1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114
|
// Copyright 2019 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
#define ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
#include <algorithm>
#include <cstddef>
#include <cstring>
#include <iterator>
#include <limits>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/macros.h"
#include "absl/container/internal/compressed_tuple.h"
#include "absl/memory/memory.h"
#include "absl/meta/type_traits.h"
#include "absl/types/span.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace inlined_vector_internal {
// GCC does not deal very well with the below code
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Warray-bounds"
#endif
template <typename A>
using AllocatorTraits = std::allocator_traits<A>;
template <typename A>
using ValueType = typename AllocatorTraits<A>::value_type;
template <typename A>
using SizeType = typename AllocatorTraits<A>::size_type;
template <typename A>
using Pointer = typename AllocatorTraits<A>::pointer;
template <typename A>
using ConstPointer = typename AllocatorTraits<A>::const_pointer;
template <typename A>
using SizeType = typename AllocatorTraits<A>::size_type;
template <typename A>
using DifferenceType = typename AllocatorTraits<A>::difference_type;
template <typename A>
using Reference = ValueType<A>&;
template <typename A>
using ConstReference = const ValueType<A>&;
template <typename A>
using Iterator = Pointer<A>;
template <typename A>
using ConstIterator = ConstPointer<A>;
template <typename A>
using ReverseIterator = typename std::reverse_iterator<Iterator<A>>;
template <typename A>
using ConstReverseIterator = typename std::reverse_iterator<ConstIterator<A>>;
template <typename A>
using MoveIterator = typename std::move_iterator<Iterator<A>>;
template <typename Iterator>
using IsAtLeastForwardIterator = std::is_convertible<
typename std::iterator_traits<Iterator>::iterator_category,
std::forward_iterator_tag>;
template <typename A>
using IsMoveAssignOk = std::is_move_assignable<ValueType<A>>;
template <typename A>
using IsSwapOk = absl::type_traits_internal::IsSwappable<ValueType<A>>;
template <typename T>
struct TypeIdentity {
using type = T;
};
// Used for function arguments in template functions to prevent ADL by forcing
// callers to explicitly specify the template parameter.
template <typename T>
using NoTypeDeduction = typename TypeIdentity<T>::type;
template <typename A, bool IsTriviallyDestructible =
absl::is_trivially_destructible<ValueType<A>>::value>
struct DestroyAdapter;
template <typename A>
struct DestroyAdapter<A, /* IsTriviallyDestructible */ false> {
static void DestroyElements(A& allocator, Pointer<A> destroy_first,
SizeType<A> destroy_size) {
for (SizeType<A> i = destroy_size; i != 0;) {
--i;
AllocatorTraits<A>::destroy(allocator, destroy_first + i);
}
}
};
template <typename A>
struct DestroyAdapter<A, /* IsTriviallyDestructible */ true> {
static void DestroyElements(A& allocator, Pointer<A> destroy_first,
SizeType<A> destroy_size) {
static_cast<void>(allocator);
static_cast<void>(destroy_first);
static_cast<void>(destroy_size);
}
};
template <typename A>
struct Allocation {
Pointer<A> data = nullptr;
SizeType<A> capacity = 0;
};
template <typename A,
bool IsOverAligned =
(alignof(ValueType<A>) > ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT)>
struct MallocAdapter {
static Allocation<A> Allocate(A& allocator, SizeType<A> requested_capacity) {
return {AllocatorTraits<A>::allocate(allocator, requested_capacity),
requested_capacity};
}
static void Deallocate(A& allocator, Pointer<A> pointer,
SizeType<A> capacity) {
AllocatorTraits<A>::deallocate(allocator, pointer, capacity);
}
};
template <typename A, typename ValueAdapter>
void ConstructElements(NoTypeDeduction<A>& allocator,
Pointer<A> construct_first, ValueAdapter& values,
SizeType<A> construct_size) {
for (SizeType<A> i = 0; i < construct_size; ++i) {
ABSL_INTERNAL_TRY { values.ConstructNext(allocator, construct_first + i); }
ABSL_INTERNAL_CATCH_ANY {
DestroyAdapter<A>::DestroyElements(allocator, construct_first, i);
ABSL_INTERNAL_RETHROW;
}
}
}
template <typename A, typename ValueAdapter>
void AssignElements(Pointer<A> assign_first, ValueAdapter& values,
SizeType<A> assign_size) {
for (SizeType<A> i = 0; i < assign_size; ++i) {
values.AssignNext(assign_first + i);
}
}
template <typename A>
struct StorageView {
Pointer<A> data;
SizeType<A> size;
SizeType<A> capacity;
};
template <typename A, typename Iterator>
class IteratorValueAdapter {
public:
explicit IteratorValueAdapter(const Iterator& it) : it_(it) {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at, *it_);
++it_;
}
void AssignNext(Pointer<A> assign_at) {
*assign_at = *it_;
++it_;
}
private:
Iterator it_;
};
template <typename A>
class CopyValueAdapter {
public:
explicit CopyValueAdapter(ConstPointer<A> p) : ptr_(p) {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at, *ptr_);
}
void AssignNext(Pointer<A> assign_at) { *assign_at = *ptr_; }
private:
ConstPointer<A> ptr_;
};
template <typename A>
class DefaultValueAdapter {
public:
explicit DefaultValueAdapter() {}
void ConstructNext(A& allocator, Pointer<A> construct_at) {
AllocatorTraits<A>::construct(allocator, construct_at);
}
void AssignNext(Pointer<A> assign_at) { *assign_at = ValueType<A>(); }
};
template <typename A>
class AllocationTransaction {
public:
explicit AllocationTransaction(A& allocator)
: allocator_data_(allocator, nullptr), capacity_(0) {}
~AllocationTransaction() {
if (DidAllocate()) {
MallocAdapter<A>::Deallocate(GetAllocator(), GetData(), GetCapacity());
}
}
AllocationTransaction(const AllocationTransaction&) = delete;
void operator=(const AllocationTransaction&) = delete;
A& GetAllocator() { return allocator_data_.template get<0>(); }
Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
SizeType<A>& GetCapacity() { return capacity_; }
bool DidAllocate() { return GetData() != nullptr; }
Pointer<A> Allocate(SizeType<A> requested_capacity) {
Allocation<A> result =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
GetData() = result.data;
GetCapacity() = result.capacity;
return result.data;
}
ABSL_MUST_USE_RESULT Allocation<A> Release() && {
Allocation<A> result = {GetData(), GetCapacity()};
Reset();
return result;
}
private:
void Reset() {
GetData() = nullptr;
GetCapacity() = 0;
}
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
SizeType<A> capacity_;
};
template <typename A>
class ConstructionTransaction {
public:
explicit ConstructionTransaction(A& allocator)
: allocator_data_(allocator, nullptr), size_(0) {}
~ConstructionTransaction() {
if (DidConstruct()) {
DestroyAdapter<A>::DestroyElements(GetAllocator(), GetData(), GetSize());
}
}
ConstructionTransaction(const ConstructionTransaction&) = delete;
void operator=(const ConstructionTransaction&) = delete;
A& GetAllocator() { return allocator_data_.template get<0>(); }
Pointer<A>& GetData() { return allocator_data_.template get<1>(); }
SizeType<A>& GetSize() { return size_; }
bool DidConstruct() { return GetData() != nullptr; }
template <typename ValueAdapter>
void Construct(Pointer<A> data, ValueAdapter& values, SizeType<A> size) {
ConstructElements<A>(GetAllocator(), data, values, size);
GetData() = data;
GetSize() = size;
}
void Commit() && {
GetData() = nullptr;
GetSize() = 0;
}
private:
container_internal::CompressedTuple<A, Pointer<A>> allocator_data_;
SizeType<A> size_;
};
template <typename T, size_t N, typename A>
class Storage {
public:
struct MemcpyPolicy {};
struct ElementwiseAssignPolicy {};
struct ElementwiseSwapPolicy {};
struct ElementwiseConstructPolicy {};
using MoveAssignmentPolicy = absl::conditional_t<
// Fast path: if the value type can be trivially move assigned and
// destroyed, and we know the allocator doesn't do anything fancy, then
// it's safe for us to simply adopt the contents of the storage for
// `other` and remove its own reference to them. It's as if we had
// individually move-assigned each value and then destroyed the original.
absl::conjunction<absl::is_trivially_move_assignable<ValueType<A>>,
absl::is_trivially_destructible<ValueType<A>>,
std::is_same<A, std::allocator<ValueType<A>>>>::value,
MemcpyPolicy,
// Otherwise we use move assignment if possible. If not, we simulate
// move assignment using move construction.
//
// Note that this is in contrast to e.g. std::vector and std::optional,
// which are themselves not move-assignable when their contained type is
// not.
absl::conditional_t<IsMoveAssignOk<A>::value, ElementwiseAssignPolicy,
ElementwiseConstructPolicy>>;
// The policy to be used specifically when swapping inlined elements.
using SwapInlinedElementsPolicy = absl::conditional_t<
// Fast path: if the value type can be trivially relocated, and we
// know the allocator doesn't do anything fancy, then it's safe for us
// to simply swap the bytes in the inline storage. It's as if we had
// relocated the first vector's elements into temporary storage,
// relocated the second's elements into the (now-empty) first's,
// and then relocated from temporary storage into the second.
absl::conjunction<absl::is_trivially_relocatable<ValueType<A>>,
std::is_same<A, std::allocator<ValueType<A>>>>::value,
MemcpyPolicy,
absl::conditional_t<IsSwapOk<A>::value, ElementwiseSwapPolicy,
ElementwiseConstructPolicy>>;
static SizeType<A> NextCapacity(SizeType<A> current_capacity) {
return current_capacity * 2;
}
static SizeType<A> ComputeCapacity(SizeType<A> current_capacity,
SizeType<A> requested_capacity) {
return (std::max)(NextCapacity(current_capacity), requested_capacity);
}
// ---------------------------------------------------------------------------
// Storage Constructors and Destructor
// ---------------------------------------------------------------------------
Storage() : metadata_(A(), /* size and is_allocated */ 0u) {}
explicit Storage(const A& allocator)
: metadata_(allocator, /* size and is_allocated */ 0u) {}
~Storage() {
// Fast path: if we are empty and not allocated, there's nothing to do.
if (GetSizeAndIsAllocated() == 0) {
return;
}
// Fast path: if no destructors need to be run and we know the allocator
// doesn't do anything fancy, then all we need to do is deallocate (and
// maybe not even that).
if (absl::is_trivially_destructible<ValueType<A>>::value &&
std::is_same<A, std::allocator<ValueType<A>>>::value) {
DeallocateIfAllocated();
return;
}
DestroyContents();
}
// ---------------------------------------------------------------------------
// Storage Member Accessors
// ---------------------------------------------------------------------------
SizeType<A>& GetSizeAndIsAllocated() { return metadata_.template get<1>(); }
const SizeType<A>& GetSizeAndIsAllocated() const {
return metadata_.template get<1>();
}
SizeType<A> GetSize() const { return GetSizeAndIsAllocated() >> 1; }
bool GetIsAllocated() const { return GetSizeAndIsAllocated() & 1; }
Pointer<A> GetAllocatedData() {
// GCC 12 has a false-positive -Wmaybe-uninitialized warning here.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return data_.allocated.allocated_data;
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
}
ConstPointer<A> GetAllocatedData() const {
return data_.allocated.allocated_data;
}
// ABSL_ATTRIBUTE_NO_SANITIZE_CFI is used because the memory pointed to may be
// uninitialized, a common pattern in allocate()+construct() APIs.
// https://clang.llvm.org/docs/ControlFlowIntegrity.html#bad-cast-checking
// NOTE: When this was written, LLVM documentation did not explicitly
// mention that casting `char*` and using `reinterpret_cast` qualifies
// as a bad cast.
ABSL_ATTRIBUTE_NO_SANITIZE_CFI Pointer<A> GetInlinedData() {
return reinterpret_cast<Pointer<A>>(data_.inlined.inlined_data);
}
ABSL_ATTRIBUTE_NO_SANITIZE_CFI ConstPointer<A> GetInlinedData() const {
return reinterpret_cast<ConstPointer<A>>(data_.inlined.inlined_data);
}
SizeType<A> GetAllocatedCapacity() const {
return data_.allocated.allocated_capacity;
}
SizeType<A> GetInlinedCapacity() const {
return static_cast<SizeType<A>>(kOptimalInlinedSize);
}
StorageView<A> MakeStorageView() {
return GetIsAllocated() ? StorageView<A>{GetAllocatedData(), GetSize(),
GetAllocatedCapacity()}
: StorageView<A>{GetInlinedData(), GetSize(),
GetInlinedCapacity()};
}
A& GetAllocator() { return metadata_.template get<0>(); }
const A& GetAllocator() const { return metadata_.template get<0>(); }
// ---------------------------------------------------------------------------
// Storage Member Mutators
// ---------------------------------------------------------------------------
ABSL_ATTRIBUTE_NOINLINE void InitFrom(const Storage& other);
template <typename ValueAdapter>
void Initialize(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
void Assign(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
void Resize(ValueAdapter values, SizeType<A> new_size);
template <typename ValueAdapter>
Iterator<A> Insert(ConstIterator<A> pos, ValueAdapter values,
SizeType<A> insert_count);
template <typename... Args>
Reference<A> EmplaceBack(Args&&... args);
Iterator<A> Erase(ConstIterator<A> from, ConstIterator<A> to);
void Reserve(SizeType<A> requested_capacity);
void ShrinkToFit();
void Swap(Storage* other_storage_ptr);
void SetIsAllocated() {
GetSizeAndIsAllocated() |= static_cast<SizeType<A>>(1);
}
void UnsetIsAllocated() {
GetSizeAndIsAllocated() &= ((std::numeric_limits<SizeType<A>>::max)() - 1);
}
void SetSize(SizeType<A> size) {
GetSizeAndIsAllocated() =
(size << 1) | static_cast<SizeType<A>>(GetIsAllocated());
}
void SetAllocatedSize(SizeType<A> size) {
GetSizeAndIsAllocated() = (size << 1) | static_cast<SizeType<A>>(1);
}
void SetInlinedSize(SizeType<A> size) {
GetSizeAndIsAllocated() = size << static_cast<SizeType<A>>(1);
}
void AddSize(SizeType<A> count) {
GetSizeAndIsAllocated() += count << static_cast<SizeType<A>>(1);
}
void SubtractSize(SizeType<A> count) {
ABSL_HARDENING_ASSERT(count <= GetSize());
GetSizeAndIsAllocated() -= count << static_cast<SizeType<A>>(1);
}
void SetAllocation(Allocation<A> allocation) {
data_.allocated.allocated_data = allocation.data;
data_.allocated.allocated_capacity = allocation.capacity;
}
void MemcpyFrom(const Storage& other_storage) {
// Assumption check: it doesn't make sense to memcpy inlined elements unless
// we know the allocator doesn't do anything fancy, and one of the following
// holds:
//
// * The elements are trivially relocatable.
//
// * It's possible to trivially assign the elements and then destroy the
// source.
//
// * It's possible to trivially copy construct/assign the elements.
//
{
using V = ValueType<A>;
ABSL_HARDENING_ASSERT(
other_storage.GetIsAllocated() ||
(std::is_same<A, std::allocator<V>>::value &&
(
// First case above
absl::is_trivially_relocatable<V>::value ||
// Second case above
(absl::is_trivially_move_assignable<V>::value &&
absl::is_trivially_destructible<V>::value) ||
// Third case above
(absl::is_trivially_copy_constructible<V>::value ||
absl::is_trivially_copy_assignable<V>::value))));
}
GetSizeAndIsAllocated() = other_storage.GetSizeAndIsAllocated();
data_ = other_storage.data_;
}
void DeallocateIfAllocated() {
if (GetIsAllocated()) {
MallocAdapter<A>::Deallocate(GetAllocator(), GetAllocatedData(),
GetAllocatedCapacity());
}
}
private:
ABSL_ATTRIBUTE_NOINLINE void DestroyContents();
using Metadata = container_internal::CompressedTuple<A, SizeType<A>>;
struct Allocated {
Pointer<A> allocated_data;
SizeType<A> allocated_capacity;
};
// `kOptimalInlinedSize` is an automatically adjusted inlined capacity of the
// `InlinedVector`. Sometimes, it is possible to increase the capacity (from
// the user requested `N`) without increasing the size of the `InlinedVector`.
static constexpr size_t kOptimalInlinedSize =
(std::max)(N, sizeof(Allocated) / sizeof(ValueType<A>));
struct Inlined {
alignas(ValueType<A>) char inlined_data[sizeof(
ValueType<A>[kOptimalInlinedSize])];
};
union Data {
Allocated allocated;
Inlined inlined;
};
void SwapN(ElementwiseSwapPolicy, Storage* other, SizeType<A> n);
void SwapN(ElementwiseConstructPolicy, Storage* other, SizeType<A> n);
void SwapInlinedElements(MemcpyPolicy, Storage* other);
template <typename NotMemcpyPolicy>
void SwapInlinedElements(NotMemcpyPolicy, Storage* other);
template <typename... Args>
ABSL_ATTRIBUTE_NOINLINE Reference<A> EmplaceBackSlow(Args&&... args);
Metadata metadata_;
Data data_;
};
template <typename T, size_t N, typename A>
void Storage<T, N, A>::DestroyContents() {
Pointer<A> data = GetIsAllocated() ? GetAllocatedData() : GetInlinedData();
DestroyAdapter<A>::DestroyElements(GetAllocator(), data, GetSize());
DeallocateIfAllocated();
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::InitFrom(const Storage& other) {
const SizeType<A> n = other.GetSize();
ABSL_HARDENING_ASSERT(n > 0); // Empty sources handled handled in caller.
ConstPointer<A> src;
Pointer<A> dst;
if (!other.GetIsAllocated()) {
dst = GetInlinedData();
src = other.GetInlinedData();
} else {
// Because this is only called from the `InlinedVector` constructors, it's
// safe to take on the allocation with size `0`. If `ConstructElements(...)`
// throws, deallocation will be automatically handled by `~Storage()`.
SizeType<A> requested_capacity = ComputeCapacity(GetInlinedCapacity(), n);
Allocation<A> allocation =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
SetAllocation(allocation);
dst = allocation.data;
src = other.GetAllocatedData();
}
// Fast path: if the value type is trivially copy constructible and we know
// the allocator doesn't do anything fancy, then we know it is legal for us to
// simply memcpy the other vector's elements.
if (absl::is_trivially_copy_constructible<ValueType<A>>::value &&
std::is_same<A, std::allocator<ValueType<A>>>::value) {
std::memcpy(reinterpret_cast<char*>(dst),
reinterpret_cast<const char*>(src), n * sizeof(ValueType<A>));
} else {
auto values = IteratorValueAdapter<A, ConstPointer<A>>(src);
ConstructElements<A>(GetAllocator(), dst, values, n);
}
GetSizeAndIsAllocated() = other.GetSizeAndIsAllocated();
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Initialize(ValueAdapter values,
SizeType<A> new_size) -> void {
// Only callable from constructors!
ABSL_HARDENING_ASSERT(!GetIsAllocated());
ABSL_HARDENING_ASSERT(GetSize() == 0);
Pointer<A> construct_data;
if (new_size > GetInlinedCapacity()) {
// Because this is only called from the `InlinedVector` constructors, it's
// safe to take on the allocation with size `0`. If `ConstructElements(...)`
// throws, deallocation will be automatically handled by `~Storage()`.
SizeType<A> requested_capacity =
ComputeCapacity(GetInlinedCapacity(), new_size);
Allocation<A> allocation =
MallocAdapter<A>::Allocate(GetAllocator(), requested_capacity);
construct_data = allocation.data;
SetAllocation(allocation);
SetIsAllocated();
} else {
construct_data = GetInlinedData();
}
ConstructElements<A>(GetAllocator(), construct_data, values, new_size);
// Since the initial size was guaranteed to be `0` and the allocated bit is
// already correct for either case, *adding* `new_size` gives us the correct
// result faster than setting it directly.
AddSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Assign(ValueAdapter values,
SizeType<A> new_size) -> void {
StorageView<A> storage_view = MakeStorageView();
AllocationTransaction<A> allocation_tx(GetAllocator());
absl::Span<ValueType<A>> assign_loop;
absl::Span<ValueType<A>> construct_loop;
absl::Span<ValueType<A>> destroy_loop;
if (new_size > storage_view.capacity) {
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
construct_loop = {allocation_tx.Allocate(requested_capacity), new_size};
destroy_loop = {storage_view.data, storage_view.size};
} else if (new_size > storage_view.size) {
assign_loop = {storage_view.data, storage_view.size};
construct_loop = {storage_view.data + storage_view.size,
new_size - storage_view.size};
} else {
assign_loop = {storage_view.data, new_size};
destroy_loop = {storage_view.data + new_size, storage_view.size - new_size};
}
AssignElements<A>(assign_loop.data(), values, assign_loop.size());
ConstructElements<A>(GetAllocator(), construct_loop.data(), values,
construct_loop.size());
DestroyAdapter<A>::DestroyElements(GetAllocator(), destroy_loop.data(),
destroy_loop.size());
if (allocation_tx.DidAllocate()) {
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
SetSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Resize(ValueAdapter values,
SizeType<A> new_size) -> void {
StorageView<A> storage_view = MakeStorageView();
Pointer<A> const base = storage_view.data;
const SizeType<A> size = storage_view.size;
A& alloc = GetAllocator();
if (new_size <= size) {
// Destroy extra old elements.
DestroyAdapter<A>::DestroyElements(alloc, base + new_size, size - new_size);
} else if (new_size <= storage_view.capacity) {
// Construct new elements in place.
ConstructElements<A>(alloc, base + size, values, new_size - size);
} else {
// Steps:
// a. Allocate new backing store.
// b. Construct new elements in new backing store.
// c. Move existing elements from old backing store to new backing store.
// d. Destroy all elements in old backing store.
// Use transactional wrappers for the first two steps so we can roll
// back if necessary due to exceptions.
AllocationTransaction<A> allocation_tx(alloc);
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
ConstructionTransaction<A> construction_tx(alloc);
construction_tx.Construct(new_data + size, values, new_size - size);
IteratorValueAdapter<A, MoveIterator<A>> move_values(
(MoveIterator<A>(base)));
ConstructElements<A>(alloc, new_data, move_values, size);
DestroyAdapter<A>::DestroyElements(alloc, base, size);
std::move(construction_tx).Commit();
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
SetSize(new_size);
}
template <typename T, size_t N, typename A>
template <typename ValueAdapter>
auto Storage<T, N, A>::Insert(ConstIterator<A> pos, ValueAdapter values,
SizeType<A> insert_count) -> Iterator<A> {
StorageView<A> storage_view = MakeStorageView();
auto insert_index = static_cast<SizeType<A>>(
std::distance(ConstIterator<A>(storage_view.data), pos));
SizeType<A> insert_end_index = insert_index + insert_count;
SizeType<A> new_size = storage_view.size + insert_count;
if (new_size > storage_view.capacity) {
AllocationTransaction<A> allocation_tx(GetAllocator());
ConstructionTransaction<A> construction_tx(GetAllocator());
ConstructionTransaction<A> move_construction_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> requested_capacity =
ComputeCapacity(storage_view.capacity, new_size);
Pointer<A> new_data = allocation_tx.Allocate(requested_capacity);
construction_tx.Construct(new_data + insert_index, values, insert_count);
move_construction_tx.Construct(new_data, move_values, insert_index);
ConstructElements<A>(GetAllocator(), new_data + insert_end_index,
move_values, storage_view.size - insert_index);
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
std::move(construction_tx).Commit();
std::move(move_construction_tx).Commit();
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetAllocatedSize(new_size);
return Iterator<A>(new_data + insert_index);
} else {
SizeType<A> move_construction_destination_index =
(std::max)(insert_end_index, storage_view.size);
ConstructionTransaction<A> move_construction_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_construction_values(
MoveIterator<A>(storage_view.data +
(move_construction_destination_index - insert_count)));
absl::Span<ValueType<A>> move_construction = {
storage_view.data + move_construction_destination_index,
new_size - move_construction_destination_index};
Pointer<A> move_assignment_values = storage_view.data + insert_index;
absl::Span<ValueType<A>> move_assignment = {
storage_view.data + insert_end_index,
move_construction_destination_index - insert_end_index};
absl::Span<ValueType<A>> insert_assignment = {move_assignment_values,
move_construction.size()};
absl::Span<ValueType<A>> insert_construction = {
insert_assignment.data() + insert_assignment.size(),
insert_count - insert_assignment.size()};
move_construction_tx.Construct(move_construction.data(),
move_construction_values,
move_construction.size());
for (Pointer<A>
destination = move_assignment.data() + move_assignment.size(),
last_destination = move_assignment.data(),
source = move_assignment_values + move_assignment.size();
;) {
--destination;
--source;
if (destination < last_destination) break;
*destination = std::move(*source);
}
AssignElements<A>(insert_assignment.data(), values,
insert_assignment.size());
ConstructElements<A>(GetAllocator(), insert_construction.data(), values,
insert_construction.size());
std::move(move_construction_tx).Commit();
AddSize(insert_count);
return Iterator<A>(storage_view.data + insert_index);
}
}
template <typename T, size_t N, typename A>
template <typename... Args>
auto Storage<T, N, A>::EmplaceBack(Args&&... args) -> Reference<A> {
StorageView<A> storage_view = MakeStorageView();
const SizeType<A> n = storage_view.size;
if (ABSL_PREDICT_TRUE(n != storage_view.capacity)) {
// Fast path; new element fits.
Pointer<A> last_ptr = storage_view.data + n;
AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
std::forward<Args>(args)...);
AddSize(1);
return *last_ptr;
}
// TODO(b/173712035): Annotate with musttail attribute to prevent regression.
return EmplaceBackSlow(std::forward<Args>(args)...);
}
template <typename T, size_t N, typename A>
template <typename... Args>
auto Storage<T, N, A>::EmplaceBackSlow(Args&&... args) -> Reference<A> {
StorageView<A> storage_view = MakeStorageView();
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> requested_capacity = NextCapacity(storage_view.capacity);
Pointer<A> construct_data = allocation_tx.Allocate(requested_capacity);
Pointer<A> last_ptr = construct_data + storage_view.size;
// Construct new element.
AllocatorTraits<A>::construct(GetAllocator(), last_ptr,
std::forward<Args>(args)...);
// Move elements from old backing store to new backing store.
ABSL_INTERNAL_TRY {
ConstructElements<A>(GetAllocator(), allocation_tx.GetData(), move_values,
storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
AllocatorTraits<A>::destroy(GetAllocator(), last_ptr);
ABSL_INTERNAL_RETHROW;
}
// Destroy elements in old backing store.
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
AddSize(1);
return *last_ptr;
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Erase(ConstIterator<A> from,
ConstIterator<A> to) -> Iterator<A> {
StorageView<A> storage_view = MakeStorageView();
auto erase_size = static_cast<SizeType<A>>(std::distance(from, to));
auto erase_index = static_cast<SizeType<A>>(
std::distance(ConstIterator<A>(storage_view.data), from));
SizeType<A> erase_end_index = erase_index + erase_size;
// Fast path: if the value type is trivially relocatable and we know
// the allocator doesn't do anything fancy, then we know it is legal for us to
// simply destroy the elements in the "erasure window" (which cannot throw)
// and then memcpy downward to close the window.
if (absl::is_trivially_relocatable<ValueType<A>>::value &&
std::is_nothrow_destructible<ValueType<A>>::value &&
std::is_same<A, std::allocator<ValueType<A>>>::value) {
DestroyAdapter<A>::DestroyElements(
GetAllocator(), storage_view.data + erase_index, erase_size);
std::memmove(
reinterpret_cast<char*>(storage_view.data + erase_index),
reinterpret_cast<const char*>(storage_view.data + erase_end_index),
(storage_view.size - erase_end_index) * sizeof(ValueType<A>));
} else {
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data + erase_end_index));
AssignElements<A>(storage_view.data + erase_index, move_values,
storage_view.size - erase_end_index);
DestroyAdapter<A>::DestroyElements(
GetAllocator(), storage_view.data + (storage_view.size - erase_size),
erase_size);
}
SubtractSize(erase_size);
return Iterator<A>(storage_view.data + erase_index);
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Reserve(SizeType<A> requested_capacity) -> void {
StorageView<A> storage_view = MakeStorageView();
if (ABSL_PREDICT_FALSE(requested_capacity <= storage_view.capacity)) return;
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
SizeType<A> new_requested_capacity =
ComputeCapacity(storage_view.capacity, requested_capacity);
Pointer<A> new_data = allocation_tx.Allocate(new_requested_capacity);
ConstructElements<A>(GetAllocator(), new_data, move_values,
storage_view.size);
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
DeallocateIfAllocated();
SetAllocation(std::move(allocation_tx).Release());
SetIsAllocated();
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::ShrinkToFit() -> void {
// May only be called on allocated instances!
ABSL_HARDENING_ASSERT(GetIsAllocated());
StorageView<A> storage_view{GetAllocatedData(), GetSize(),
GetAllocatedCapacity()};
if (ABSL_PREDICT_FALSE(storage_view.size == storage_view.capacity)) return;
AllocationTransaction<A> allocation_tx(GetAllocator());
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(storage_view.data));
Pointer<A> construct_data;
if (storage_view.size > GetInlinedCapacity()) {
SizeType<A> requested_capacity = storage_view.size;
construct_data = allocation_tx.Allocate(requested_capacity);
if (allocation_tx.GetCapacity() >= storage_view.capacity) {
// Already using the smallest available heap allocation.
return;
}
} else {
construct_data = GetInlinedData();
}
ABSL_INTERNAL_TRY {
ConstructElements<A>(GetAllocator(), construct_data, move_values,
storage_view.size);
}
ABSL_INTERNAL_CATCH_ANY {
SetAllocation({storage_view.data, storage_view.capacity});
ABSL_INTERNAL_RETHROW;
}
DestroyAdapter<A>::DestroyElements(GetAllocator(), storage_view.data,
storage_view.size);
MallocAdapter<A>::Deallocate(GetAllocator(), storage_view.data,
storage_view.capacity);
if (allocation_tx.DidAllocate()) {
SetAllocation(std::move(allocation_tx).Release());
} else {
UnsetIsAllocated();
}
}
template <typename T, size_t N, typename A>
auto Storage<T, N, A>::Swap(Storage* other_storage_ptr) -> void {
using std::swap;
ABSL_HARDENING_ASSERT(this != other_storage_ptr);
if (GetIsAllocated() && other_storage_ptr->GetIsAllocated()) {
swap(data_.allocated, other_storage_ptr->data_.allocated);
} else if (!GetIsAllocated() && !other_storage_ptr->GetIsAllocated()) {
SwapInlinedElements(SwapInlinedElementsPolicy{}, other_storage_ptr);
} else {
Storage* allocated_ptr = this;
Storage* inlined_ptr = other_storage_ptr;
if (!allocated_ptr->GetIsAllocated()) swap(allocated_ptr, inlined_ptr);
StorageView<A> allocated_storage_view{
allocated_ptr->GetAllocatedData(), allocated_ptr->GetSize(),
allocated_ptr->GetAllocatedCapacity()};
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(inlined_ptr->GetInlinedData()));
ABSL_INTERNAL_TRY {
ConstructElements<A>(inlined_ptr->GetAllocator(),
allocated_ptr->GetInlinedData(), move_values,
inlined_ptr->GetSize());
}
ABSL_INTERNAL_CATCH_ANY {
allocated_ptr->SetAllocation(Allocation<A>{
allocated_storage_view.data, allocated_storage_view.capacity});
ABSL_INTERNAL_RETHROW;
}
DestroyAdapter<A>::DestroyElements(inlined_ptr->GetAllocator(),
inlined_ptr->GetInlinedData(),
inlined_ptr->GetSize());
inlined_ptr->SetAllocation(Allocation<A>{allocated_storage_view.data,
allocated_storage_view.capacity});
}
swap(GetSizeAndIsAllocated(), other_storage_ptr->GetSizeAndIsAllocated());
swap(GetAllocator(), other_storage_ptr->GetAllocator());
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapN(ElementwiseSwapPolicy, Storage* other,
SizeType<A> n) {
std::swap_ranges(GetInlinedData(), GetInlinedData() + n,
other->GetInlinedData());
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapN(ElementwiseConstructPolicy, Storage* other,
SizeType<A> n) {
Pointer<A> a = GetInlinedData();
Pointer<A> b = other->GetInlinedData();
// see note on allocators in `SwapInlinedElements`.
A& allocator_a = GetAllocator();
A& allocator_b = other->GetAllocator();
for (SizeType<A> i = 0; i < n; ++i, ++a, ++b) {
ValueType<A> tmp(std::move(*a));
AllocatorTraits<A>::destroy(allocator_a, a);
AllocatorTraits<A>::construct(allocator_b, a, std::move(*b));
AllocatorTraits<A>::destroy(allocator_b, b);
AllocatorTraits<A>::construct(allocator_a, b, std::move(tmp));
}
}
template <typename T, size_t N, typename A>
void Storage<T, N, A>::SwapInlinedElements(MemcpyPolicy, Storage* other) {
Data tmp = data_;
data_ = other->data_;
other->data_ = tmp;
}
template <typename T, size_t N, typename A>
template <typename NotMemcpyPolicy>
void Storage<T, N, A>::SwapInlinedElements(NotMemcpyPolicy policy,
Storage* other) {
// Note: `destroy` needs to use pre-swap allocator while `construct` -
// post-swap allocator. Allocators will be swapped later on outside of
// `SwapInlinedElements`.
Storage* small_ptr = this;
Storage* large_ptr = other;
if (small_ptr->GetSize() > large_ptr->GetSize()) {
std::swap(small_ptr, large_ptr);
}
auto small_size = small_ptr->GetSize();
auto diff = large_ptr->GetSize() - small_size;
SwapN(policy, other, small_size);
IteratorValueAdapter<A, MoveIterator<A>> move_values(
MoveIterator<A>(large_ptr->GetInlinedData() + small_size));
ConstructElements<A>(large_ptr->GetAllocator(),
small_ptr->GetInlinedData() + small_size, move_values,
diff);
DestroyAdapter<A>::DestroyElements(large_ptr->GetAllocator(),
large_ptr->GetInlinedData() + small_size,
diff);
}
// End ignore "array-bounds"
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
} // namespace inlined_vector_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_INLINED_VECTOR_H_
|