1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587
|
/* crc32 for POWER8 using VSX instructions
* Copyright (C) 2021 IBM Corporation
*
* Author: Rogerio Alves <rogealve@br.ibm.com>
*
* For conditions of distribution and use, see copyright notice in zlib.h
*
* Calculate the checksum of data that is 16 byte aligned and a multiple of
* 16 bytes.
*
* The first step is to reduce it to 1024 bits. We do this in 8 parallel
* chunks in order to mask the latency of the vpmsum instructions. If we
* have more than 32 kB of data to checksum we repeat this step multiple
* times, passing in the previous 1024 bits.
*
* The next step is to reduce the 1024 bits to 64 bits. This step adds
* 32 bits of 0s to the end - this matches what a CRC does. We just
* calculate constants that land the data in this 32 bits.
*
* We then use fixed point Barrett reduction to compute a mod n over GF(2)
* for n = CRC using POWER8 instructions. We use x = 32.
*
* http://en.wikipedia.org/wiki/Barrett_reduction
*
* This code uses gcc vector builtins instead using assembly directly.
*/
#include <altivec.h>
#include "zendian.h"
#include "zbuild.h"
#include "crc32_constants.h"
#include "crc32_braid_tbl.h"
#include "power_intrins.h"
#define MAX_SIZE 32768
#define VMX_ALIGN 16
#define VMX_ALIGN_MASK (VMX_ALIGN-1)
static unsigned int crc32_align(unsigned int crc, const unsigned char *p, unsigned long len) {
while (len--)
crc = crc_table[(crc ^ *p++) & 0xff] ^ (crc >> 8);
return crc;
}
static unsigned int ALIGNED_(32) __crc32_vpmsum(unsigned int crc, const void* p, unsigned long len);
Z_INTERNAL uint32_t crc32_power8(uint32_t crc, const unsigned char *p, size_t _len) {
unsigned int prealign;
unsigned int tail;
unsigned long len = (unsigned long) _len;
if (p == (const unsigned char *) 0x0)
return 0;
crc ^= 0xffffffff;
if (len < VMX_ALIGN + VMX_ALIGN_MASK) {
crc = crc32_align(crc, p, len);
goto out;
}
if ((unsigned long)p & VMX_ALIGN_MASK) {
prealign = VMX_ALIGN - ((unsigned long)p & VMX_ALIGN_MASK);
crc = crc32_align(crc, p, prealign);
len -= prealign;
p += prealign;
}
crc = __crc32_vpmsum(crc, p, len & ~VMX_ALIGN_MASK);
tail = len & VMX_ALIGN_MASK;
if (tail) {
p += len & ~VMX_ALIGN_MASK;
crc = crc32_align(crc, p, tail);
}
out:
crc ^= 0xffffffff;
return crc;
}
/* When we have a load-store in a single-dispatch group and address overlap
* such that forward is not allowed (load-hit-store) the group must be flushed.
* A group ending NOP prevents the flush.
*/
#define GROUP_ENDING_NOP __asm__("ori 2,2,0" ::: "memory")
#if BYTE_ORDER == BIG_ENDIAN
#define BYTESWAP_DATA
#endif
#ifdef BYTESWAP_DATA
#define VEC_PERM(vr, va, vb, vc) vr = vec_perm(va, vb, (__vector unsigned char) vc)
#if BYTE_ORDER == LITTLE_ENDIAN
/* Byte reverse permute constant LE. */
static const __vector unsigned long long vperm_const ALIGNED_(16) = { 0x08090A0B0C0D0E0FUL, 0x0001020304050607UL };
#else
static const __vector unsigned long long vperm_const ALIGNED_(16) = { 0x0F0E0D0C0B0A0908UL, 0X0706050403020100UL };
#endif
#else
#define VEC_PERM(vr, va, vb, vc)
#endif
static unsigned int ALIGNED_(32) __crc32_vpmsum(unsigned int crc, const void* p, unsigned long len) {
const __vector unsigned long long vzero = {0,0};
const __vector unsigned long long vones = {0xffffffffffffffffUL, 0xffffffffffffffffUL};
const __vector unsigned long long vmask_32bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero, (__vector unsigned char)vones, 4);
const __vector unsigned long long vmask_64bit =
(__vector unsigned long long)vec_sld((__vector unsigned char)vzero, (__vector unsigned char)vones, 8);
__vector unsigned long long vcrc;
__vector unsigned long long vconst1, vconst2;
/* vdata0-vdata7 will contain our data (p). */
__vector unsigned long long vdata0, vdata1, vdata2, vdata3, vdata4, vdata5, vdata6, vdata7;
/* v0-v7 will contain our checksums */
__vector unsigned long long v0 = {0,0};
__vector unsigned long long v1 = {0,0};
__vector unsigned long long v2 = {0,0};
__vector unsigned long long v3 = {0,0};
__vector unsigned long long v4 = {0,0};
__vector unsigned long long v5 = {0,0};
__vector unsigned long long v6 = {0,0};
__vector unsigned long long v7 = {0,0};
/* Vector auxiliary variables. */
__vector unsigned long long va0, va1, va2, va3, va4, va5, va6, va7;
unsigned int offset; /* Constant table offset. */
unsigned long i; /* Counter. */
unsigned long chunks;
unsigned long block_size;
int next_block = 0;
/* Align by 128 bits. The last 128 bit block will be processed at end. */
unsigned long length = len & 0xFFFFFFFFFFFFFF80UL;
vcrc = (__vector unsigned long long)__builtin_pack_vector_int128(0UL, crc);
/* Short version. */
if (len < 256) {
/* Calculate where in the constant table we need to start. */
offset = 256 - len;
vconst1 = vec_ld(offset, vcrc_short_const);
vdata0 = vec_ld(0, (__vector unsigned long long*) p);
VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
/* xor initial value */
vdata0 = vec_xor(vdata0, vcrc);
vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw(
(__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
v0 = vec_xor(v0, vdata0);
for (i = 16; i < len; i += 16) {
vconst1 = vec_ld(offset + i, vcrc_short_const);
vdata0 = vec_ld(i, (__vector unsigned long long*) p);
VEC_PERM(vdata0, vdata0, vconst1, vperm_const);
vdata0 = (__vector unsigned long long) __builtin_crypto_vpmsumw(
(__vector unsigned int)vdata0, (__vector unsigned int)vconst1);
v0 = vec_xor(v0, vdata0);
}
} else {
/* Load initial values. */
vdata0 = vec_ld(0, (__vector unsigned long long*) p);
vdata1 = vec_ld(16, (__vector unsigned long long*) p);
VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
vdata2 = vec_ld(32, (__vector unsigned long long*) p);
vdata3 = vec_ld(48, (__vector unsigned long long*) p);
VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
vdata4 = vec_ld(64, (__vector unsigned long long*) p);
vdata5 = vec_ld(80, (__vector unsigned long long*) p);
VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
vdata6 = vec_ld(96, (__vector unsigned long long*) p);
vdata7 = vec_ld(112, (__vector unsigned long long*) p);
VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
/* xor in initial value */
vdata0 = vec_xor(vdata0, vcrc);
p = (char *)p + 128;
do {
/* Checksum in blocks of MAX_SIZE. */
block_size = length;
if (block_size > MAX_SIZE) {
block_size = MAX_SIZE;
}
length = length - block_size;
/*
* Work out the offset into the constants table to start at. Each
* constant is 16 bytes, and it is used against 128 bytes of input
* data - 128 / 16 = 8
*/
offset = (MAX_SIZE/8) - (block_size/8);
/* We reduce our final 128 bytes in a separate step */
chunks = (block_size/128)-1;
vconst1 = vec_ld(offset, vcrc_const);
va0 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata0,
(__vector unsigned long long)vconst1);
va1 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata1,
(__vector unsigned long long)vconst1);
va2 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata2,
(__vector unsigned long long)vconst1);
va3 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata3,
(__vector unsigned long long)vconst1);
va4 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata4,
(__vector unsigned long long)vconst1);
va5 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata5,
(__vector unsigned long long)vconst1);
va6 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata6,
(__vector unsigned long long)vconst1);
va7 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata7,
(__vector unsigned long long)vconst1);
if (chunks > 1) {
offset += 16;
vconst2 = vec_ld(offset, vcrc_const);
GROUP_ENDING_NOP;
vdata0 = vec_ld(0, (__vector unsigned long long*) p);
VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
vdata1 = vec_ld(16, (__vector unsigned long long*) p);
VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
vdata2 = vec_ld(32, (__vector unsigned long long*) p);
VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
vdata3 = vec_ld(48, (__vector unsigned long long*) p);
VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
vdata4 = vec_ld(64, (__vector unsigned long long*) p);
VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
vdata5 = vec_ld(80, (__vector unsigned long long*) p);
VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
vdata6 = vec_ld(96, (__vector unsigned long long*) p);
VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
vdata7 = vec_ld(112, (__vector unsigned long long*) p);
VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
p = (char *)p + 128;
/*
* main loop. Each iteration calculates the CRC for a 128-byte
* block.
*/
for (i = 0; i < chunks-2; i++) {
vconst1 = vec_ld(offset, vcrc_const);
offset += 16;
GROUP_ENDING_NOP;
v0 = vec_xor(v0, va0);
va0 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata0,
(__vector unsigned long long)vconst2);
vdata0 = vec_ld(0, (__vector unsigned long long*) p);
VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
GROUP_ENDING_NOP;
v1 = vec_xor(v1, va1);
va1 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata1,
(__vector unsigned long long)vconst2);
vdata1 = vec_ld(16, (__vector unsigned long long*) p);
VEC_PERM(vdata1, vdata1, vdata1, vperm_const);
GROUP_ENDING_NOP;
v2 = vec_xor(v2, va2);
va2 = __builtin_crypto_vpmsumd((__vector unsigned long long)
vdata2, (__vector unsigned long long)vconst2);
vdata2 = vec_ld(32, (__vector unsigned long long*) p);
VEC_PERM(vdata2, vdata2, vdata2, vperm_const);
GROUP_ENDING_NOP;
v3 = vec_xor(v3, va3);
va3 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata3,
(__vector unsigned long long)vconst2);
vdata3 = vec_ld(48, (__vector unsigned long long*) p);
VEC_PERM(vdata3, vdata3, vdata3, vperm_const);
vconst2 = vec_ld(offset, vcrc_const);
GROUP_ENDING_NOP;
v4 = vec_xor(v4, va4);
va4 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata4,
(__vector unsigned long long)vconst1);
vdata4 = vec_ld(64, (__vector unsigned long long*) p);
VEC_PERM(vdata4, vdata4, vdata4, vperm_const);
GROUP_ENDING_NOP;
v5 = vec_xor(v5, va5);
va5 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata5,
(__vector unsigned long long)vconst1);
vdata5 = vec_ld(80, (__vector unsigned long long*) p);
VEC_PERM(vdata5, vdata5, vdata5, vperm_const);
GROUP_ENDING_NOP;
v6 = vec_xor(v6, va6);
va6 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata6,
(__vector unsigned long long)vconst1);
vdata6 = vec_ld(96, (__vector unsigned long long*) p);
VEC_PERM(vdata6, vdata6, vdata6, vperm_const);
GROUP_ENDING_NOP;
v7 = vec_xor(v7, va7);
va7 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata7,
(__vector unsigned long long)vconst1);
vdata7 = vec_ld(112, (__vector unsigned long long*) p);
VEC_PERM(vdata7, vdata7, vdata7, vperm_const);
p = (char *)p + 128;
}
/* First cool down */
vconst1 = vec_ld(offset, vcrc_const);
offset += 16;
v0 = vec_xor(v0, va0);
va0 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata0,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v1 = vec_xor(v1, va1);
va1 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata1,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v2 = vec_xor(v2, va2);
va2 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata2,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v3 = vec_xor(v3, va3);
va3 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata3,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v4 = vec_xor(v4, va4);
va4 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata4,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v5 = vec_xor(v5, va5);
va5 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata5,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v6 = vec_xor(v6, va6);
va6 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata6,
(__vector unsigned long long)vconst1);
GROUP_ENDING_NOP;
v7 = vec_xor(v7, va7);
va7 = __builtin_crypto_vpmsumd((__vector unsigned long long)vdata7,
(__vector unsigned long long)vconst1);
}/* else */
/* Second cool down. */
v0 = vec_xor(v0, va0);
v1 = vec_xor(v1, va1);
v2 = vec_xor(v2, va2);
v3 = vec_xor(v3, va3);
v4 = vec_xor(v4, va4);
v5 = vec_xor(v5, va5);
v6 = vec_xor(v6, va6);
v7 = vec_xor(v7, va7);
/*
* vpmsumd produces a 96 bit result in the least significant bits
* of the register. Since we are bit reflected we have to shift it
* left 32 bits so it occupies the least significant bits in the
* bit reflected domain.
*/
v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
(__vector unsigned char)vzero, 4);
v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v1,
(__vector unsigned char)vzero, 4);
v2 = (__vector unsigned long long)vec_sld((__vector unsigned char)v2,
(__vector unsigned char)vzero, 4);
v3 = (__vector unsigned long long)vec_sld((__vector unsigned char)v3,
(__vector unsigned char)vzero, 4);
v4 = (__vector unsigned long long)vec_sld((__vector unsigned char)v4,
(__vector unsigned char)vzero, 4);
v5 = (__vector unsigned long long)vec_sld((__vector unsigned char)v5,
(__vector unsigned char)vzero, 4);
v6 = (__vector unsigned long long)vec_sld((__vector unsigned char)v6,
(__vector unsigned char)vzero, 4);
v7 = (__vector unsigned long long)vec_sld((__vector unsigned char)v7,
(__vector unsigned char)vzero, 4);
/* xor with the last 1024 bits. */
va0 = vec_ld(0, (__vector unsigned long long*) p);
VEC_PERM(va0, va0, va0, vperm_const);
va1 = vec_ld(16, (__vector unsigned long long*) p);
VEC_PERM(va1, va1, va1, vperm_const);
va2 = vec_ld(32, (__vector unsigned long long*) p);
VEC_PERM(va2, va2, va2, vperm_const);
va3 = vec_ld(48, (__vector unsigned long long*) p);
VEC_PERM(va3, va3, va3, vperm_const);
va4 = vec_ld(64, (__vector unsigned long long*) p);
VEC_PERM(va4, va4, va4, vperm_const);
va5 = vec_ld(80, (__vector unsigned long long*) p);
VEC_PERM(va5, va5, va5, vperm_const);
va6 = vec_ld(96, (__vector unsigned long long*) p);
VEC_PERM(va6, va6, va6, vperm_const);
va7 = vec_ld(112, (__vector unsigned long long*) p);
VEC_PERM(va7, va7, va7, vperm_const);
p = (char *)p + 128;
vdata0 = vec_xor(v0, va0);
vdata1 = vec_xor(v1, va1);
vdata2 = vec_xor(v2, va2);
vdata3 = vec_xor(v3, va3);
vdata4 = vec_xor(v4, va4);
vdata5 = vec_xor(v5, va5);
vdata6 = vec_xor(v6, va6);
vdata7 = vec_xor(v7, va7);
/* Check if we have more blocks to process */
next_block = 0;
if (length != 0) {
next_block = 1;
/* zero v0-v7 */
v0 = vec_xor(v0, v0);
v1 = vec_xor(v1, v1);
v2 = vec_xor(v2, v2);
v3 = vec_xor(v3, v3);
v4 = vec_xor(v4, v4);
v5 = vec_xor(v5, v5);
v6 = vec_xor(v6, v6);
v7 = vec_xor(v7, v7);
}
length = length + 128;
} while (next_block);
/* Calculate how many bytes we have left. */
length = (len & 127);
/* Calculate where in (short) constant table we need to start. */
offset = 128 - length;
v0 = vec_ld(offset, vcrc_short_const);
v1 = vec_ld(offset + 16, vcrc_short_const);
v2 = vec_ld(offset + 32, vcrc_short_const);
v3 = vec_ld(offset + 48, vcrc_short_const);
v4 = vec_ld(offset + 64, vcrc_short_const);
v5 = vec_ld(offset + 80, vcrc_short_const);
v6 = vec_ld(offset + 96, vcrc_short_const);
v7 = vec_ld(offset + 112, vcrc_short_const);
offset += 128;
v0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata0, (__vector unsigned int)v0);
v1 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata1, (__vector unsigned int)v1);
v2 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata2, (__vector unsigned int)v2);
v3 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata3, (__vector unsigned int)v3);
v4 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata4, (__vector unsigned int)v4);
v5 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata5, (__vector unsigned int)v5);
v6 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata6, (__vector unsigned int)v6);
v7 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata7, (__vector unsigned int)v7);
/* Now reduce the tail (0-112 bytes). */
for (i = 0; i < length; i+=16) {
vdata0 = vec_ld(i,(__vector unsigned long long*)p);
VEC_PERM(vdata0, vdata0, vdata0, vperm_const);
va0 = vec_ld(offset + i,vcrc_short_const);
va0 = (__vector unsigned long long)__builtin_crypto_vpmsumw(
(__vector unsigned int)vdata0, (__vector unsigned int)va0);
v0 = vec_xor(v0, va0);
}
/* xor all parallel chunks together. */
v0 = vec_xor(v0, v1);
v2 = vec_xor(v2, v3);
v4 = vec_xor(v4, v5);
v6 = vec_xor(v6, v7);
v0 = vec_xor(v0, v2);
v4 = vec_xor(v4, v6);
v0 = vec_xor(v0, v4);
}
/* Barrett Reduction */
vconst1 = vec_ld(0, v_Barrett_const);
vconst2 = vec_ld(16, v_Barrett_const);
v1 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
(__vector unsigned char)v0, 8);
v0 = vec_xor(v1,v0);
/* shift left one bit */
__vector unsigned char vsht_splat = vec_splat_u8 (1);
v0 = (__vector unsigned long long)vec_sll((__vector unsigned char)v0, vsht_splat);
v0 = vec_and(v0, vmask_64bit);
/*
* The reflected version of Barrett reduction. Instead of bit
* reflecting our data (which is expensive to do), we bit reflect our
* constants and our algorithm, which means the intermediate data in
* our vector registers goes from 0-63 instead of 63-0. We can reflect
* the algorithm because we don't carry in mod 2 arithmetic.
*/
/* bottom 32 bits of a */
v1 = vec_and(v0, vmask_32bit);
/* ma */
v1 = __builtin_crypto_vpmsumd((__vector unsigned long long)v1,
(__vector unsigned long long)vconst1);
/* bottom 32bits of ma */
v1 = vec_and(v1, vmask_32bit);
/* qn */
v1 = __builtin_crypto_vpmsumd((__vector unsigned long long)v1,
(__vector unsigned long long)vconst2);
/* a - qn, subtraction is xor in GF(2) */
v0 = vec_xor (v0, v1);
/*
* Since we are bit reflected, the result (ie the low 32 bits) is in
* the high 32 bits. We just need to shift it left 4 bytes
* V0 [ 0 1 X 3 ]
* V0 [ 0 X 2 3 ]
*/
/* shift result into top 64 bits of */
v0 = (__vector unsigned long long)vec_sld((__vector unsigned char)v0,
(__vector unsigned char)vzero, 4);
#if BYTE_ORDER == BIG_ENDIAN
return v0[0];
#else
return v0[1];
#endif
}
|