1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
|
/* adler32_ssse3.c -- compute the Adler-32 checksum of a data stream
* Copyright (C) 1995-2011 Mark Adler
* Authors:
* Adam Stylinski <kungfujesus06@gmail.com>
* Brian Bockelman <bockelman@gmail.com>
* For conditions of distribution and use, see copyright notice in zlib.h
*/
#include "zbuild.h"
#include "adler32_p.h"
#include "adler32_ssse3_p.h"
#ifdef X86_SSSE3
#include <immintrin.h>
Z_INTERNAL uint32_t adler32_ssse3(uint32_t adler, const uint8_t *buf, size_t len) {
uint32_t sum2;
/* split Adler-32 into component sums */
sum2 = (adler >> 16) & 0xffff;
adler &= 0xffff;
/* in case user likes doing a byte at a time, keep it fast */
if (UNLIKELY(len == 1))
return adler32_len_1(adler, buf, sum2);
/* initial Adler-32 value (deferred check for len == 1 speed) */
if (UNLIKELY(buf == NULL))
return 1L;
/* in case short lengths are provided, keep it somewhat fast */
if (UNLIKELY(len < 16))
return adler32_len_16(adler, buf, len, sum2);
const __m128i dot2v = _mm_setr_epi8(32, 31, 30, 29, 28, 27, 26, 25, 24, 23, 22, 21, 20, 19, 18, 17);
const __m128i dot2v_0 = _mm_setr_epi8(16, 15, 14, 13, 12, 11, 10, 9, 8, 7, 6, 5, 4, 3, 2, 1);
const __m128i dot3v = _mm_set1_epi16(1);
const __m128i zero = _mm_setzero_si128();
__m128i vbuf, vs1_0, vs3, vs1, vs2, vs2_0, v_sad_sum1, v_short_sum2, v_short_sum2_0,
vbuf_0, v_sad_sum2, vsum2, vsum2_0;
/* If our buffer is unaligned (likely), make the determination whether
* or not there's enough of a buffer to consume to make the scalar, aligning
* additions worthwhile or if it's worth it to just eat the cost of an unaligned
* load. This is a pretty simple test, just test if 16 - the remainder + len is
* < 16 */
size_t max_iters = NMAX;
size_t rem = (uintptr_t)buf & 15;
size_t align_offset = 16 - rem;
size_t k = 0;
if (rem) {
if (len < 16 + align_offset) {
/* Let's eat the cost of this one unaligned load so that
* we don't completely skip over the vectorization. Doing
* 16 bytes at a time unaligned is better than 16 + <= 15
* sums */
vbuf = _mm_loadu_si128((__m128i*)buf);
len -= 16;
buf += 16;
vs1 = _mm_cvtsi32_si128(adler);
vs2 = _mm_cvtsi32_si128(sum2);
vs3 = _mm_setzero_si128();
vs1_0 = vs1;
goto unaligned_jmp;
}
for (size_t i = 0; i < align_offset; ++i) {
adler += *(buf++);
sum2 += adler;
}
/* lop off the max number of sums based on the scalar sums done
* above */
len -= align_offset;
max_iters -= align_offset;
}
while (len >= 16) {
vs1 = _mm_cvtsi32_si128(adler);
vs2 = _mm_cvtsi32_si128(sum2);
vs3 = _mm_setzero_si128();
vs2_0 = _mm_setzero_si128();
vs1_0 = vs1;
k = (len < max_iters ? len : max_iters);
k -= k % 16;
len -= k;
while (k >= 32) {
/*
vs1 = adler + sum(c[i])
vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
*/
vbuf = _mm_load_si128((__m128i*)buf);
vbuf_0 = _mm_load_si128((__m128i*)(buf + 16));
buf += 32;
k -= 32;
v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
v_sad_sum2 = _mm_sad_epu8(vbuf_0, zero);
vs1 = _mm_add_epi32(v_sad_sum1, vs1);
vs3 = _mm_add_epi32(vs1_0, vs3);
vs1 = _mm_add_epi32(v_sad_sum2, vs1);
v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v);
vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
v_short_sum2_0 = _mm_maddubs_epi16(vbuf_0, dot2v_0);
vs2 = _mm_add_epi32(vsum2, vs2);
vsum2_0 = _mm_madd_epi16(v_short_sum2_0, dot3v);
vs2_0 = _mm_add_epi32(vsum2_0, vs2_0);
vs1_0 = vs1;
}
vs2 = _mm_add_epi32(vs2_0, vs2);
vs3 = _mm_slli_epi32(vs3, 5);
vs2 = _mm_add_epi32(vs3, vs2);
vs3 = _mm_setzero_si128();
while (k >= 16) {
/*
vs1 = adler + sum(c[i])
vs2 = sum2 + 16 vs1 + sum( (16-i+1) c[i] )
*/
vbuf = _mm_load_si128((__m128i*)buf);
buf += 16;
k -= 16;
unaligned_jmp:
v_sad_sum1 = _mm_sad_epu8(vbuf, zero);
vs1 = _mm_add_epi32(v_sad_sum1, vs1);
vs3 = _mm_add_epi32(vs1_0, vs3);
v_short_sum2 = _mm_maddubs_epi16(vbuf, dot2v_0);
vsum2 = _mm_madd_epi16(v_short_sum2, dot3v);
vs2 = _mm_add_epi32(vsum2, vs2);
vs1_0 = vs1;
}
vs3 = _mm_slli_epi32(vs3, 4);
vs2 = _mm_add_epi32(vs2, vs3);
/* We don't actually need to do a full horizontal sum, since psadbw is actually doing
* a partial reduction sum implicitly and only summing to integers in vector positions
* 0 and 2. This saves us some contention on the shuffle port(s) */
adler = partial_hsum(vs1) % BASE;
sum2 = hsum(vs2) % BASE;
max_iters = NMAX;
}
/* Process tail (len < 16). */
return adler32_len_16(adler, buf, len, sum2);
}
#endif
|