1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 2759 2760 2761 2762 2763 2764 2765 2766 2767 2768 2769 2770 2771 2772 2773 2774 2775 2776 2777 2778 2779 2780 2781 2782 2783 2784 2785 2786 2787 2788 2789 2790 2791 2792 2793 2794 2795 2796 2797 2798 2799 2800 2801 2802 2803 2804 2805 2806 2807 2808 2809 2810 2811 2812 2813 2814 2815 2816 2817 2818 2819 2820 2821 2822 2823 2824 2825 2826 2827 2828 2829 2830 2831 2832 2833 2834 2835 2836 2837 2838 2839 2840 2841 2842 2843 2844 2845 2846 2847 2848 2849 2850 2851 2852 2853 2854 2855 2856 2857 2858 2859 2860 2861 2862 2863 2864 2865 2866 2867 2868 2869 2870 2871 2872 2873 2874 2875 2876 2877 2878 2879 2880 2881 2882 2883 2884 2885 2886 2887 2888 2889 2890 2891 2892 2893 2894 2895 2896 2897 2898 2899 2900 2901 2902 2903 2904 2905 2906 2907 2908 2909 2910 2911 2912 2913 2914 2915 2916 2917 2918 2919 2920 2921 2922 2923 2924 2925 2926 2927 2928 2929 2930 2931 2932 2933 2934 2935 2936 2937 2938 2939 2940 2941 2942 2943 2944 2945 2946 2947 2948 2949 2950 2951 2952 2953 2954 2955 2956 2957 2958 2959 2960 2961 2962 2963 2964 2965 2966 2967 2968 2969 2970 2971 2972 2973 2974 2975 2976 2977 2978 2979 2980 2981 2982 2983 2984 2985 2986 2987 2988 2989 2990 2991 2992 2993 2994 2995 2996 2997 2998 2999 3000 3001 3002 3003 3004 3005 3006 3007 3008 3009 3010 3011 3012 3013 3014 3015 3016 3017 3018 3019 3020 3021 3022 3023 3024 3025 3026 3027 3028 3029 3030 3031 3032 3033 3034 3035 3036 3037 3038 3039 3040 3041 3042 3043 3044 3045 3046 3047 3048 3049 3050 3051 3052 3053
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// A btree implementation of the STL set and map interfaces. A btree is smaller
// and generally also faster than STL set/map (refer to the benchmarks below).
// The red-black tree implementation of STL set/map has an overhead of 3
// pointers (left, right and parent) plus the node color information for each
// stored value. So a set<int32_t> consumes 40 bytes for each value stored in
// 64-bit mode. This btree implementation stores multiple values on fixed
// size nodes (usually 256 bytes) and doesn't store child pointers for leaf
// nodes. The result is that a btree_set<int32_t> may use much less memory per
// stored value. For the random insertion benchmark in btree_bench.cc, a
// btree_set<int32_t> with node-size of 256 uses 5.1 bytes per stored value.
//
// The packing of multiple values on to each node of a btree has another effect
// besides better space utilization: better cache locality due to fewer cache
// lines being accessed. Better cache locality translates into faster
// operations.
//
// CAVEATS
//
// Insertions and deletions on a btree can cause splitting, merging or
// rebalancing of btree nodes. And even without these operations, insertions
// and deletions on a btree will move values around within a node. In both
// cases, the result is that insertions and deletions can invalidate iterators
// pointing to values other than the one being inserted/deleted. Therefore, this
// container does not provide pointer stability. This is notably different from
// STL set/map which takes care to not invalidate iterators on insert/erase
// except, of course, for iterators pointing to the value being erased. A
// partial workaround when erasing is available: erase() returns an iterator
// pointing to the item just after the one that was erased (or end() if none
// exists).
#ifndef ABSL_CONTAINER_INTERNAL_BTREE_H_
#define ABSL_CONTAINER_INTERNAL_BTREE_H_
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include <functional>
#include <iterator>
#include <limits>
#include <new>
#include <string>
#include <type_traits>
#include <utility>
#include "absl/base/internal/raw_logging.h"
#include "absl/base/macros.h"
#include "absl/container/internal/common.h"
#include "absl/container/internal/common_policy_traits.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/container/internal/container_memory.h"
#include "absl/container/internal/layout.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#include "absl/types/compare.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
#error ABSL_BTREE_ENABLE_GENERATIONS cannot be directly set
#elif defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_HWADDRESS_SANITIZER) || \
defined(ABSL_HAVE_MEMORY_SANITIZER)
// When compiled in sanitizer mode, we add generation integers to the nodes and
// iterators. When iterators are used, we validate that the container has not
// been mutated since the iterator was constructed.
#define ABSL_BTREE_ENABLE_GENERATIONS
#endif
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
constexpr bool BtreeGenerationsEnabled() { return true; }
#else
constexpr bool BtreeGenerationsEnabled() { return false; }
#endif
template <typename Compare, typename T, typename U>
using compare_result_t = absl::result_of_t<const Compare(const T &, const U &)>;
// A helper class that indicates if the Compare parameter is a key-compare-to
// comparator.
template <typename Compare, typename T>
using btree_is_key_compare_to =
std::is_convertible<compare_result_t<Compare, T, T>, absl::weak_ordering>;
struct StringBtreeDefaultLess {
using is_transparent = void;
StringBtreeDefaultLess() = default;
// Compatibility constructor.
StringBtreeDefaultLess(std::less<std::string>) {} // NOLINT
StringBtreeDefaultLess(std::less<absl::string_view>) {} // NOLINT
// Allow converting to std::less for use in key_comp()/value_comp().
explicit operator std::less<std::string>() const { return {}; }
explicit operator std::less<absl::string_view>() const { return {}; }
explicit operator std::less<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(lhs.compare(rhs));
}
StringBtreeDefaultLess(std::less<absl::Cord>) {} // NOLINT
absl::weak_ordering operator()(const absl::Cord &lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
}
absl::weak_ordering operator()(const absl::Cord &lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(lhs.Compare(rhs));
}
absl::weak_ordering operator()(absl::string_view lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(-rhs.Compare(lhs));
}
};
struct StringBtreeDefaultGreater {
using is_transparent = void;
StringBtreeDefaultGreater() = default;
StringBtreeDefaultGreater(std::greater<std::string>) {} // NOLINT
StringBtreeDefaultGreater(std::greater<absl::string_view>) {} // NOLINT
// Allow converting to std::greater for use in key_comp()/value_comp().
explicit operator std::greater<std::string>() const { return {}; }
explicit operator std::greater<absl::string_view>() const { return {}; }
explicit operator std::greater<absl::Cord>() const { return {}; }
absl::weak_ordering operator()(absl::string_view lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(rhs.compare(lhs));
}
StringBtreeDefaultGreater(std::greater<absl::Cord>) {} // NOLINT
absl::weak_ordering operator()(const absl::Cord &lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
}
absl::weak_ordering operator()(const absl::Cord &lhs,
absl::string_view rhs) const {
return compare_internal::compare_result_as_ordering(-lhs.Compare(rhs));
}
absl::weak_ordering operator()(absl::string_view lhs,
const absl::Cord &rhs) const {
return compare_internal::compare_result_as_ordering(rhs.Compare(lhs));
}
};
// See below comments for checked_compare.
template <typename Compare, bool is_class = std::is_class<Compare>::value>
struct checked_compare_base : Compare {
using Compare::Compare;
explicit checked_compare_base(Compare c) : Compare(std::move(c)) {}
const Compare &comp() const { return *this; }
};
template <typename Compare>
struct checked_compare_base<Compare, false> {
explicit checked_compare_base(Compare c) : compare(std::move(c)) {}
const Compare &comp() const { return compare; }
Compare compare;
};
// A mechanism for opting out of checked_compare for use only in btree_test.cc.
struct BtreeTestOnlyCheckedCompareOptOutBase {};
// A helper class to adapt the specified comparator for two use cases:
// (1) When using common Abseil string types with common comparison functors,
// convert a boolean comparison into a three-way comparison that returns an
// `absl::weak_ordering`. This helper class is specialized for
// less<std::string>, greater<std::string>, less<string_view>,
// greater<string_view>, less<absl::Cord>, and greater<absl::Cord>.
// (2) Adapt the comparator to diagnose cases of non-strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare) in debug mode. Whenever
// a comparison is made, we will make assertions to verify that the comparator
// is valid.
template <typename Compare, typename Key>
struct key_compare_adapter {
// Inherit from checked_compare_base to support function pointers and also
// keep empty-base-optimization (EBO) support for classes.
// Note: we can't use CompressedTuple here because that would interfere
// with the EBO for `btree::rightmost_`. `btree::rightmost_` is itself a
// CompressedTuple and nested `CompressedTuple`s don't support EBO.
// TODO(b/214288561): use CompressedTuple instead once it supports EBO for
// nested `CompressedTuple`s.
struct checked_compare : checked_compare_base<Compare> {
private:
using Base = typename checked_compare::checked_compare_base;
using Base::comp;
// If possible, returns whether `t` is equivalent to itself. We can only do
// this for `Key`s because we can't be sure that it's safe to call
// `comp()(k, k)` otherwise. Even if SFINAE allows it, there could be a
// compilation failure inside the implementation of the comparison operator.
bool is_self_equivalent(const Key &k) const {
// Note: this works for both boolean and three-way comparators.
return comp()(k, k) == 0;
}
// If we can't compare `t` with itself, returns true unconditionally.
template <typename T>
bool is_self_equivalent(const T &) const {
return true;
}
public:
using Base::Base;
checked_compare(Compare comp) : Base(std::move(comp)) {} // NOLINT
// Allow converting to Compare for use in key_comp()/value_comp().
explicit operator Compare() const { return comp(); }
template <typename T, typename U,
absl::enable_if_t<
std::is_same<bool, compare_result_t<Compare, T, U>>::value,
int> = 0>
bool operator()(const T &lhs, const U &rhs) const {
// NOTE: if any of these assertions fail, then the comparator does not
// establish a strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare).
assert(is_self_equivalent(lhs));
assert(is_self_equivalent(rhs));
const bool lhs_comp_rhs = comp()(lhs, rhs);
assert(!lhs_comp_rhs || !comp()(rhs, lhs));
return lhs_comp_rhs;
}
template <
typename T, typename U,
absl::enable_if_t<std::is_convertible<compare_result_t<Compare, T, U>,
absl::weak_ordering>::value,
int> = 0>
absl::weak_ordering operator()(const T &lhs, const U &rhs) const {
// NOTE: if any of these assertions fail, then the comparator does not
// establish a strict-weak-ordering (see
// https://en.cppreference.com/w/cpp/named_req/Compare).
assert(is_self_equivalent(lhs));
assert(is_self_equivalent(rhs));
const absl::weak_ordering lhs_comp_rhs = comp()(lhs, rhs);
#ifndef NDEBUG
const absl::weak_ordering rhs_comp_lhs = comp()(rhs, lhs);
if (lhs_comp_rhs > 0) {
assert(rhs_comp_lhs < 0 && "lhs_comp_rhs > 0 -> rhs_comp_lhs < 0");
} else if (lhs_comp_rhs == 0) {
assert(rhs_comp_lhs == 0 && "lhs_comp_rhs == 0 -> rhs_comp_lhs == 0");
} else {
assert(rhs_comp_lhs > 0 && "lhs_comp_rhs < 0 -> rhs_comp_lhs > 0");
}
#endif
return lhs_comp_rhs;
}
};
using type = absl::conditional_t<
std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase, Compare>::value,
Compare, checked_compare>;
};
template <>
struct key_compare_adapter<std::less<std::string>, std::string> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<std::string>, std::string> {
using type = StringBtreeDefaultGreater;
};
template <>
struct key_compare_adapter<std::less<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<absl::string_view>, absl::string_view> {
using type = StringBtreeDefaultGreater;
};
template <>
struct key_compare_adapter<std::less<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultLess;
};
template <>
struct key_compare_adapter<std::greater<absl::Cord>, absl::Cord> {
using type = StringBtreeDefaultGreater;
};
// Detects an 'absl_btree_prefer_linear_node_search' member. This is
// a protocol used as an opt-in or opt-out of linear search.
//
// For example, this would be useful for key types that wrap an integer
// and define their own cheap operator<(). For example:
//
// class K {
// public:
// using absl_btree_prefer_linear_node_search = std::true_type;
// ...
// private:
// friend bool operator<(K a, K b) { return a.k_ < b.k_; }
// int k_;
// };
//
// btree_map<K, V> m; // Uses linear search
//
// If T has the preference tag, then it has a preference.
// Btree will use the tag's truth value.
template <typename T, typename = void>
struct has_linear_node_search_preference : std::false_type {};
template <typename T, typename = void>
struct prefers_linear_node_search : std::false_type {};
template <typename T>
struct has_linear_node_search_preference<
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: std::true_type {};
template <typename T>
struct prefers_linear_node_search<
T, absl::void_t<typename T::absl_btree_prefer_linear_node_search>>
: T::absl_btree_prefer_linear_node_search {};
template <typename Compare, typename Key>
constexpr bool compare_has_valid_result_type() {
using compare_result_type = compare_result_t<Compare, Key, Key>;
return std::is_same<compare_result_type, bool>::value ||
std::is_convertible<compare_result_type, absl::weak_ordering>::value;
}
template <typename original_key_compare, typename value_type>
class map_value_compare {
template <typename Params>
friend class btree;
// Note: this `protected` is part of the API of std::map::value_compare. See
// https://en.cppreference.com/w/cpp/container/map/value_compare.
protected:
explicit map_value_compare(original_key_compare c) : comp(std::move(c)) {}
original_key_compare comp; // NOLINT
public:
auto operator()(const value_type &lhs, const value_type &rhs) const
-> decltype(comp(lhs.first, rhs.first)) {
return comp(lhs.first, rhs.first);
}
};
template <typename Key, typename Compare, typename Alloc, int TargetNodeSize,
bool IsMulti, bool IsMap, typename SlotPolicy>
struct common_params : common_policy_traits<SlotPolicy> {
using original_key_compare = Compare;
// If Compare is a common comparator for a string-like type, then we adapt it
// to use heterogeneous lookup and to be a key-compare-to comparator.
// We also adapt the comparator to diagnose invalid comparators in debug mode.
// We disable this when `Compare` is invalid in a way that will cause
// adaptation to fail (having invalid return type) so that we can give a
// better compilation failure in static_assert_validation. If we don't do
// this, then there will be cascading compilation failures that are confusing
// for users.
using key_compare =
absl::conditional_t<!compare_has_valid_result_type<Compare, Key>(),
Compare,
typename key_compare_adapter<Compare, Key>::type>;
static constexpr bool kIsKeyCompareStringAdapted =
std::is_same<key_compare, StringBtreeDefaultLess>::value ||
std::is_same<key_compare, StringBtreeDefaultGreater>::value;
static constexpr bool kIsKeyCompareTransparent =
IsTransparent<original_key_compare>::value || kIsKeyCompareStringAdapted;
// A type which indicates if we have a key-compare-to functor or a plain old
// key-compare functor.
using is_key_compare_to = btree_is_key_compare_to<key_compare, Key>;
using allocator_type = Alloc;
using key_type = Key;
using size_type = size_t;
using difference_type = ptrdiff_t;
using slot_policy = SlotPolicy;
using slot_type = typename slot_policy::slot_type;
using value_type = typename slot_policy::value_type;
using init_type = typename slot_policy::mutable_value_type;
using pointer = value_type *;
using const_pointer = const value_type *;
using reference = value_type &;
using const_reference = const value_type &;
using value_compare =
absl::conditional_t<IsMap,
map_value_compare<original_key_compare, value_type>,
original_key_compare>;
using is_map_container = std::integral_constant<bool, IsMap>;
// For the given lookup key type, returns whether we can have multiple
// equivalent keys in the btree. If this is a multi-container, then we can.
// Otherwise, we can have multiple equivalent keys only if all of the
// following conditions are met:
// - The comparator is transparent.
// - The lookup key type is not the same as key_type.
// - The comparator is not a StringBtreeDefault{Less,Greater} comparator
// that we know has the same equivalence classes for all lookup types.
template <typename LookupKey>
constexpr static bool can_have_multiple_equivalent_keys() {
return IsMulti || (IsTransparent<key_compare>::value &&
!std::is_same<LookupKey, Key>::value &&
!kIsKeyCompareStringAdapted);
}
enum {
kTargetNodeSize = TargetNodeSize,
// Upper bound for the available space for slots. This is largest for leaf
// nodes, which have overhead of at least a pointer + 4 bytes (for storing
// 3 field_types and an enum).
kNodeSlotSpace = TargetNodeSize - /*minimum overhead=*/(sizeof(void *) + 4),
};
// This is an integral type large enough to hold as many slots as will fit a
// node of TargetNodeSize bytes.
using node_count_type =
absl::conditional_t<(kNodeSlotSpace / sizeof(slot_type) >
(std::numeric_limits<uint8_t>::max)()),
uint16_t, uint8_t>; // NOLINT
};
// An adapter class that converts a lower-bound compare into an upper-bound
// compare. Note: there is no need to make a version of this adapter specialized
// for key-compare-to functors because the upper-bound (the first value greater
// than the input) is never an exact match.
template <typename Compare>
struct upper_bound_adapter {
explicit upper_bound_adapter(const Compare &c) : comp(c) {}
template <typename K1, typename K2>
bool operator()(const K1 &a, const K2 &b) const {
// Returns true when a is not greater than b.
return !compare_internal::compare_result_as_less_than(comp(b, a));
}
private:
Compare comp;
};
enum class MatchKind : uint8_t { kEq, kNe };
template <typename V, bool IsCompareTo>
struct SearchResult {
V value;
MatchKind match;
static constexpr bool HasMatch() { return true; }
bool IsEq() const { return match == MatchKind::kEq; }
};
// When we don't use CompareTo, `match` is not present.
// This ensures that callers can't use it accidentally when it provides no
// useful information.
template <typename V>
struct SearchResult<V, false> {
SearchResult() {}
explicit SearchResult(V v) : value(v) {}
SearchResult(V v, MatchKind /*match*/) : value(v) {}
V value;
static constexpr bool HasMatch() { return false; }
static constexpr bool IsEq() { return false; }
};
// A node in the btree holding. The same node type is used for both internal
// and leaf nodes in the btree, though the nodes are allocated in such a way
// that the children array is only valid in internal nodes.
template <typename Params>
class btree_node {
using is_key_compare_to = typename Params::is_key_compare_to;
using field_type = typename Params::node_count_type;
using allocator_type = typename Params::allocator_type;
using slot_type = typename Params::slot_type;
using original_key_compare = typename Params::original_key_compare;
public:
using params_type = Params;
using key_type = typename Params::key_type;
using value_type = typename Params::value_type;
using pointer = typename Params::pointer;
using const_pointer = typename Params::const_pointer;
using reference = typename Params::reference;
using const_reference = typename Params::const_reference;
using key_compare = typename Params::key_compare;
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
// Btree decides whether to use linear node search as follows:
// - If the comparator expresses a preference, use that.
// - If the key expresses a preference, use that.
// - If the key is arithmetic and the comparator is std::less or
// std::greater, choose linear.
// - Otherwise, choose binary.
// TODO(ezb): Might make sense to add condition(s) based on node-size.
using use_linear_search = std::integral_constant<
bool, has_linear_node_search_preference<original_key_compare>::value
? prefers_linear_node_search<original_key_compare>::value
: has_linear_node_search_preference<key_type>::value
? prefers_linear_node_search<key_type>::value
: std::is_arithmetic<key_type>::value &&
(std::is_same<std::less<key_type>,
original_key_compare>::value ||
std::is_same<std::greater<key_type>,
original_key_compare>::value)>;
// This class is organized by absl::container_internal::Layout as if it had
// the following structure:
// // A pointer to the node's parent.
// btree_node *parent;
//
// // When ABSL_BTREE_ENABLE_GENERATIONS is defined, we also have a
// // generation integer in order to check that when iterators are
// // used, they haven't been invalidated already. Only the generation on
// // the root is used, but we have one on each node because whether a node
// // is root or not can change.
// uint32_t generation;
//
// // The position of the node in the node's parent.
// field_type position;
// // The index of the first populated value in `values`.
// // TODO(ezb): right now, `start` is always 0. Update insertion/merge
// // logic to allow for floating storage within nodes.
// field_type start;
// // The index after the last populated value in `values`. Currently, this
// // is the same as the count of values.
// field_type finish;
// // The maximum number of values the node can hold. This is an integer in
// // [1, kNodeSlots] for root leaf nodes, kNodeSlots for non-root leaf
// // nodes, and kInternalNodeMaxCount (as a sentinel value) for internal
// // nodes (even though there are still kNodeSlots values in the node).
// // TODO(ezb): make max_count use only 4 bits and record log2(capacity)
// // to free extra bits for is_root, etc.
// field_type max_count;
//
// // The array of values. The capacity is `max_count` for leaf nodes and
// // kNodeSlots for internal nodes. Only the values in
// // [start, finish) have been initialized and are valid.
// slot_type values[max_count];
//
// // The array of child pointers. The keys in children[i] are all less
// // than key(i). The keys in children[i + 1] are all greater than key(i).
// // There are 0 children for leaf nodes and kNodeSlots + 1 children for
// // internal nodes.
// btree_node *children[kNodeSlots + 1];
//
// This class is only constructed by EmptyNodeType. Normally, pointers to the
// layout above are allocated, cast to btree_node*, and de-allocated within
// the btree implementation.
~btree_node() = default;
btree_node(btree_node const &) = delete;
btree_node &operator=(btree_node const &) = delete;
protected:
btree_node() = default;
private:
using layout_type =
absl::container_internal::Layout<btree_node *, uint32_t, field_type,
slot_type, btree_node *>;
constexpr static size_type SizeWithNSlots(size_type n) {
return layout_type(
/*parent*/ 1,
/*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
/*position, start, finish, max_count*/ 4,
/*slots*/ n,
/*children*/ 0)
.AllocSize();
}
// A lower bound for the overhead of fields other than slots in a leaf node.
constexpr static size_type MinimumOverhead() {
return SizeWithNSlots(1) - sizeof(slot_type);
}
// Compute how many values we can fit onto a leaf node taking into account
// padding.
constexpr static size_type NodeTargetSlots(const size_type begin,
const size_type end) {
return begin == end ? begin
: SizeWithNSlots((begin + end) / 2 + 1) >
params_type::kTargetNodeSize
? NodeTargetSlots(begin, (begin + end) / 2)
: NodeTargetSlots((begin + end) / 2 + 1, end);
}
constexpr static size_type kTargetNodeSize = params_type::kTargetNodeSize;
constexpr static size_type kNodeTargetSlots =
NodeTargetSlots(0, kTargetNodeSize);
// We need a minimum of 3 slots per internal node in order to perform
// splitting (1 value for the two nodes involved in the split and 1 value
// propagated to the parent as the delimiter for the split). For performance
// reasons, we don't allow 3 slots-per-node due to bad worst case occupancy of
// 1/3 (for a node, not a b-tree).
constexpr static size_type kMinNodeSlots = 4;
constexpr static size_type kNodeSlots =
kNodeTargetSlots >= kMinNodeSlots ? kNodeTargetSlots : kMinNodeSlots;
// The node is internal (i.e. is not a leaf node) if and only if `max_count`
// has this value.
constexpr static field_type kInternalNodeMaxCount = 0;
constexpr static layout_type Layout(const size_type slot_count,
const size_type child_count) {
return layout_type(
/*parent*/ 1,
/*generation*/ BtreeGenerationsEnabled() ? 1 : 0,
/*position, start, finish, max_count*/ 4,
/*slots*/ slot_count,
/*children*/ child_count);
}
// Leaves can have less than kNodeSlots values.
constexpr static layout_type LeafLayout(
const size_type slot_count = kNodeSlots) {
return Layout(slot_count, 0);
}
constexpr static layout_type InternalLayout() {
return Layout(kNodeSlots, kNodeSlots + 1);
}
constexpr static size_type LeafSize(const size_type slot_count = kNodeSlots) {
return LeafLayout(slot_count).AllocSize();
}
constexpr static size_type InternalSize() {
return InternalLayout().AllocSize();
}
constexpr static size_type Alignment() {
static_assert(LeafLayout(1).Alignment() == InternalLayout().Alignment(),
"Alignment of all nodes must be equal.");
return InternalLayout().Alignment();
}
// N is the index of the type in the Layout definition.
// ElementType<N> is the Nth type in the Layout definition.
template <size_type N>
inline typename layout_type::template ElementType<N> *GetField() {
// We assert that we don't read from values that aren't there.
assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(reinterpret_cast<char *>(this));
}
template <size_type N>
inline const typename layout_type::template ElementType<N> *GetField() const {
assert(N < 4 || is_internal());
return InternalLayout().template Pointer<N>(
reinterpret_cast<const char *>(this));
}
void set_parent(btree_node *p) { *GetField<0>() = p; }
field_type &mutable_finish() { return GetField<2>()[2]; }
slot_type *slot(size_type i) { return &GetField<3>()[i]; }
slot_type *start_slot() { return slot(start()); }
slot_type *finish_slot() { return slot(finish()); }
const slot_type *slot(size_type i) const { return &GetField<3>()[i]; }
void set_position(field_type v) { GetField<2>()[0] = v; }
void set_start(field_type v) { GetField<2>()[1] = v; }
void set_finish(field_type v) { GetField<2>()[2] = v; }
// This method is only called by the node init methods.
void set_max_count(field_type v) { GetField<2>()[3] = v; }
public:
// Whether this is a leaf node or not. This value doesn't change after the
// node is created.
bool is_leaf() const { return GetField<2>()[3] != kInternalNodeMaxCount; }
// Whether this is an internal node or not. This value doesn't change after
// the node is created.
bool is_internal() const { return !is_leaf(); }
// Getter for the position of this node in its parent.
field_type position() const { return GetField<2>()[0]; }
// Getter for the offset of the first value in the `values` array.
field_type start() const {
// TODO(ezb): when floating storage is implemented, return GetField<2>()[1];
assert(GetField<2>()[1] == 0);
return 0;
}
// Getter for the offset after the last value in the `values` array.
field_type finish() const { return GetField<2>()[2]; }
// Getters for the number of values stored in this node.
field_type count() const {
assert(finish() >= start());
return finish() - start();
}
field_type max_count() const {
// Internal nodes have max_count==kInternalNodeMaxCount.
// Leaf nodes have max_count in [1, kNodeSlots].
const field_type max_count = GetField<2>()[3];
return max_count == field_type{kInternalNodeMaxCount}
? field_type{kNodeSlots}
: max_count;
}
// Getter for the parent of this node.
btree_node *parent() const { return *GetField<0>(); }
// Getter for whether the node is the root of the tree. The parent of the
// root of the tree is the leftmost node in the tree which is guaranteed to
// be a leaf.
bool is_root() const { return parent()->is_leaf(); }
void make_root() {
assert(parent()->is_root());
set_generation(parent()->generation());
set_parent(parent()->parent());
}
// Gets the root node's generation integer, which is the one used by the tree.
uint32_t *get_root_generation() const {
assert(BtreeGenerationsEnabled());
const btree_node *curr = this;
for (; !curr->is_root(); curr = curr->parent()) continue;
return const_cast<uint32_t *>(&curr->GetField<1>()[0]);
}
// Returns the generation for iterator validation.
uint32_t generation() const {
return BtreeGenerationsEnabled() ? *get_root_generation() : 0;
}
// Updates generation. Should only be called on a root node or during node
// initialization.
void set_generation(uint32_t generation) {
if (BtreeGenerationsEnabled()) GetField<1>()[0] = generation;
}
// Updates the generation. We do this whenever the node is mutated.
void next_generation() {
if (BtreeGenerationsEnabled()) ++*get_root_generation();
}
// Getters for the key/value at position i in the node.
const key_type &key(size_type i) const { return params_type::key(slot(i)); }
reference value(size_type i) { return params_type::element(slot(i)); }
const_reference value(size_type i) const {
return params_type::element(slot(i));
}
// Getters/setter for the child at position i in the node.
btree_node *child(field_type i) const { return GetField<4>()[i]; }
btree_node *start_child() const { return child(start()); }
btree_node *&mutable_child(field_type i) { return GetField<4>()[i]; }
void clear_child(field_type i) {
absl::container_internal::SanitizerPoisonObject(&mutable_child(i));
}
void set_child_noupdate_position(field_type i, btree_node *c) {
absl::container_internal::SanitizerUnpoisonObject(&mutable_child(i));
mutable_child(i) = c;
}
void set_child(field_type i, btree_node *c) {
set_child_noupdate_position(i, c);
c->set_position(i);
}
void init_child(field_type i, btree_node *c) {
set_child(i, c);
c->set_parent(this);
}
// Returns the position of the first value whose key is not less than k.
template <typename K>
SearchResult<size_type, is_key_compare_to::value> lower_bound(
const K &k, const key_compare &comp) const {
return use_linear_search::value ? linear_search(k, comp)
: binary_search(k, comp);
}
// Returns the position of the first value whose key is greater than k.
template <typename K>
size_type upper_bound(const K &k, const key_compare &comp) const {
auto upper_compare = upper_bound_adapter<key_compare>(comp);
return use_linear_search::value ? linear_search(k, upper_compare).value
: binary_search(k, upper_compare).value;
}
template <typename K, typename Compare>
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
linear_search(const K &k, const Compare &comp) const {
return linear_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>());
}
template <typename K, typename Compare>
SearchResult<size_type, btree_is_key_compare_to<Compare, key_type>::value>
binary_search(const K &k, const Compare &comp) const {
return binary_search_impl(k, start(), finish(), comp,
btree_is_key_compare_to<Compare, key_type>());
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using plain compare.
template <typename K, typename Compare>
SearchResult<size_type, false> linear_search_impl(
const K &k, size_type s, const size_type e, const Compare &comp,
std::false_type /* IsCompareTo */) const {
while (s < e) {
if (!comp(key(s), k)) {
break;
}
++s;
}
return SearchResult<size_type, false>{s};
}
// Returns the position of the first value whose key is not less than k using
// linear search performed using compare-to.
template <typename K, typename Compare>
SearchResult<size_type, true> linear_search_impl(
const K &k, size_type s, const size_type e, const Compare &comp,
std::true_type /* IsCompareTo */) const {
while (s < e) {
const absl::weak_ordering c = comp(key(s), k);
if (c == 0) {
return {s, MatchKind::kEq};
} else if (c > 0) {
break;
}
++s;
}
return {s, MatchKind::kNe};
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using plain compare.
template <typename K, typename Compare>
SearchResult<size_type, false> binary_search_impl(
const K &k, size_type s, size_type e, const Compare &comp,
std::false_type /* IsCompareTo */) const {
while (s != e) {
const size_type mid = (s + e) >> 1;
if (comp(key(mid), k)) {
s = mid + 1;
} else {
e = mid;
}
}
return SearchResult<size_type, false>{s};
}
// Returns the position of the first value whose key is not less than k using
// binary search performed using compare-to.
template <typename K, typename CompareTo>
SearchResult<size_type, true> binary_search_impl(
const K &k, size_type s, size_type e, const CompareTo &comp,
std::true_type /* IsCompareTo */) const {
if (params_type::template can_have_multiple_equivalent_keys<K>()) {
MatchKind exact_match = MatchKind::kNe;
while (s != e) {
const size_type mid = (s + e) >> 1;
const absl::weak_ordering c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else {
e = mid;
if (c == 0) {
// Need to return the first value whose key is not less than k,
// which requires continuing the binary search if there could be
// multiple equivalent keys.
exact_match = MatchKind::kEq;
}
}
}
return {s, exact_match};
} else { // Can't have multiple equivalent keys.
while (s != e) {
const size_type mid = (s + e) >> 1;
const absl::weak_ordering c = comp(key(mid), k);
if (c < 0) {
s = mid + 1;
} else if (c > 0) {
e = mid;
} else {
return {mid, MatchKind::kEq};
}
}
return {s, MatchKind::kNe};
}
}
// Returns whether key i is ordered correctly with respect to the other keys
// in the node. The motivation here is to detect comparators that violate
// transitivity. Note: we only do comparisons of keys on this node rather than
// the whole tree so that this is constant time.
template <typename Compare>
bool is_ordered_correctly(field_type i, const Compare &comp) const {
if (std::is_base_of<BtreeTestOnlyCheckedCompareOptOutBase,
Compare>::value ||
params_type::kIsKeyCompareStringAdapted) {
return true;
}
const auto compare = [&](field_type a, field_type b) {
const absl::weak_ordering cmp =
compare_internal::do_three_way_comparison(comp, key(a), key(b));
return cmp < 0 ? -1 : cmp > 0 ? 1 : 0;
};
int cmp = -1;
constexpr bool kCanHaveEquivKeys =
params_type::template can_have_multiple_equivalent_keys<key_type>();
for (field_type j = start(); j < finish(); ++j) {
if (j == i) {
if (cmp > 0) return false;
continue;
}
int new_cmp = compare(j, i);
if (new_cmp < cmp || (!kCanHaveEquivKeys && new_cmp == 0)) return false;
cmp = new_cmp;
}
return true;
}
// Emplaces a value at position i, shifting all existing values and
// children at positions >= i to the right by 1.
template <typename... Args>
void emplace_value(field_type i, allocator_type *alloc, Args &&...args);
// Removes the values at positions [i, i + to_erase), shifting all existing
// values and children after that range to the left by to_erase. Clears all
// children between [i, i + to_erase).
void remove_values(field_type i, field_type to_erase, allocator_type *alloc);
// Rebalances a node with its right sibling.
void rebalance_right_to_left(field_type to_move, btree_node *right,
allocator_type *alloc);
void rebalance_left_to_right(field_type to_move, btree_node *right,
allocator_type *alloc);
// Splits a node, moving a portion of the node's values to its right sibling.
void split(int insert_position, btree_node *dest, allocator_type *alloc);
// Merges a node with its right sibling, moving all of the values and the
// delimiting key in the parent node onto itself, and deleting the src node.
void merge(btree_node *src, allocator_type *alloc);
// Node allocation/deletion routines.
void init_leaf(field_type position, field_type max_count,
btree_node *parent) {
set_generation(0);
set_parent(parent);
set_position(position);
set_start(0);
set_finish(0);
set_max_count(max_count);
absl::container_internal::SanitizerPoisonMemoryRegion(
start_slot(), max_count * sizeof(slot_type));
}
void init_internal(field_type position, btree_node *parent) {
init_leaf(position, kNodeSlots, parent);
// Set `max_count` to a sentinel value to indicate that this node is
// internal.
set_max_count(kInternalNodeMaxCount);
absl::container_internal::SanitizerPoisonMemoryRegion(
&mutable_child(start()), (kNodeSlots + 1) * sizeof(btree_node *));
}
static void deallocate(const size_type size, btree_node *node,
allocator_type *alloc) {
absl::container_internal::SanitizerUnpoisonMemoryRegion(node, size);
absl::container_internal::Deallocate<Alignment()>(alloc, node, size);
}
// Deletes a node and all of its children.
static void clear_and_delete(btree_node *node, allocator_type *alloc);
private:
template <typename... Args>
void value_init(const field_type i, allocator_type *alloc, Args &&...args) {
next_generation();
absl::container_internal::SanitizerUnpoisonObject(slot(i));
params_type::construct(alloc, slot(i), std::forward<Args>(args)...);
}
void value_destroy(const field_type i, allocator_type *alloc) {
next_generation();
params_type::destroy(alloc, slot(i));
absl::container_internal::SanitizerPoisonObject(slot(i));
}
void value_destroy_n(const field_type i, const field_type n,
allocator_type *alloc) {
next_generation();
for (slot_type *s = slot(i), *end = slot(i + n); s != end; ++s) {
params_type::destroy(alloc, s);
absl::container_internal::SanitizerPoisonObject(s);
}
}
static void transfer(slot_type *dest, slot_type *src, allocator_type *alloc) {
absl::container_internal::SanitizerUnpoisonObject(dest);
params_type::transfer(alloc, dest, src);
absl::container_internal::SanitizerPoisonObject(src);
}
// Transfers value from slot `src_i` in `src_node` to slot `dest_i` in `this`.
void transfer(const size_type dest_i, const size_type src_i,
btree_node *src_node, allocator_type *alloc) {
next_generation();
transfer(slot(dest_i), src_node->slot(src_i), alloc);
}
// Transfers `n` values starting at value `src_i` in `src_node` into the
// values starting at value `dest_i` in `this`.
void transfer_n(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
next_generation();
for (slot_type *src = src_node->slot(src_i), *end = src + n,
*dest = slot(dest_i);
src != end; ++src, ++dest) {
transfer(dest, src, alloc);
}
}
// Same as above, except that we start at the end and work our way to the
// beginning.
void transfer_n_backward(const size_type n, const size_type dest_i,
const size_type src_i, btree_node *src_node,
allocator_type *alloc) {
next_generation();
for (slot_type *src = src_node->slot(src_i + n), *end = src - n,
*dest = slot(dest_i + n);
src != end; --src, --dest) {
// If we modified the loop index calculations above to avoid the -1s here,
// it would result in UB in the computation of `end` (and possibly `src`
// as well, if n == 0), since slot() is effectively an array index and it
// is UB to compute the address of any out-of-bounds array element except
// for one-past-the-end.
transfer(dest - 1, src - 1, alloc);
}
}
template <typename P>
friend class btree;
template <typename N, typename R, typename P>
friend class btree_iterator;
friend class BtreeNodePeer;
friend struct btree_access;
};
template <typename Node>
bool AreNodesFromSameContainer(const Node *node_a, const Node *node_b) {
// If either node is null, then give up on checking whether they're from the
// same container. (If exactly one is null, then we'll trigger the
// default-constructed assert in Equals.)
if (node_a == nullptr || node_b == nullptr) return true;
while (!node_a->is_root()) node_a = node_a->parent();
while (!node_b->is_root()) node_b = node_b->parent();
return node_a == node_b;
}
class btree_iterator_generation_info_enabled {
public:
explicit btree_iterator_generation_info_enabled(uint32_t g)
: generation_(g) {}
// Updates the generation. For use internally right before we return an
// iterator to the user.
template <typename Node>
void update_generation(const Node *node) {
if (node != nullptr) generation_ = node->generation();
}
uint32_t generation() const { return generation_; }
template <typename Node>
void assert_valid_generation(const Node *node) const {
if (node != nullptr && node->generation() != generation_) {
ABSL_INTERNAL_LOG(
FATAL,
"Attempting to use an invalidated iterator. The corresponding b-tree "
"container has been mutated since this iterator was constructed.");
}
}
private:
// Used to check that the iterator hasn't been invalidated.
uint32_t generation_;
};
class btree_iterator_generation_info_disabled {
public:
explicit btree_iterator_generation_info_disabled(uint32_t) {}
static void update_generation(const void *) {}
static uint32_t generation() { return 0; }
static void assert_valid_generation(const void *) {}
};
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
using btree_iterator_generation_info = btree_iterator_generation_info_enabled;
#else
using btree_iterator_generation_info = btree_iterator_generation_info_disabled;
#endif
template <typename Node, typename Reference, typename Pointer>
class btree_iterator : private btree_iterator_generation_info {
using field_type = typename Node::field_type;
using key_type = typename Node::key_type;
using size_type = typename Node::size_type;
using params_type = typename Node::params_type;
using is_map_container = typename params_type::is_map_container;
using node_type = Node;
using normal_node = typename std::remove_const<Node>::type;
using const_node = const Node;
using normal_pointer = typename params_type::pointer;
using normal_reference = typename params_type::reference;
using const_pointer = typename params_type::const_pointer;
using const_reference = typename params_type::const_reference;
using slot_type = typename params_type::slot_type;
// In sets, all iterators are const.
using iterator = absl::conditional_t<
is_map_container::value,
btree_iterator<normal_node, normal_reference, normal_pointer>,
btree_iterator<normal_node, const_reference, const_pointer>>;
using const_iterator =
btree_iterator<const_node, const_reference, const_pointer>;
public:
// These aliases are public for std::iterator_traits.
using difference_type = typename Node::difference_type;
using value_type = typename params_type::value_type;
using pointer = Pointer;
using reference = Reference;
using iterator_category = std::bidirectional_iterator_tag;
btree_iterator() : btree_iterator(nullptr, -1) {}
explicit btree_iterator(Node *n) : btree_iterator(n, n->start()) {}
btree_iterator(Node *n, int p)
: btree_iterator_generation_info(n != nullptr ? n->generation()
: ~uint32_t{}),
node_(n),
position_(p) {}
// NOTE: this SFINAE allows for implicit conversions from iterator to
// const_iterator, but it specifically avoids hiding the copy constructor so
// that the trivial one will be used when possible.
template <typename N, typename R, typename P,
absl::enable_if_t<
std::is_same<btree_iterator<N, R, P>, iterator>::value &&
std::is_same<btree_iterator, const_iterator>::value,
int> = 0>
btree_iterator(const btree_iterator<N, R, P> other) // NOLINT
: btree_iterator_generation_info(other),
node_(other.node_),
position_(other.position_) {}
bool operator==(const iterator &other) const {
return Equals(other);
}
bool operator==(const const_iterator &other) const {
return Equals(other);
}
bool operator!=(const iterator &other) const {
return !Equals(other);
}
bool operator!=(const const_iterator &other) const {
return !Equals(other);
}
// Returns n such that n calls to ++other yields *this.
// Precondition: n exists.
difference_type operator-(const_iterator other) const {
if (node_ == other.node_) {
if (node_->is_leaf()) return position_ - other.position_;
if (position_ == other.position_) return 0;
}
return distance_slow(other);
}
// Accessors for the key/value the iterator is pointing at.
reference operator*() const {
ABSL_HARDENING_ASSERT(node_ != nullptr);
assert_valid_generation(node_);
ABSL_HARDENING_ASSERT(position_ >= node_->start());
if (position_ >= node_->finish()) {
ABSL_HARDENING_ASSERT(!IsEndIterator() && "Dereferencing end() iterator");
ABSL_HARDENING_ASSERT(position_ < node_->finish());
}
return node_->value(static_cast<field_type>(position_));
}
pointer operator->() const { return &operator*(); }
btree_iterator &operator++() {
increment();
return *this;
}
btree_iterator &operator--() {
decrement();
return *this;
}
btree_iterator operator++(int) {
btree_iterator tmp = *this;
++*this;
return tmp;
}
btree_iterator operator--(int) {
btree_iterator tmp = *this;
--*this;
return tmp;
}
private:
friend iterator;
friend const_iterator;
template <typename Params>
friend class btree;
template <typename Tree>
friend class btree_container;
template <typename Tree>
friend class btree_set_container;
template <typename Tree>
friend class btree_map_container;
template <typename Tree>
friend class btree_multiset_container;
template <typename TreeType, typename CheckerType>
friend class base_checker;
friend struct btree_access;
// This SFINAE allows explicit conversions from const_iterator to
// iterator, but also avoids hiding the copy constructor.
// NOTE: the const_cast is safe because this constructor is only called by
// non-const methods and the container owns the nodes.
template <typename N, typename R, typename P,
absl::enable_if_t<
std::is_same<btree_iterator<N, R, P>, const_iterator>::value &&
std::is_same<btree_iterator, iterator>::value,
int> = 0>
explicit btree_iterator(const btree_iterator<N, R, P> other)
: btree_iterator_generation_info(other.generation()),
node_(const_cast<node_type *>(other.node_)),
position_(other.position_) {}
bool Equals(const const_iterator other) const {
ABSL_HARDENING_ASSERT(((node_ == nullptr && other.node_ == nullptr) ||
(node_ != nullptr && other.node_ != nullptr)) &&
"Comparing default-constructed iterator with "
"non-default-constructed iterator.");
// Note: we use assert instead of ABSL_HARDENING_ASSERT here because this
// changes the complexity of Equals from O(1) to O(log(N) + log(M)) where
// N/M are sizes of the containers containing node_/other.node_.
assert(AreNodesFromSameContainer(node_, other.node_) &&
"Comparing iterators from different containers.");
assert_valid_generation(node_);
other.assert_valid_generation(other.node_);
return node_ == other.node_ && position_ == other.position_;
}
bool IsEndIterator() const {
if (position_ != node_->finish()) return false;
node_type *node = node_;
while (!node->is_root()) {
if (node->position() != node->parent()->finish()) return false;
node = node->parent();
}
return true;
}
// Returns n such that n calls to ++other yields *this.
// Precondition: n exists && (this->node_ != other.node_ ||
// !this->node_->is_leaf() || this->position_ != other.position_).
difference_type distance_slow(const_iterator other) const;
// Increment/decrement the iterator.
void increment() {
assert_valid_generation(node_);
if (node_->is_leaf() && ++position_ < node_->finish()) {
return;
}
increment_slow();
}
void increment_slow();
void decrement() {
assert_valid_generation(node_);
if (node_->is_leaf() && --position_ >= node_->start()) {
return;
}
decrement_slow();
}
void decrement_slow();
const key_type &key() const {
return node_->key(static_cast<size_type>(position_));
}
decltype(std::declval<Node *>()->slot(0)) slot() {
return node_->slot(static_cast<size_type>(position_));
}
void update_generation() {
btree_iterator_generation_info::update_generation(node_);
}
// The node in the tree the iterator is pointing at.
Node *node_;
// The position within the node of the tree the iterator is pointing at.
// NOTE: this is an int rather than a field_type because iterators can point
// to invalid positions (such as -1) in certain circumstances.
int position_;
};
template <typename Params>
class btree {
using node_type = btree_node<Params>;
using is_key_compare_to = typename Params::is_key_compare_to;
using field_type = typename node_type::field_type;
// We use a static empty node for the root/leftmost/rightmost of empty btrees
// in order to avoid branching in begin()/end().
struct EmptyNodeType : node_type {
using field_type = typename node_type::field_type;
node_type *parent;
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
uint32_t generation = 0;
#endif
field_type position = 0;
field_type start = 0;
field_type finish = 0;
// max_count must be != kInternalNodeMaxCount (so that this node is regarded
// as a leaf node). max_count() is never called when the tree is empty.
field_type max_count = node_type::kInternalNodeMaxCount + 1;
constexpr EmptyNodeType() : parent(this) {}
};
static node_type *EmptyNode() {
alignas(node_type::Alignment()) static constexpr EmptyNodeType empty_node;
return const_cast<EmptyNodeType *>(&empty_node);
}
enum : uint32_t {
kNodeSlots = node_type::kNodeSlots,
kMinNodeValues = kNodeSlots / 2,
};
struct node_stats {
using size_type = typename Params::size_type;
node_stats(size_type l, size_type i) : leaf_nodes(l), internal_nodes(i) {}
node_stats &operator+=(const node_stats &other) {
leaf_nodes += other.leaf_nodes;
internal_nodes += other.internal_nodes;
return *this;
}
size_type leaf_nodes;
size_type internal_nodes;
};
public:
using key_type = typename Params::key_type;
using value_type = typename Params::value_type;
using size_type = typename Params::size_type;
using difference_type = typename Params::difference_type;
using key_compare = typename Params::key_compare;
using original_key_compare = typename Params::original_key_compare;
using value_compare = typename Params::value_compare;
using allocator_type = typename Params::allocator_type;
using reference = typename Params::reference;
using const_reference = typename Params::const_reference;
using pointer = typename Params::pointer;
using const_pointer = typename Params::const_pointer;
using iterator =
typename btree_iterator<node_type, reference, pointer>::iterator;
using const_iterator = typename iterator::const_iterator;
using reverse_iterator = std::reverse_iterator<iterator>;
using const_reverse_iterator = std::reverse_iterator<const_iterator>;
using node_handle_type = node_handle<Params, Params, allocator_type>;
// Internal types made public for use by btree_container types.
using params_type = Params;
using slot_type = typename Params::slot_type;
private:
// Copies or moves (depending on the template parameter) the values in
// other into this btree in their order in other. This btree must be empty
// before this method is called. This method is used in copy construction,
// copy assignment, and move assignment.
template <typename Btree>
void copy_or_move_values_in_order(Btree &other);
// Validates that various assumptions/requirements are true at compile time.
constexpr static bool static_assert_validation();
public:
btree(const key_compare &comp, const allocator_type &alloc)
: root_(EmptyNode()), rightmost_(comp, alloc, EmptyNode()), size_(0) {}
btree(const btree &other) : btree(other, other.allocator()) {}
btree(const btree &other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
copy_or_move_values_in_order(other);
}
btree(btree &&other) noexcept
: root_(std::exchange(other.root_, EmptyNode())),
rightmost_(std::move(other.rightmost_)),
size_(std::exchange(other.size_, 0u)) {
other.mutable_rightmost() = EmptyNode();
}
btree(btree &&other, const allocator_type &alloc)
: btree(other.key_comp(), alloc) {
if (alloc == other.allocator()) {
swap(other);
} else {
// Move values from `other` one at a time when allocators are different.
copy_or_move_values_in_order(other);
}
}
~btree() {
// Put static_asserts in destructor to avoid triggering them before the type
// is complete.
static_assert(static_assert_validation(), "This call must be elided.");
clear();
}
// Assign the contents of other to *this.
btree &operator=(const btree &other);
btree &operator=(btree &&other) noexcept;
iterator begin() { return iterator(leftmost()); }
const_iterator begin() const { return const_iterator(leftmost()); }
iterator end() { return iterator(rightmost(), rightmost()->finish()); }
const_iterator end() const {
return const_iterator(rightmost(), rightmost()->finish());
}
reverse_iterator rbegin() { return reverse_iterator(end()); }
const_reverse_iterator rbegin() const {
return const_reverse_iterator(end());
}
reverse_iterator rend() { return reverse_iterator(begin()); }
const_reverse_iterator rend() const {
return const_reverse_iterator(begin());
}
// Finds the first element whose key is not less than `key`.
template <typename K>
iterator lower_bound(const K &key) {
return internal_end(internal_lower_bound(key).value);
}
template <typename K>
const_iterator lower_bound(const K &key) const {
return internal_end(internal_lower_bound(key).value);
}
// Finds the first element whose key is not less than `key` and also returns
// whether that element is equal to `key`.
template <typename K>
std::pair<iterator, bool> lower_bound_equal(const K &key) const;
// Finds the first element whose key is greater than `key`.
template <typename K>
iterator upper_bound(const K &key) {
return internal_end(internal_upper_bound(key));
}
template <typename K>
const_iterator upper_bound(const K &key) const {
return internal_end(internal_upper_bound(key));
}
// Finds the range of values which compare equal to key. The first member of
// the returned pair is equal to lower_bound(key). The second member of the
// pair is equal to upper_bound(key).
template <typename K>
std::pair<iterator, iterator> equal_range(const K &key);
template <typename K>
std::pair<const_iterator, const_iterator> equal_range(const K &key) const {
return const_cast<btree *>(this)->equal_range(key);
}
// Inserts a value into the btree only if it does not already exist. The
// boolean return value indicates whether insertion succeeded or failed.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
std::pair<iterator, bool> insert_unique(const K &key, Args &&...args);
// Inserts with hint. Checks to see if the value should be placed immediately
// before `position` in the tree. If so, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_unique() were made.
// Requirement: if `key` already exists in the btree, does not consume `args`.
// Requirement: `key` is never referenced after consuming `args`.
template <typename K, typename... Args>
std::pair<iterator, bool> insert_hint_unique(iterator position, const K &key,
Args &&...args);
// Insert a range of values into the btree.
// Note: the first overload avoids constructing a value_type if the key
// already exists in the btree.
template <typename InputIterator,
typename = decltype(std::declval<const key_compare &>()(
params_type::key(*std::declval<InputIterator>()),
std::declval<const key_type &>()))>
void insert_iterator_unique(InputIterator b, InputIterator e, int);
// We need the second overload for cases in which we need to construct a
// value_type in order to compare it with the keys already in the btree.
template <typename InputIterator>
void insert_iterator_unique(InputIterator b, InputIterator e, char);
// Inserts a value into the btree.
template <typename ValueType>
iterator insert_multi(const key_type &key, ValueType &&v);
// Inserts a value into the btree.
template <typename ValueType>
iterator insert_multi(ValueType &&v) {
return insert_multi(params_type::key(v), std::forward<ValueType>(v));
}
// Insert with hint. Check to see if the value should be placed immediately
// before position in the tree. If it does, then the insertion will take
// amortized constant time. If not, the insertion will take amortized
// logarithmic time as if a call to insert_multi(v) were made.
template <typename ValueType>
iterator insert_hint_multi(iterator position, ValueType &&v);
// Insert a range of values into the btree.
template <typename InputIterator>
void insert_iterator_multi(InputIterator b,
InputIterator e);
// Erase the specified iterator from the btree. The iterator must be valid
// (i.e. not equal to end()). Return an iterator pointing to the node after
// the one that was erased (or end() if none exists).
// Requirement: does not read the value at `*iter`.
iterator erase(iterator iter);
// Erases range. Returns the number of keys erased and an iterator pointing
// to the element after the last erased element.
std::pair<size_type, iterator> erase_range(iterator begin, iterator end);
// Finds an element with key equivalent to `key` or returns `end()` if `key`
// is not present.
template <typename K>
iterator find(const K &key) {
return internal_end(internal_find(key));
}
template <typename K>
const_iterator find(const K &key) const {
return internal_end(internal_find(key));
}
// Clear the btree, deleting all of the values it contains.
void clear();
// Swaps the contents of `this` and `other`.
void swap(btree &other);
const key_compare &key_comp() const noexcept {
return rightmost_.template get<0>();
}
template <typename K1, typename K2>
bool compare_keys(const K1 &a, const K2 &b) const {
return compare_internal::compare_result_as_less_than(key_comp()(a, b));
}
value_compare value_comp() const {
return value_compare(original_key_compare(key_comp()));
}
// Verifies the structure of the btree.
void verify() const;
// Size routines.
size_type size() const { return size_; }
size_type max_size() const { return (std::numeric_limits<size_type>::max)(); }
bool empty() const { return size_ == 0; }
// The height of the btree. An empty tree will have height 0.
size_type height() const {
size_type h = 0;
if (!empty()) {
// Count the length of the chain from the leftmost node up to the
// root. We actually count from the root back around to the level below
// the root, but the calculation is the same because of the circularity
// of that traversal.
const node_type *n = root();
do {
++h;
n = n->parent();
} while (n != root());
}
return h;
}
// The number of internal, leaf and total nodes used by the btree.
size_type leaf_nodes() const { return internal_stats(root()).leaf_nodes; }
size_type internal_nodes() const {
return internal_stats(root()).internal_nodes;
}
size_type nodes() const {
node_stats stats = internal_stats(root());
return stats.leaf_nodes + stats.internal_nodes;
}
// The total number of bytes used by the btree.
// TODO(b/169338300): update to support node_btree_*.
size_type bytes_used() const {
node_stats stats = internal_stats(root());
if (stats.leaf_nodes == 1 && stats.internal_nodes == 0) {
return sizeof(*this) + node_type::LeafSize(root()->max_count());
} else {
return sizeof(*this) + stats.leaf_nodes * node_type::LeafSize() +
stats.internal_nodes * node_type::InternalSize();
}
}
// The average number of bytes used per value stored in the btree assuming
// random insertion order.
static double average_bytes_per_value() {
// The expected number of values per node with random insertion order is the
// average of the maximum and minimum numbers of values per node.
const double expected_values_per_node = (kNodeSlots + kMinNodeValues) / 2.0;
return node_type::LeafSize() / expected_values_per_node;
}
// The fullness of the btree. Computed as the number of elements in the btree
// divided by the maximum number of elements a tree with the current number
// of nodes could hold. A value of 1 indicates perfect space
// utilization. Smaller values indicate space wastage.
// Returns 0 for empty trees.
double fullness() const {
if (empty()) return 0.0;
return static_cast<double>(size()) / (nodes() * kNodeSlots);
}
// The overhead of the btree structure in bytes per node. Computed as the
// total number of bytes used by the btree minus the number of bytes used for
// storing elements divided by the number of elements.
// Returns 0 for empty trees.
double overhead() const {
if (empty()) return 0.0;
return (bytes_used() - size() * sizeof(value_type)) /
static_cast<double>(size());
}
// The allocator used by the btree.
allocator_type get_allocator() const { return allocator(); }
private:
friend struct btree_access;
// Internal accessor routines.
node_type *root() { return root_; }
const node_type *root() const { return root_; }
node_type *&mutable_root() noexcept { return root_; }
node_type *rightmost() { return rightmost_.template get<2>(); }
const node_type *rightmost() const { return rightmost_.template get<2>(); }
node_type *&mutable_rightmost() noexcept {
return rightmost_.template get<2>();
}
key_compare *mutable_key_comp() noexcept {
return &rightmost_.template get<0>();
}
// The leftmost node is stored as the parent of the root node.
node_type *leftmost() { return root()->parent(); }
const node_type *leftmost() const { return root()->parent(); }
// Allocator routines.
allocator_type *mutable_allocator() noexcept {
return &rightmost_.template get<1>();
}
const allocator_type &allocator() const noexcept {
return rightmost_.template get<1>();
}
// Allocates a correctly aligned node of at least size bytes using the
// allocator.
node_type *allocate(size_type size) {
return reinterpret_cast<node_type *>(
absl::container_internal::Allocate<node_type::Alignment()>(
mutable_allocator(), size));
}
// Node creation/deletion routines.
node_type *new_internal_node(field_type position, node_type *parent) {
node_type *n = allocate(node_type::InternalSize());
n->init_internal(position, parent);
return n;
}
node_type *new_leaf_node(field_type position, node_type *parent) {
node_type *n = allocate(node_type::LeafSize());
n->init_leaf(position, kNodeSlots, parent);
return n;
}
node_type *new_leaf_root_node(field_type max_count) {
node_type *n = allocate(node_type::LeafSize(max_count));
n->init_leaf(/*position=*/0, max_count, /*parent=*/n);
return n;
}
// Deletion helper routines.
iterator rebalance_after_delete(iterator iter);
// Rebalances or splits the node iter points to.
void rebalance_or_split(iterator *iter);
// Merges the values of left, right and the delimiting key on their parent
// onto left, removing the delimiting key and deleting right.
void merge_nodes(node_type *left, node_type *right);
// Tries to merge node with its left or right sibling, and failing that,
// rebalance with its left or right sibling. Returns true if a merge
// occurred, at which point it is no longer valid to access node. Returns
// false if no merging took place.
bool try_merge_or_rebalance(iterator *iter);
// Tries to shrink the height of the tree by 1.
void try_shrink();
iterator internal_end(iterator iter) {
return iter.node_ != nullptr ? iter : end();
}
const_iterator internal_end(const_iterator iter) const {
return iter.node_ != nullptr ? iter : end();
}
// Emplaces a value into the btree immediately before iter. Requires that
// key(v) <= iter.key() and (--iter).key() <= key(v).
template <typename... Args>
iterator internal_emplace(iterator iter, Args &&...args);
// Returns an iterator pointing to the first value >= the value "iter" is
// pointing at. Note that "iter" might be pointing to an invalid location such
// as iter.position_ == iter.node_->finish(). This routine simply moves iter
// up in the tree to a valid location. Requires: iter.node_ is non-null.
template <typename IterType>
static IterType internal_last(IterType iter);
// Returns an iterator pointing to the leaf position at which key would
// reside in the tree, unless there is an exact match - in which case, the
// result may not be on a leaf. When there's a three-way comparator, we can
// return whether there was an exact match. This allows the caller to avoid a
// subsequent comparison to determine if an exact match was made, which is
// important for keys with expensive comparison, such as strings.
template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_locate(
const K &key) const;
// Internal routine which implements lower_bound().
template <typename K>
SearchResult<iterator, is_key_compare_to::value> internal_lower_bound(
const K &key) const;
// Internal routine which implements upper_bound().
template <typename K>
iterator internal_upper_bound(const K &key) const;
// Internal routine which implements find().
template <typename K>
iterator internal_find(const K &key) const;
// Verifies the tree structure of node.
size_type internal_verify(const node_type *node, const key_type *lo,
const key_type *hi) const;
node_stats internal_stats(const node_type *node) const {
// The root can be a static empty node.
if (node == nullptr || (node == root() && empty())) {
return node_stats(0, 0);
}
if (node->is_leaf()) {
return node_stats(1, 0);
}
node_stats res(0, 1);
for (int i = node->start(); i <= node->finish(); ++i) {
res += internal_stats(node->child(i));
}
return res;
}
node_type *root_;
// A pointer to the rightmost node. Note that the leftmost node is stored as
// the root's parent. We use compressed tuple in order to save space because
// key_compare and allocator_type are usually empty.
absl::container_internal::CompressedTuple<key_compare, allocator_type,
node_type *>
rightmost_;
// Number of values.
size_type size_;
};
////
// btree_node methods
template <typename P>
template <typename... Args>
inline void btree_node<P>::emplace_value(const field_type i,
allocator_type *alloc,
Args &&...args) {
assert(i >= start());
assert(i <= finish());
// Shift old values to create space for new value and then construct it in
// place.
if (i < finish()) {
transfer_n_backward(finish() - i, /*dest_i=*/i + 1, /*src_i=*/i, this,
alloc);
}
value_init(static_cast<field_type>(i), alloc, std::forward<Args>(args)...);
set_finish(finish() + 1);
if (is_internal() && finish() > i + 1) {
for (field_type j = finish(); j > i + 1; --j) {
set_child(j, child(j - 1));
}
clear_child(i + 1);
}
}
template <typename P>
inline void btree_node<P>::remove_values(const field_type i,
const field_type to_erase,
allocator_type *alloc) {
// Transfer values after the removed range into their new places.
value_destroy_n(i, to_erase, alloc);
const field_type orig_finish = finish();
const field_type src_i = i + to_erase;
transfer_n(orig_finish - src_i, i, src_i, this, alloc);
if (is_internal()) {
// Delete all children between begin and end.
for (field_type j = 0; j < to_erase; ++j) {
clear_and_delete(child(i + j + 1), alloc);
}
// Rotate children after end into new positions.
for (field_type j = i + to_erase + 1; j <= orig_finish; ++j) {
set_child(j - to_erase, child(j));
clear_child(j);
}
}
set_finish(orig_finish - to_erase);
}
template <typename P>
void btree_node<P>::rebalance_right_to_left(field_type to_move,
btree_node *right,
allocator_type *alloc) {
assert(parent() == right->parent());
assert(position() + 1 == right->position());
assert(right->count() >= count());
assert(to_move >= 1);
assert(to_move <= right->count());
// 1) Move the delimiting value in the parent to the left node.
transfer(finish(), position(), parent(), alloc);
// 2) Move the (to_move - 1) values from the right node to the left node.
transfer_n(to_move - 1, finish() + 1, right->start(), right, alloc);
// 3) Move the new delimiting value to the parent from the right node.
parent()->transfer(position(), right->start() + to_move - 1, right, alloc);
// 4) Shift the values in the right node to their correct positions.
right->transfer_n(right->count() - to_move, right->start(),
right->start() + to_move, right, alloc);
if (is_internal()) {
// Move the child pointers from the right to the left node.
for (field_type i = 0; i < to_move; ++i) {
init_child(finish() + i + 1, right->child(i));
}
for (field_type i = right->start(); i <= right->finish() - to_move; ++i) {
assert(i + to_move <= right->max_count());
right->init_child(i, right->child(i + to_move));
right->clear_child(i + to_move);
}
}
// Fixup `finish` on the left and right nodes.
set_finish(finish() + to_move);
right->set_finish(right->finish() - to_move);
}
template <typename P>
void btree_node<P>::rebalance_left_to_right(field_type to_move,
btree_node *right,
allocator_type *alloc) {
assert(parent() == right->parent());
assert(position() + 1 == right->position());
assert(count() >= right->count());
assert(to_move >= 1);
assert(to_move <= count());
// Values in the right node are shifted to the right to make room for the
// new to_move values. Then, the delimiting value in the parent and the
// other (to_move - 1) values in the left node are moved into the right node.
// Lastly, a new delimiting value is moved from the left node into the
// parent, and the remaining empty left node entries are destroyed.
// 1) Shift existing values in the right node to their correct positions.
right->transfer_n_backward(right->count(), right->start() + to_move,
right->start(), right, alloc);
// 2) Move the delimiting value in the parent to the right node.
right->transfer(right->start() + to_move - 1, position(), parent(), alloc);
// 3) Move the (to_move - 1) values from the left node to the right node.
right->transfer_n(to_move - 1, right->start(), finish() - (to_move - 1), this,
alloc);
// 4) Move the new delimiting value to the parent from the left node.
parent()->transfer(position(), finish() - to_move, this, alloc);
if (is_internal()) {
// Move the child pointers from the left to the right node.
for (field_type i = right->finish() + 1; i > right->start(); --i) {
right->init_child(i - 1 + to_move, right->child(i - 1));
right->clear_child(i - 1);
}
for (field_type i = 1; i <= to_move; ++i) {
right->init_child(i - 1, child(finish() - to_move + i));
clear_child(finish() - to_move + i);
}
}
// Fixup the counts on the left and right nodes.
set_finish(finish() - to_move);
right->set_finish(right->finish() + to_move);
}
template <typename P>
void btree_node<P>::split(const int insert_position, btree_node *dest,
allocator_type *alloc) {
assert(dest->count() == 0);
assert(max_count() == kNodeSlots);
assert(position() + 1 == dest->position());
assert(parent() == dest->parent());
// We bias the split based on the position being inserted. If we're
// inserting at the beginning of the left node then bias the split to put
// more values on the right node. If we're inserting at the end of the
// right node then bias the split to put more values on the left node.
if (insert_position == start()) {
dest->set_finish(dest->start() + finish() - 1);
} else if (insert_position == kNodeSlots) {
dest->set_finish(dest->start());
} else {
dest->set_finish(dest->start() + count() / 2);
}
set_finish(finish() - dest->count());
assert(count() >= 1);
// Move values from the left sibling to the right sibling.
dest->transfer_n(dest->count(), dest->start(), finish(), this, alloc);
// The split key is the largest value in the left sibling.
--mutable_finish();
parent()->emplace_value(position(), alloc, finish_slot());
value_destroy(finish(), alloc);
parent()->set_child_noupdate_position(position() + 1, dest);
if (is_internal()) {
for (field_type i = dest->start(), j = finish() + 1; i <= dest->finish();
++i, ++j) {
assert(child(j) != nullptr);
dest->init_child(i, child(j));
clear_child(j);
}
}
}
template <typename P>
void btree_node<P>::merge(btree_node *src, allocator_type *alloc) {
assert(parent() == src->parent());
assert(position() + 1 == src->position());
// Move the delimiting value to the left node.
value_init(finish(), alloc, parent()->slot(position()));
// Move the values from the right to the left node.
transfer_n(src->count(), finish() + 1, src->start(), src, alloc);
if (is_internal()) {
// Move the child pointers from the right to the left node.
for (field_type i = src->start(), j = finish() + 1; i <= src->finish();
++i, ++j) {
init_child(j, src->child(i));
src->clear_child(i);
}
}
// Fixup `finish` on the src and dest nodes.
set_finish(start() + 1 + count() + src->count());
src->set_finish(src->start());
// Remove the value on the parent node and delete the src node.
parent()->remove_values(position(), /*to_erase=*/1, alloc);
}
template <typename P>
void btree_node<P>::clear_and_delete(btree_node *node, allocator_type *alloc) {
if (node->is_leaf()) {
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(LeafSize(node->max_count()), node, alloc);
return;
}
if (node->count() == 0) {
deallocate(InternalSize(), node, alloc);
return;
}
// The parent of the root of the subtree we are deleting.
btree_node *delete_root_parent = node->parent();
// Navigate to the leftmost leaf under node, and then delete upwards.
while (node->is_internal()) node = node->start_child();
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
// When generations are enabled, we delete the leftmost leaf last in case it's
// the parent of the root and we need to check whether it's a leaf before we
// can update the root's generation.
// TODO(ezb): if we change btree_node::is_root to check a bool inside the node
// instead of checking whether the parent is a leaf, we can remove this logic.
btree_node *leftmost_leaf = node;
#endif
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
// which isn't guaranteed to be a valid `field_type`.
size_type pos = node->position();
btree_node *parent = node->parent();
for (;;) {
// In each iteration of the next loop, we delete one leaf node and go right.
assert(pos <= parent->finish());
do {
node = parent->child(static_cast<field_type>(pos));
if (node->is_internal()) {
// Navigate to the leftmost leaf under node.
while (node->is_internal()) node = node->start_child();
pos = node->position();
parent = node->parent();
}
node->value_destroy_n(node->start(), node->count(), alloc);
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
if (leftmost_leaf != node)
#endif
deallocate(LeafSize(node->max_count()), node, alloc);
++pos;
} while (pos <= parent->finish());
// Once we've deleted all children of parent, delete parent and go up/right.
assert(pos > parent->finish());
do {
node = parent;
pos = node->position();
parent = node->parent();
node->value_destroy_n(node->start(), node->count(), alloc);
deallocate(InternalSize(), node, alloc);
if (parent == delete_root_parent) {
#ifdef ABSL_BTREE_ENABLE_GENERATIONS
deallocate(LeafSize(leftmost_leaf->max_count()), leftmost_leaf, alloc);
#endif
return;
}
++pos;
} while (pos > parent->finish());
}
}
////
// btree_iterator methods
// Note: the implementation here is based on btree_node::clear_and_delete.
template <typename N, typename R, typename P>
auto btree_iterator<N, R, P>::distance_slow(const_iterator other) const
-> difference_type {
const_iterator begin = other;
const_iterator end = *this;
assert(begin.node_ != end.node_ || !begin.node_->is_leaf() ||
begin.position_ != end.position_);
const node_type *node = begin.node_;
// We need to compensate for double counting if begin.node_ is a leaf node.
difference_type count = node->is_leaf() ? -begin.position_ : 0;
// First navigate to the leftmost leaf node past begin.
if (node->is_internal()) {
++count;
node = node->child(begin.position_ + 1);
}
while (node->is_internal()) node = node->start_child();
// Use `size_type` because `pos` needs to be able to hold `kNodeSlots+1`,
// which isn't guaranteed to be a valid `field_type`.
size_type pos = node->position();
const node_type *parent = node->parent();
for (;;) {
// In each iteration of the next loop, we count one leaf node and go right.
assert(pos <= parent->finish());
do {
node = parent->child(static_cast<field_type>(pos));
if (node->is_internal()) {
// Navigate to the leftmost leaf under node.
while (node->is_internal()) node = node->start_child();
pos = node->position();
parent = node->parent();
}
if (node == end.node_) return count + end.position_;
if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
return count + node->count();
// +1 is for the next internal node value.
count += node->count() + 1;
++pos;
} while (pos <= parent->finish());
// Once we've counted all children of parent, go up/right.
assert(pos > parent->finish());
do {
node = parent;
pos = node->position();
parent = node->parent();
// -1 because we counted the value at end and shouldn't.
if (parent == end.node_ && pos == static_cast<size_type>(end.position_))
return count - 1;
++pos;
} while (pos > parent->finish());
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::increment_slow() {
if (node_->is_leaf()) {
assert(position_ >= node_->finish());
btree_iterator save(*this);
while (position_ == node_->finish() && !node_->is_root()) {
assert(node_->parent()->child(node_->position()) == node_);
position_ = node_->position();
node_ = node_->parent();
}
// TODO(ezb): assert we aren't incrementing end() instead of handling.
if (position_ == node_->finish()) {
*this = save;
}
} else {
assert(position_ < node_->finish());
node_ = node_->child(static_cast<field_type>(position_ + 1));
while (node_->is_internal()) {
node_ = node_->start_child();
}
position_ = node_->start();
}
}
template <typename N, typename R, typename P>
void btree_iterator<N, R, P>::decrement_slow() {
if (node_->is_leaf()) {
assert(position_ <= -1);
btree_iterator save(*this);
while (position_ < node_->start() && !node_->is_root()) {
assert(node_->parent()->child(node_->position()) == node_);
position_ = node_->position() - 1;
node_ = node_->parent();
}
// TODO(ezb): assert we aren't decrementing begin() instead of handling.
if (position_ < node_->start()) {
*this = save;
}
} else {
assert(position_ >= node_->start());
node_ = node_->child(static_cast<field_type>(position_));
while (node_->is_internal()) {
node_ = node_->child(node_->finish());
}
position_ = node_->finish() - 1;
}
}
////
// btree methods
template <typename P>
template <typename Btree>
void btree<P>::copy_or_move_values_in_order(Btree &other) {
static_assert(std::is_same<btree, Btree>::value ||
std::is_same<const btree, Btree>::value,
"Btree type must be same or const.");
assert(empty());
// We can avoid key comparisons because we know the order of the
// values is the same order we'll store them in.
auto iter = other.begin();
if (iter == other.end()) return;
insert_multi(iter.slot());
++iter;
for (; iter != other.end(); ++iter) {
// If the btree is not empty, we can just insert the new value at the end
// of the tree.
internal_emplace(end(), iter.slot());
}
}
template <typename P>
constexpr bool btree<P>::static_assert_validation() {
static_assert(std::is_nothrow_copy_constructible<key_compare>::value,
"Key comparison must be nothrow copy constructible");
static_assert(std::is_nothrow_copy_constructible<allocator_type>::value,
"Allocator must be nothrow copy constructible");
static_assert(std::is_trivially_copyable<iterator>::value,
"iterator not trivially copyable.");
// Note: We assert that kTargetValues, which is computed from
// Params::kTargetNodeSize, must fit the node_type::field_type.
static_assert(
kNodeSlots < (1 << (8 * sizeof(typename node_type::field_type))),
"target node size too large");
// Verify that key_compare returns an absl::{weak,strong}_ordering or bool.
static_assert(
compare_has_valid_result_type<key_compare, key_type>(),
"key comparison function must return absl::{weak,strong}_ordering or "
"bool.");
// Test the assumption made in setting kNodeSlotSpace.
static_assert(node_type::MinimumOverhead() >= sizeof(void *) + 4,
"node space assumption incorrect");
return true;
}
template <typename P>
template <typename K>
auto btree<P>::lower_bound_equal(const K &key) const
-> std::pair<iterator, bool> {
const SearchResult<iterator, is_key_compare_to::value> res =
internal_lower_bound(key);
const iterator lower = iterator(internal_end(res.value));
const bool equal = res.HasMatch()
? res.IsEq()
: lower != end() && !compare_keys(key, lower.key());
return {lower, equal};
}
template <typename P>
template <typename K>
auto btree<P>::equal_range(const K &key) -> std::pair<iterator, iterator> {
const std::pair<iterator, bool> lower_and_equal = lower_bound_equal(key);
const iterator lower = lower_and_equal.first;
if (!lower_and_equal.second) {
return {lower, lower};
}
const iterator next = std::next(lower);
if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
// The next iterator after lower must point to a key greater than `key`.
// Note: if this assert fails, then it may indicate that the comparator does
// not meet the equivalence requirements for Compare
// (see https://en.cppreference.com/w/cpp/named_req/Compare).
assert(next == end() || compare_keys(key, next.key()));
return {lower, next};
}
// Try once more to avoid the call to upper_bound() if there's only one
// equivalent key. This should prevent all calls to upper_bound() in cases of
// unique-containers with heterogeneous comparators in which all comparison
// operators have the same equivalence classes.
if (next == end() || compare_keys(key, next.key())) return {lower, next};
// In this case, we need to call upper_bound() to avoid worst case O(N)
// behavior if we were to iterate over equal keys.
return {lower, upper_bound(key)};
}
template <typename P>
template <typename K, typename... Args>
auto btree<P>::insert_unique(const K &key, Args &&...args)
-> std::pair<iterator, bool> {
if (empty()) {
mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
iterator iter = res.value;
if (res.HasMatch()) {
if (res.IsEq()) {
// The key already exists in the tree, do nothing.
return {iter, false};
}
} else {
iterator last = internal_last(iter);
if (last.node_ && !compare_keys(key, last.key())) {
// The key already exists in the tree, do nothing.
return {last, false};
}
}
return {internal_emplace(iter, std::forward<Args>(args)...), true};
}
template <typename P>
template <typename K, typename... Args>
inline auto btree<P>::insert_hint_unique(iterator position, const K &key,
Args &&...args)
-> std::pair<iterator, bool> {
if (!empty()) {
if (position == end() || compare_keys(key, position.key())) {
if (position == begin() || compare_keys(std::prev(position).key(), key)) {
// prev.key() < key < position.key()
return {internal_emplace(position, std::forward<Args>(args)...), true};
}
} else if (compare_keys(position.key(), key)) {
++position;
if (position == end() || compare_keys(key, position.key())) {
// {original `position`}.key() < key < {current `position`}.key()
return {internal_emplace(position, std::forward<Args>(args)...), true};
}
} else {
// position.key() == key
return {position, false};
}
}
return insert_unique(key, std::forward<Args>(args)...);
}
template <typename P>
template <typename InputIterator, typename>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, int) {
for (; b != e; ++b) {
insert_hint_unique(end(), params_type::key(*b), *b);
}
}
template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_unique(InputIterator b, InputIterator e, char) {
for (; b != e; ++b) {
// Use a node handle to manage a temp slot.
auto node_handle =
CommonAccess::Construct<node_handle_type>(get_allocator(), *b);
slot_type *slot = CommonAccess::GetSlot(node_handle);
insert_hint_unique(end(), params_type::key(slot), slot);
}
}
template <typename P>
template <typename ValueType>
auto btree<P>::insert_multi(const key_type &key, ValueType &&v) -> iterator {
if (empty()) {
mutable_root() = mutable_rightmost() = new_leaf_root_node(1);
}
iterator iter = internal_upper_bound(key);
if (iter.node_ == nullptr) {
iter = end();
}
return internal_emplace(iter, std::forward<ValueType>(v));
}
template <typename P>
template <typename ValueType>
auto btree<P>::insert_hint_multi(iterator position, ValueType &&v) -> iterator {
if (!empty()) {
const key_type &key = params_type::key(v);
if (position == end() || !compare_keys(position.key(), key)) {
if (position == begin() ||
!compare_keys(key, std::prev(position).key())) {
// prev.key() <= key <= position.key()
return internal_emplace(position, std::forward<ValueType>(v));
}
} else {
++position;
if (position == end() || !compare_keys(position.key(), key)) {
// {original `position`}.key() < key < {current `position`}.key()
return internal_emplace(position, std::forward<ValueType>(v));
}
}
}
return insert_multi(std::forward<ValueType>(v));
}
template <typename P>
template <typename InputIterator>
void btree<P>::insert_iterator_multi(InputIterator b, InputIterator e) {
for (; b != e; ++b) {
insert_hint_multi(end(), *b);
}
}
template <typename P>
auto btree<P>::operator=(const btree &other) -> btree & {
if (this != &other) {
clear();
*mutable_key_comp() = other.key_comp();
if (absl::allocator_traits<
allocator_type>::propagate_on_container_copy_assignment::value) {
*mutable_allocator() = other.allocator();
}
copy_or_move_values_in_order(other);
}
return *this;
}
template <typename P>
auto btree<P>::operator=(btree &&other) noexcept -> btree & {
if (this != &other) {
clear();
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_move_assignment::value) {
swap(root_, other.root_);
// Note: `rightmost_` also contains the allocator and the key comparator.
swap(rightmost_, other.rightmost_);
swap(size_, other.size_);
} else {
if (allocator() == other.allocator()) {
swap(mutable_root(), other.mutable_root());
swap(*mutable_key_comp(), *other.mutable_key_comp());
swap(mutable_rightmost(), other.mutable_rightmost());
swap(size_, other.size_);
} else {
// We aren't allowed to propagate the allocator and the allocator is
// different so we can't take over its memory. We must move each element
// individually. We need both `other` and `this` to have `other`s key
// comparator while moving the values so we can't swap the key
// comparators.
*mutable_key_comp() = other.key_comp();
copy_or_move_values_in_order(other);
}
}
}
return *this;
}
template <typename P>
auto btree<P>::erase(iterator iter) -> iterator {
iter.node_->value_destroy(static_cast<field_type>(iter.position_),
mutable_allocator());
iter.update_generation();
const bool internal_delete = iter.node_->is_internal();
if (internal_delete) {
// Deletion of a value on an internal node. First, transfer the largest
// value from our left child here, then erase/rebalance from that position.
// We can get to the largest value from our left child by decrementing iter.
iterator internal_iter(iter);
--iter;
assert(iter.node_->is_leaf());
internal_iter.node_->transfer(
static_cast<size_type>(internal_iter.position_),
static_cast<size_type>(iter.position_), iter.node_,
mutable_allocator());
} else {
// Shift values after erased position in leaf. In the internal case, we
// don't need to do this because the leaf position is the end of the node.
const field_type transfer_from =
static_cast<field_type>(iter.position_ + 1);
const field_type num_to_transfer = iter.node_->finish() - transfer_from;
iter.node_->transfer_n(num_to_transfer,
static_cast<size_type>(iter.position_),
transfer_from, iter.node_, mutable_allocator());
}
// Update node finish and container size.
iter.node_->set_finish(iter.node_->finish() - 1);
--size_;
// We want to return the next value after the one we just erased. If we
// erased from an internal node (internal_delete == true), then the next
// value is ++(++iter). If we erased from a leaf node (internal_delete ==
// false) then the next value is ++iter. Note that ++iter may point to an
// internal node and the value in the internal node may move to a leaf node
// (iter.node_) when rebalancing is performed at the leaf level.
iterator res = rebalance_after_delete(iter);
// If we erased from an internal node, advance the iterator.
if (internal_delete) {
++res;
}
return res;
}
template <typename P>
auto btree<P>::rebalance_after_delete(iterator iter) -> iterator {
// Merge/rebalance as we walk back up the tree.
iterator res(iter);
bool first_iteration = true;
for (;;) {
if (iter.node_ == root()) {
try_shrink();
if (empty()) {
return end();
}
break;
}
if (iter.node_->count() >= kMinNodeValues) {
break;
}
bool merged = try_merge_or_rebalance(&iter);
// On the first iteration, we should update `res` with `iter` because `res`
// may have been invalidated.
if (first_iteration) {
res = iter;
first_iteration = false;
}
if (!merged) {
break;
}
iter.position_ = iter.node_->position();
iter.node_ = iter.node_->parent();
}
res.update_generation();
// Adjust our return value. If we're pointing at the end of a node, advance
// the iterator.
if (res.position_ == res.node_->finish()) {
res.position_ = res.node_->finish() - 1;
++res;
}
return res;
}
// Note: we tried implementing this more efficiently by erasing all of the
// elements in [begin, end) at once and then doing rebalancing once at the end
// (rather than interleaving deletion and rebalancing), but that adds a lot of
// complexity, which seems to outweigh the performance win.
template <typename P>
auto btree<P>::erase_range(iterator begin, iterator end)
-> std::pair<size_type, iterator> {
size_type count = static_cast<size_type>(end - begin);
assert(count >= 0);
if (count == 0) {
return {0, begin};
}
if (static_cast<size_type>(count) == size_) {
clear();
return {count, this->end()};
}
if (begin.node_ == end.node_) {
assert(end.position_ > begin.position_);
begin.node_->remove_values(
static_cast<field_type>(begin.position_),
static_cast<field_type>(end.position_ - begin.position_),
mutable_allocator());
size_ -= count;
return {count, rebalance_after_delete(begin)};
}
const size_type target_size = size_ - count;
while (size_ > target_size) {
if (begin.node_->is_leaf()) {
const size_type remaining_to_erase = size_ - target_size;
const size_type remaining_in_node =
static_cast<size_type>(begin.node_->finish() - begin.position_);
const field_type to_erase = static_cast<field_type>(
(std::min)(remaining_to_erase, remaining_in_node));
begin.node_->remove_values(static_cast<field_type>(begin.position_),
to_erase, mutable_allocator());
size_ -= to_erase;
begin = rebalance_after_delete(begin);
} else {
begin = erase(begin);
}
}
begin.update_generation();
return {count, begin};
}
template <typename P>
void btree<P>::clear() {
if (!empty()) {
node_type::clear_and_delete(root(), mutable_allocator());
}
mutable_root() = mutable_rightmost() = EmptyNode();
size_ = 0;
}
template <typename P>
void btree<P>::swap(btree &other) {
using std::swap;
if (absl::allocator_traits<
allocator_type>::propagate_on_container_swap::value) {
// Note: `rightmost_` also contains the allocator and the key comparator.
swap(rightmost_, other.rightmost_);
} else {
// It's undefined behavior if the allocators are unequal here.
assert(allocator() == other.allocator());
swap(mutable_rightmost(), other.mutable_rightmost());
swap(*mutable_key_comp(), *other.mutable_key_comp());
}
swap(mutable_root(), other.mutable_root());
swap(size_, other.size_);
}
template <typename P>
void btree<P>::verify() const {
assert(root() != nullptr);
assert(leftmost() != nullptr);
assert(rightmost() != nullptr);
assert(empty() || size() == internal_verify(root(), nullptr, nullptr));
assert(leftmost() == (++const_iterator(root(), -1)).node_);
assert(rightmost() == (--const_iterator(root(), root()->finish())).node_);
assert(leftmost()->is_leaf());
assert(rightmost()->is_leaf());
}
template <typename P>
void btree<P>::rebalance_or_split(iterator *iter) {
node_type *&node = iter->node_;
int &insert_position = iter->position_;
assert(node->count() == node->max_count());
assert(kNodeSlots == node->max_count());
// First try to make room on the node by rebalancing.
node_type *parent = node->parent();
if (node != root()) {
if (node->position() > parent->start()) {
// Try rebalancing with our left sibling.
node_type *left = parent->child(node->position() - 1);
assert(left->max_count() == kNodeSlots);
if (left->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the end of the right node then we bias rebalancing to
// fill up the left node.
field_type to_move =
(kNodeSlots - left->count()) /
(1 + (static_cast<field_type>(insert_position) < kNodeSlots));
to_move = (std::max)(field_type{1}, to_move);
if (static_cast<field_type>(insert_position) - to_move >=
node->start() ||
left->count() + to_move < kNodeSlots) {
left->rebalance_right_to_left(to_move, node, mutable_allocator());
assert(node->max_count() - node->count() == to_move);
insert_position = static_cast<int>(
static_cast<field_type>(insert_position) - to_move);
if (insert_position < node->start()) {
insert_position = insert_position + left->count() + 1;
node = left;
}
assert(node->count() < node->max_count());
return;
}
}
}
if (node->position() < parent->finish()) {
// Try rebalancing with our right sibling.
node_type *right = parent->child(node->position() + 1);
assert(right->max_count() == kNodeSlots);
if (right->count() < kNodeSlots) {
// We bias rebalancing based on the position being inserted. If we're
// inserting at the beginning of the left node then we bias rebalancing
// to fill up the right node.
field_type to_move = (kNodeSlots - right->count()) /
(1 + (insert_position > node->start()));
to_move = (std::max)(field_type{1}, to_move);
if (static_cast<field_type>(insert_position) <=
node->finish() - to_move ||
right->count() + to_move < kNodeSlots) {
node->rebalance_left_to_right(to_move, right, mutable_allocator());
if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1;
node = right;
}
assert(node->count() < node->max_count());
return;
}
}
}
// Rebalancing failed, make sure there is room on the parent node for a new
// value.
assert(parent->max_count() == kNodeSlots);
if (parent->count() == kNodeSlots) {
iterator parent_iter(parent, node->position());
rebalance_or_split(&parent_iter);
parent = node->parent();
}
} else {
// Rebalancing not possible because this is the root node.
// Create a new root node and set the current root node as the child of the
// new root.
parent = new_internal_node(/*position=*/0, parent);
parent->set_generation(root()->generation());
parent->init_child(parent->start(), node);
mutable_root() = parent;
// If the former root was a leaf node, then it's now the rightmost node.
assert(parent->start_child()->is_internal() ||
parent->start_child() == rightmost());
}
// Split the node.
node_type *split_node;
if (node->is_leaf()) {
split_node = new_leaf_node(node->position() + 1, parent);
node->split(insert_position, split_node, mutable_allocator());
if (rightmost() == node) mutable_rightmost() = split_node;
} else {
split_node = new_internal_node(node->position() + 1, parent);
node->split(insert_position, split_node, mutable_allocator());
}
if (insert_position > node->finish()) {
insert_position = insert_position - node->count() - 1;
node = split_node;
}
}
template <typename P>
void btree<P>::merge_nodes(node_type *left, node_type *right) {
left->merge(right, mutable_allocator());
if (rightmost() == right) mutable_rightmost() = left;
}
template <typename P>
bool btree<P>::try_merge_or_rebalance(iterator *iter) {
node_type *parent = iter->node_->parent();
if (iter->node_->position() > parent->start()) {
// Try merging with our left sibling.
node_type *left = parent->child(iter->node_->position() - 1);
assert(left->max_count() == kNodeSlots);
if (1U + left->count() + iter->node_->count() <= kNodeSlots) {
iter->position_ += 1 + left->count();
merge_nodes(left, iter->node_);
iter->node_ = left;
return true;
}
}
if (iter->node_->position() < parent->finish()) {
// Try merging with our right sibling.
node_type *right = parent->child(iter->node_->position() + 1);
assert(right->max_count() == kNodeSlots);
if (1U + iter->node_->count() + right->count() <= kNodeSlots) {
merge_nodes(iter->node_, right);
return true;
}
// Try rebalancing with our right sibling. We don't perform rebalancing if
// we deleted the first element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the front of the tree.
if (right->count() > kMinNodeValues &&
(iter->node_->count() == 0 || iter->position_ > iter->node_->start())) {
field_type to_move = (right->count() - iter->node_->count()) / 2;
to_move =
(std::min)(to_move, static_cast<field_type>(right->count() - 1));
iter->node_->rebalance_right_to_left(to_move, right, mutable_allocator());
return false;
}
}
if (iter->node_->position() > parent->start()) {
// Try rebalancing with our left sibling. We don't perform rebalancing if
// we deleted the last element from iter->node_ and the node is not
// empty. This is a small optimization for the common pattern of deleting
// from the back of the tree.
node_type *left = parent->child(iter->node_->position() - 1);
if (left->count() > kMinNodeValues &&
(iter->node_->count() == 0 ||
iter->position_ < iter->node_->finish())) {
field_type to_move = (left->count() - iter->node_->count()) / 2;
to_move = (std::min)(to_move, static_cast<field_type>(left->count() - 1));
left->rebalance_left_to_right(to_move, iter->node_, mutable_allocator());
iter->position_ += to_move;
return false;
}
}
return false;
}
template <typename P>
void btree<P>::try_shrink() {
node_type *orig_root = root();
if (orig_root->count() > 0) {
return;
}
// Deleted the last item on the root node, shrink the height of the tree.
if (orig_root->is_leaf()) {
assert(size() == 0);
mutable_root() = mutable_rightmost() = EmptyNode();
} else {
node_type *child = orig_root->start_child();
child->make_root();
mutable_root() = child;
}
node_type::clear_and_delete(orig_root, mutable_allocator());
}
template <typename P>
template <typename IterType>
inline IterType btree<P>::internal_last(IterType iter) {
assert(iter.node_ != nullptr);
while (iter.position_ == iter.node_->finish()) {
iter.position_ = iter.node_->position();
iter.node_ = iter.node_->parent();
if (iter.node_->is_leaf()) {
iter.node_ = nullptr;
break;
}
}
iter.update_generation();
return iter;
}
template <typename P>
template <typename... Args>
inline auto btree<P>::internal_emplace(iterator iter, Args &&...args)
-> iterator {
if (iter.node_->is_internal()) {
// We can't insert on an internal node. Instead, we'll insert after the
// previous value which is guaranteed to be on a leaf node.
--iter;
++iter.position_;
}
const field_type max_count = iter.node_->max_count();
allocator_type *alloc = mutable_allocator();
const auto transfer_and_delete = [&](node_type *old_node,
node_type *new_node) {
new_node->transfer_n(old_node->count(), new_node->start(),
old_node->start(), old_node, alloc);
new_node->set_finish(old_node->finish());
old_node->set_finish(old_node->start());
new_node->set_generation(old_node->generation());
node_type::clear_and_delete(old_node, alloc);
};
const auto replace_leaf_root_node = [&](field_type new_node_size) {
assert(iter.node_ == root());
node_type *old_root = iter.node_;
node_type *new_root = iter.node_ = new_leaf_root_node(new_node_size);
transfer_and_delete(old_root, new_root);
mutable_root() = mutable_rightmost() = new_root;
};
bool replaced_node = false;
if (iter.node_->count() == max_count) {
// Make room in the leaf for the new item.
if (max_count < kNodeSlots) {
// Insertion into the root where the root is smaller than the full node
// size. Simply grow the size of the root node.
replace_leaf_root_node(static_cast<field_type>(
(std::min)(static_cast<int>(kNodeSlots), 2 * max_count)));
replaced_node = true;
} else {
rebalance_or_split(&iter);
}
}
(void)replaced_node;
#if defined(ABSL_HAVE_ADDRESS_SANITIZER) || \
defined(ABSL_HAVE_HWADDRESS_SANITIZER)
if (!replaced_node) {
assert(iter.node_->is_leaf());
if (iter.node_->is_root()) {
replace_leaf_root_node(max_count);
} else {
node_type *old_node = iter.node_;
const bool was_rightmost = rightmost() == old_node;
const bool was_leftmost = leftmost() == old_node;
node_type *parent = old_node->parent();
const field_type position = old_node->position();
node_type *new_node = iter.node_ = new_leaf_node(position, parent);
parent->set_child_noupdate_position(position, new_node);
transfer_and_delete(old_node, new_node);
if (was_rightmost) mutable_rightmost() = new_node;
// The leftmost node is stored as the parent of the root node.
if (was_leftmost) root()->set_parent(new_node);
}
}
#endif
iter.node_->emplace_value(static_cast<field_type>(iter.position_), alloc,
std::forward<Args>(args)...);
assert(
iter.node_->is_ordered_correctly(static_cast<field_type>(iter.position_),
original_key_compare(key_comp())) &&
"If this assert fails, then either (1) the comparator may violate "
"transitivity, i.e. comp(a,b) && comp(b,c) -> comp(a,c) (see "
"https://en.cppreference.com/w/cpp/named_req/Compare), or (2) a "
"key may have been mutated after it was inserted into the tree.");
++size_;
iter.update_generation();
return iter;
}
template <typename P>
template <typename K>
inline auto btree<P>::internal_locate(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
SearchResult<size_type, is_key_compare_to::value> res =
iter.node_->lower_bound(key, key_comp());
iter.position_ = static_cast<int>(res.value);
if (res.IsEq()) {
return {iter, MatchKind::kEq};
}
// Note: in the non-key-compare-to case, we don't need to walk all the way
// down the tree if the keys are equal, but determining equality would
// require doing an extra comparison on each node on the way down, and we
// will need to go all the way to the leaf node in the expected case.
if (iter.node_->is_leaf()) {
break;
}
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
// Note: in the non-key-compare-to case, the key may actually be equivalent
// here (and the MatchKind::kNe is ignored).
return {iter, MatchKind::kNe};
}
template <typename P>
template <typename K>
auto btree<P>::internal_lower_bound(const K &key) const
-> SearchResult<iterator, is_key_compare_to::value> {
if (!params_type::template can_have_multiple_equivalent_keys<K>()) {
SearchResult<iterator, is_key_compare_to::value> ret = internal_locate(key);
ret.value = internal_last(ret.value);
return ret;
}
iterator iter(const_cast<node_type *>(root()));
SearchResult<size_type, is_key_compare_to::value> res;
bool seen_eq = false;
for (;;) {
res = iter.node_->lower_bound(key, key_comp());
iter.position_ = static_cast<int>(res.value);
if (iter.node_->is_leaf()) {
break;
}
seen_eq = seen_eq || res.IsEq();
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
if (res.IsEq()) return {iter, MatchKind::kEq};
return {internal_last(iter), seen_eq ? MatchKind::kEq : MatchKind::kNe};
}
template <typename P>
template <typename K>
auto btree<P>::internal_upper_bound(const K &key) const -> iterator {
iterator iter(const_cast<node_type *>(root()));
for (;;) {
iter.position_ = static_cast<int>(iter.node_->upper_bound(key, key_comp()));
if (iter.node_->is_leaf()) {
break;
}
iter.node_ = iter.node_->child(static_cast<field_type>(iter.position_));
}
return internal_last(iter);
}
template <typename P>
template <typename K>
auto btree<P>::internal_find(const K &key) const -> iterator {
SearchResult<iterator, is_key_compare_to::value> res = internal_locate(key);
if (res.HasMatch()) {
if (res.IsEq()) {
return res.value;
}
} else {
const iterator iter = internal_last(res.value);
if (iter.node_ != nullptr && !compare_keys(key, iter.key())) {
return iter;
}
}
return {nullptr, 0};
}
template <typename P>
typename btree<P>::size_type btree<P>::internal_verify(
const node_type *node, const key_type *lo, const key_type *hi) const {
assert(node->count() > 0);
assert(node->count() <= node->max_count());
if (lo) {
assert(!compare_keys(node->key(node->start()), *lo));
}
if (hi) {
assert(!compare_keys(*hi, node->key(node->finish() - 1)));
}
for (int i = node->start() + 1; i < node->finish(); ++i) {
assert(!compare_keys(node->key(i), node->key(i - 1)));
}
size_type count = node->count();
if (node->is_internal()) {
for (field_type i = node->start(); i <= node->finish(); ++i) {
assert(node->child(i) != nullptr);
assert(node->child(i)->parent() == node);
assert(node->child(i)->position() == i);
count += internal_verify(node->child(i),
i == node->start() ? lo : &node->key(i - 1),
i == node->finish() ? hi : &node->key(i));
}
}
return count;
}
struct btree_access {
template <typename BtreeContainer, typename Pred>
static auto erase_if(BtreeContainer &container, Pred pred) ->
typename BtreeContainer::size_type {
const auto initial_size = container.size();
auto &tree = container.tree_;
auto *alloc = tree.mutable_allocator();
for (auto it = container.begin(); it != container.end();) {
if (!pred(*it)) {
++it;
continue;
}
auto *node = it.node_;
if (node->is_internal()) {
// Handle internal nodes normally.
it = container.erase(it);
continue;
}
// If this is a leaf node, then we do all the erases from this node
// at once before doing rebalancing.
// The current position to transfer slots to.
int to_pos = it.position_;
node->value_destroy(it.position_, alloc);
while (++it.position_ < node->finish()) {
it.update_generation();
if (pred(*it)) {
node->value_destroy(it.position_, alloc);
} else {
node->transfer(node->slot(to_pos++), node->slot(it.position_), alloc);
}
}
const int num_deleted = node->finish() - to_pos;
tree.size_ -= num_deleted;
node->set_finish(to_pos);
it.position_ = to_pos;
it = tree.rebalance_after_delete(it);
}
return initial_size - container.size();
}
};
#undef ABSL_BTREE_ENABLE_GENERATIONS
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_BTREE_H_
|