;

        int actual_nsums = (n >> 4) << 4;
        done += actual_nsums;
    }

    /* Handle the tail elements. */
    if (done < len) {
        NEON_handle_tail(pair, (buf + done), len - done);
        pair[0] %= BASE;
        pair[1] %= BASE;
    }

    /* D = B * 65536 + A, see: https://en.wikipedia.org/wiki/Adler-32. */
    return (pair[1] << 16) | pair[0];
}

#endif