1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186
|
/* adler32_vmx.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* Copyright (C) 2017-2023 Mika T. Lindqvist <postmaster@raasu.org>
* Copyright (C) 2021 Adam Stylinski <kungfujesus06@gmail.com>
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#ifdef PPC_VMX
#include <altivec.h>
#include "zbuild.h"
#include "zendian.h"
#include "adler32_p.h"
#define vmx_zero() (vec_splat_u32(0))
static inline void vmx_handle_head_or_tail(uint32_t *pair, const uint8_t *buf, size_t len) {
unsigned int i;
for (i = 0; i < len; ++i) {
pair[0] += buf[i];
pair[1] += pair[0];
}
}
static void vmx_accum32(uint32_t *s, const uint8_t *buf, size_t len) {
/* Different taps for the separable components of sums */
const vector unsigned char t0 = {64, 63, 62, 61, 60, 59, 58, 57, 56, 55, 54, 53, 52, 51, 50, 49};
const vector unsigned char t1 = {48, 47, 46, 45, 44, 43, 42, 41, 40, 39, 38, 37, 36, 35, 34, 33};
const vector unsigned char t2 = {32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17};
const vector unsigned char t3 = {16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1};
/* As silly and inefficient as it seems, creating 1 permutation vector to permute
* a 2 element vector from a single load + a subsequent shift is just barely faster
* than doing 2 indexed insertions into zero initialized vectors from unaligned memory. */
const vector unsigned char s0_perm = {0, 1, 2, 3, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8};
const vector unsigned char shift_vec = vec_sl(vec_splat_u8(8), vec_splat_u8(2));
vector unsigned int adacc, s2acc;
vector unsigned int pair_vec = vec_ld(0, s);
adacc = vec_perm(pair_vec, pair_vec, s0_perm);
#if BYTE_ORDER == LITTLE_ENDIAN
s2acc = vec_sro(pair_vec, shift_vec);
#else
s2acc = vec_slo(pair_vec, shift_vec);
#endif
vector unsigned int zero = vmx_zero();
vector unsigned int s3acc = zero;
vector unsigned int s3acc_0 = zero;
vector unsigned int adacc_prev = adacc;
vector unsigned int adacc_prev_0 = zero;
vector unsigned int s2acc_0 = zero;
vector unsigned int s2acc_1 = zero;
vector unsigned int s2acc_2 = zero;
/* Maintain a running sum of a second half, this might help use break yet another
* data dependency bubble in the sum */
vector unsigned int adacc_0 = zero;
int num_iter = len / 4;
int rem = len & 3;
for (int i = 0; i < num_iter; ++i) {
vector unsigned char d0 = vec_ld(0, buf);
vector unsigned char d1 = vec_ld(16, buf);
vector unsigned char d2 = vec_ld(32, buf);
vector unsigned char d3 = vec_ld(48, buf);
/* The core operation of the loop, basically
* what is being unrolled below */
adacc = vec_sum4s(d0, adacc);
s3acc = vec_add(s3acc, adacc_prev);
s3acc_0 = vec_add(s3acc_0, adacc_prev_0);
s2acc = vec_msum(t0, d0, s2acc);
/* interleave dependent sums in here */
adacc_0 = vec_sum4s(d1, adacc_0);
s2acc_0 = vec_msum(t1, d1, s2acc_0);
adacc = vec_sum4s(d2, adacc);
s2acc_1 = vec_msum(t2, d2, s2acc_1);
s2acc_2 = vec_msum(t3, d3, s2acc_2);
adacc_0 = vec_sum4s(d3, adacc_0);
adacc_prev = adacc;
adacc_prev_0 = adacc_0;
buf += 64;
}
adacc = vec_add(adacc, adacc_0);
s3acc = vec_add(s3acc, s3acc_0);
s3acc = vec_sl(s3acc, vec_splat_u32(6));
if (rem) {
adacc_prev = vec_add(adacc_prev_0, adacc_prev);
adacc_prev = vec_sl(adacc_prev, vec_splat_u32(4));
while (rem--) {
vector unsigned char d0 = vec_ld(0, buf);
adacc = vec_sum4s(d0, adacc);
s3acc = vec_add(s3acc, adacc_prev);
s2acc = vec_msum(t3, d0, s2acc);
adacc_prev = vec_sl(adacc, vec_splat_u32(4));
buf += 16;
}
}
/* Sum up independent second sums */
s2acc = vec_add(s2acc, s2acc_0);
s2acc_2 = vec_add(s2acc_1, s2acc_2);
s2acc = vec_add(s2acc, s2acc_2);
s2acc = vec_add(s2acc, s3acc);
adacc = vec_add(adacc, vec_sld(adacc, adacc, 8));
s2acc = vec_add(s2acc, vec_sld(s2acc, s2acc, 8));
adacc = vec_add(adacc, vec_sld(adacc, adacc, 4));
s2acc = vec_add(s2acc, vec_sld(s2acc, s2acc, 4));
vec_ste(adacc, 0, s);
vec_ste(s2acc, 0, s+1);
}
Z_INTERNAL uint32_t adler32_vmx(uint32_t adler, const uint8_t *buf, size_t len) {
uint32_t sum2;
uint32_t pair[16] ALIGNED_(16);
memset(&pair[2], 0, 14);
int n = NMAX;
unsigned int done = 0, i;
/* Split Adler-32 into component sums, it can be supplied by
* the caller sites (e.g. in a PNG file).
*/
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
pair[0] = adler;
pair[1] = sum2;
/* in case user likes doing a byte at a time, keep it fast */
if (UNLIKELY(len == 1))
return adler32_len_1(adler, buf, sum2);
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (UNLIKELY(buf == NULL))
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (UNLIKELY(len < 16))
return adler32_len_16(adler, buf, len, sum2);
// Align buffer
unsigned int al = 0;
if ((uintptr_t)buf & 0xf) {
al = 16-((uintptr_t)buf & 0xf);
if (al > len) {
al=len;
}
vmx_handle_head_or_tail(pair, buf, al);
done += al;
/* Rather than rebasing, we can reduce the max sums for the
* first round only */
n -= al;
}
for (i = al; i < len; i += n) {
int remaining = (int)(len-i);
n = MIN(remaining, (i == al) ? n : NMAX);
if (n < 16)
break;
vmx_accum32(pair, buf + i, n / 16);
pair[0] %= BASE;
pair[1] %= BASE;
done += (n / 16) * 16;
}
/* Handle the tail elements. */
if (done < len) {
vmx_handle_head_or_tail(pair, (buf + done), len - done);
pair[0] %= BASE;
pair[1] %= BASE;
}
/* D = B * 65536 + A, see: https://en.wikipedia.org/wiki/Adler-32. */
return (pair[1] << 16) | pair[0];
}
#endif
|