1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Define the default Hash and Eq functions for SwissTable containers.
//
// std::hash<T> and std::equal_to<T> are not appropriate hash and equal
// functions for SwissTable containers. There are two reasons for this.
//
// SwissTable containers are power of 2 sized containers:
//
// This means they use the lower bits of the hash value to find the slot for
// each entry. The typical hash function for integral types is the identity.
// This is a very weak hash function for SwissTable and any power of 2 sized
// hashtable implementation which will lead to excessive collisions. For
// SwissTable we use murmur3 style mixing to reduce collisions to a minimum.
//
// SwissTable containers support heterogeneous lookup:
//
// In order to make heterogeneous lookup work, hash and equal functions must be
// polymorphic. At the same time they have to satisfy the same requirements the
// C++ standard imposes on hash functions and equality operators. That is:
//
// if hash_default_eq<T>(a, b) returns true for any a and b of type T, then
// hash_default_hash<T>(a) must equal hash_default_hash<T>(b)
//
// For SwissTable containers this requirement is relaxed to allow a and b of
// any and possibly different types. Note that like the standard the hash and
// equal functions are still bound to T. This is important because some type U
// can be hashed by/tested for equality differently depending on T. A notable
// example is `const char*`. `const char*` is treated as a c-style string when
// the hash function is hash<std::string> but as a pointer when the hash
// function is hash<void*>.
//
#ifndef ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#define ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
#include <cstddef>
#include <functional>
#include <memory>
#include <string>
#include <type_traits>
#include "absl/base/config.h"
#include "absl/container/internal/common.h"
#include "absl/hash/hash.h"
#include "absl/meta/type_traits.h"
#include "absl/strings/cord.h"
#include "absl/strings/string_view.h"
#ifdef ABSL_HAVE_STD_STRING_VIEW
#include <string_view>
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// The hash of an object of type T is computed by using absl::Hash.
template <class T, class E = void>
struct HashEq {
using Hash = absl::Hash<T>;
using Eq = std::equal_to<T>;
};
struct StringHash {
using is_transparent = void;
size_t operator()(absl::string_view v) const {
return absl::Hash<absl::string_view>{}(v);
}
size_t operator()(const absl::Cord& v) const {
return absl::Hash<absl::Cord>{}(v);
}
};
struct StringEq {
using is_transparent = void;
bool operator()(absl::string_view lhs, absl::string_view rhs) const {
return lhs == rhs;
}
bool operator()(const absl::Cord& lhs, const absl::Cord& rhs) const {
return lhs == rhs;
}
bool operator()(const absl::Cord& lhs, absl::string_view rhs) const {
return lhs == rhs;
}
bool operator()(absl::string_view lhs, const absl::Cord& rhs) const {
return lhs == rhs;
}
};
// Supports heterogeneous lookup for string-like elements.
struct StringHashEq {
using Hash = StringHash;
using Eq = StringEq;
};
template <>
struct HashEq<std::string> : StringHashEq {};
template <>
struct HashEq<absl::string_view> : StringHashEq {};
template <>
struct HashEq<absl::Cord> : StringHashEq {};
#ifdef ABSL_HAVE_STD_STRING_VIEW
template <typename TChar>
struct BasicStringHash {
using is_transparent = void;
size_t operator()(std::basic_string_view<TChar> v) const {
return absl::Hash<std::basic_string_view<TChar>>{}(v);
}
};
template <typename TChar>
struct BasicStringEq {
using is_transparent = void;
bool operator()(std::basic_string_view<TChar> lhs,
std::basic_string_view<TChar> rhs) const {
return lhs == rhs;
}
};
// Supports heterogeneous lookup for w/u16/u32 string + string_view + char*.
template <typename TChar>
struct BasicStringHashEq {
using Hash = BasicStringHash<TChar>;
using Eq = BasicStringEq<TChar>;
};
template <>
struct HashEq<std::wstring> : BasicStringHashEq<wchar_t> {};
template <>
struct HashEq<std::wstring_view> : BasicStringHashEq<wchar_t> {};
template <>
struct HashEq<std::u16string> : BasicStringHashEq<char16_t> {};
template <>
struct HashEq<std::u16string_view> : BasicStringHashEq<char16_t> {};
template <>
struct HashEq<std::u32string> : BasicStringHashEq<char32_t> {};
template <>
struct HashEq<std::u32string_view> : BasicStringHashEq<char32_t> {};
#endif // ABSL_HAVE_STD_STRING_VIEW
// Supports heterogeneous lookup for pointers and smart pointers.
template <class T>
struct HashEq<T*> {
struct Hash {
using is_transparent = void;
template <class U>
size_t operator()(const U& ptr) const {
return absl::Hash<const T*>{}(HashEq::ToPtr(ptr));
}
};
struct Eq {
using is_transparent = void;
template <class A, class B>
bool operator()(const A& a, const B& b) const {
return HashEq::ToPtr(a) == HashEq::ToPtr(b);
}
};
private:
static const T* ToPtr(const T* ptr) { return ptr; }
template <class U, class D>
static const T* ToPtr(const std::unique_ptr<U, D>& ptr) {
return ptr.get();
}
template <class U>
static const T* ToPtr(const std::shared_ptr<U>& ptr) {
return ptr.get();
}
};
template <class T, class D>
struct HashEq<std::unique_ptr<T, D>> : HashEq<T*> {};
template <class T>
struct HashEq<std::shared_ptr<T>> : HashEq<T*> {};
template <typename T, typename E = void>
struct HasAbslContainerHash : std::false_type {};
template <typename T>
struct HasAbslContainerHash<T, absl::void_t<typename T::absl_container_hash>>
: std::true_type {};
template <typename T, typename E = void>
struct HasAbslContainerEq : std::false_type {};
template <typename T>
struct HasAbslContainerEq<T, absl::void_t<typename T::absl_container_eq>>
: std::true_type {};
template <typename T, typename E = void>
struct AbslContainerEq {
using type = std::equal_to<>;
};
template <typename T>
struct AbslContainerEq<
T, typename std::enable_if_t<HasAbslContainerEq<T>::value>> {
using type = typename T::absl_container_eq;
};
template <typename T, typename E = void>
struct AbslContainerHash {
using type = void;
};
template <typename T>
struct AbslContainerHash<
T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> {
using type = typename T::absl_container_hash;
};
// HashEq specialization for user types that provide `absl_container_hash` and
// (optionally) `absl_container_eq`. This specialization allows user types to
// provide heterogeneous lookup without requiring to explicitly specify Hash/Eq
// type arguments in unordered Abseil containers.
//
// Both `absl_container_hash` and `absl_container_eq` should be transparent
// (have inner is_transparent type). While there is no technical reason to
// restrict to transparent-only types, there is also no feasible use case when
// it shouldn't be transparent - it is easier to relax the requirement later if
// such a case arises rather than restricting it.
//
// If type provides only `absl_container_hash` then `eq` part will be
// `std::equal_to<void>`.
//
// User types are not allowed to provide only a `Eq` part as there is no
// feasible use case for this behavior - if Hash should be a default one then Eq
// should be an equivalent to the `std::equal_to<T>`.
template <typename T>
struct HashEq<T, typename std::enable_if_t<HasAbslContainerHash<T>::value>> {
using Hash = typename AbslContainerHash<T>::type;
using Eq = typename AbslContainerEq<T>::type;
static_assert(IsTransparent<Hash>::value,
"absl_container_hash must be transparent. To achieve it add a "
"`using is_transparent = void;` clause to this type.");
static_assert(IsTransparent<Eq>::value,
"absl_container_eq must be transparent. To achieve it add a "
"`using is_transparent = void;` clause to this type.");
};
// This header's visibility is restricted. If you need to access the default
// hasher please use the container's ::hasher alias instead.
//
// Example: typename Hash = typename absl::flat_hash_map<K, V>::hasher
template <class T>
using hash_default_hash = typename container_internal::HashEq<T>::Hash;
// This header's visibility is restricted. If you need to access the default
// key equal please use the container's ::key_equal alias instead.
//
// Example: typename Eq = typename absl::flat_hash_map<K, V, Hash>::key_equal
template <class T>
using hash_default_eq = typename container_internal::HashEq<T>::Eq;
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_HASH_FUNCTION_DEFAULTS_H_
|