1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/container/internal/raw_hash_set.h"
#include <atomic>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <cstring>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/dynamic_annotations.h"
#include "absl/container/internal/container_memory.h"
#include "absl/hash/hash.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// Represents a control byte corresponding to a full slot with arbitrary hash.
constexpr ctrl_t ZeroCtrlT() { return static_cast<ctrl_t>(0); }
// We have space for `growth_left` before a single block of control bytes. A
// single block of empty control bytes for tables without any slots allocated.
// This enables removing a branch in the hot path of find(). In order to ensure
// that the control bytes are aligned to 16, we have 16 bytes before the control
// bytes even though growth_left only needs 8.
alignas(16) ABSL_CONST_INIT ABSL_DLL const ctrl_t kEmptyGroup[32] = {
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(), ZeroCtrlT(),
ctrl_t::kSentinel, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty};
// We need one full byte followed by a sentinel byte for iterator::operator++ to
// work. We have a full group after kSentinel to be safe (in case operator++ is
// changed to read a full group).
ABSL_CONST_INIT ABSL_DLL const ctrl_t kSooControl[17] = {
ZeroCtrlT(), ctrl_t::kSentinel, ZeroCtrlT(), ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty, ctrl_t::kEmpty,
ctrl_t::kEmpty};
static_assert(NumControlBytes(SooCapacity()) <= 17,
"kSooControl capacity too small");
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr size_t Group::kWidth;
#endif
namespace {
// Returns "random" seed.
inline size_t RandomSeed() {
#ifdef ABSL_HAVE_THREAD_LOCAL
static thread_local size_t counter = 0;
// On Linux kernels >= 5.4 the MSAN runtime has a false-positive when
// accessing thread local storage data from loaded libraries
// (https://github.com/google/sanitizers/issues/1265), for this reason counter
// needs to be annotated as initialized.
ABSL_ANNOTATE_MEMORY_IS_INITIALIZED(&counter, sizeof(size_t));
size_t value = ++counter;
#else // ABSL_HAVE_THREAD_LOCAL
static std::atomic<size_t> counter(0);
size_t value = counter.fetch_add(1, std::memory_order_relaxed);
#endif // ABSL_HAVE_THREAD_LOCAL
return value ^ static_cast<size_t>(reinterpret_cast<uintptr_t>(&counter));
}
bool ShouldRehashForBugDetection(const ctrl_t* ctrl, size_t capacity) {
// Note: we can't use the abseil-random library because abseil-random
// depends on swisstable. We want to return true with probability
// `min(1, RehashProbabilityConstant() / capacity())`. In order to do this,
// we probe based on a random hash and see if the offset is less than
// RehashProbabilityConstant().
return probe(ctrl, capacity, absl::HashOf(RandomSeed())).offset() <
RehashProbabilityConstant();
}
} // namespace
GenerationType* EmptyGeneration() {
if (SwisstableGenerationsEnabled()) {
constexpr size_t kNumEmptyGenerations = 1024;
static constexpr GenerationType kEmptyGenerations[kNumEmptyGenerations]{};
return const_cast<GenerationType*>(
&kEmptyGenerations[RandomSeed() % kNumEmptyGenerations]);
}
return nullptr;
}
bool CommonFieldsGenerationInfoEnabled::
should_rehash_for_bug_detection_on_insert(const ctrl_t* ctrl,
size_t capacity) const {
if (reserved_growth_ == kReservedGrowthJustRanOut) return true;
if (reserved_growth_ > 0) return false;
return ShouldRehashForBugDetection(ctrl, capacity);
}
bool CommonFieldsGenerationInfoEnabled::should_rehash_for_bug_detection_on_move(
const ctrl_t* ctrl, size_t capacity) const {
return ShouldRehashForBugDetection(ctrl, capacity);
}
bool ShouldInsertBackwardsForDebug(size_t capacity, size_t hash,
const ctrl_t* ctrl) {
// To avoid problems with weak hashes and single bit tests, we use % 13.
// TODO(kfm,sbenza): revisit after we do unconditional mixing
return !is_small(capacity) && (H1(hash, ctrl) ^ RandomSeed()) % 13 > 6;
}
size_t PrepareInsertAfterSoo(size_t hash, size_t slot_size,
CommonFields& common) {
assert(common.capacity() == NextCapacity(SooCapacity()));
// After resize from capacity 1 to 3, we always have exactly the slot with
// index 1 occupied, so we need to insert either at index 0 or index 2.
assert(HashSetResizeHelper::SooSlotIndex() == 1);
PrepareInsertCommon(common);
const size_t offset = H1(hash, common.control()) & 2;
common.set_growth_left(common.growth_left() - 1);
SetCtrlInSingleGroupTable(common, offset, H2(hash), slot_size);
common.infoz().RecordInsert(hash, /*distance_from_desired=*/0);
return offset;
}
void ConvertDeletedToEmptyAndFullToDeleted(ctrl_t* ctrl, size_t capacity) {
assert(ctrl[capacity] == ctrl_t::kSentinel);
assert(IsValidCapacity(capacity));
for (ctrl_t* pos = ctrl; pos < ctrl + capacity; pos += Group::kWidth) {
Group{pos}.ConvertSpecialToEmptyAndFullToDeleted(pos);
}
// Copy the cloned ctrl bytes.
std::memcpy(ctrl + capacity + 1, ctrl, NumClonedBytes());
ctrl[capacity] = ctrl_t::kSentinel;
}
// Extern template instantiation for inline function.
template FindInfo find_first_non_full(const CommonFields&, size_t);
FindInfo find_first_non_full_outofline(const CommonFields& common,
size_t hash) {
return find_first_non_full(common, hash);
}
// Returns the address of the slot just after slot assuming each slot has the
// specified size.
static inline void* NextSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) + slot_size);
}
// Returns the address of the slot just before slot assuming each slot has the
// specified size.
static inline void* PrevSlot(void* slot, size_t slot_size) {
return reinterpret_cast<void*>(reinterpret_cast<uintptr_t>(slot) - slot_size);
}
void DropDeletesWithoutResize(CommonFields& common, const void* hash_fn,
const PolicyFunctions& policy, void* tmp_space) {
void* set = &common;
void* slot_array = common.slot_array();
const size_t capacity = common.capacity();
assert(IsValidCapacity(capacity));
assert(!is_small(capacity));
// Algorithm:
// - mark all DELETED slots as EMPTY
// - mark all FULL slots as DELETED
// - for each slot marked as DELETED
// hash = Hash(element)
// target = find_first_non_full(hash)
// if target is in the same group
// mark slot as FULL
// else if target is EMPTY
// transfer element to target
// mark slot as EMPTY
// mark target as FULL
// else if target is DELETED
// swap current element with target element
// mark target as FULL
// repeat procedure for current slot with moved from element (target)
ctrl_t* ctrl = common.control();
ConvertDeletedToEmptyAndFullToDeleted(ctrl, capacity);
auto hasher = policy.hash_slot;
auto transfer = policy.transfer;
const size_t slot_size = policy.slot_size;
size_t total_probe_length = 0;
void* slot_ptr = SlotAddress(slot_array, 0, slot_size);
for (size_t i = 0; i != capacity;
++i, slot_ptr = NextSlot(slot_ptr, slot_size)) {
assert(slot_ptr == SlotAddress(slot_array, i, slot_size));
if (!IsDeleted(ctrl[i])) continue;
const size_t hash = (*hasher)(hash_fn, slot_ptr);
const FindInfo target = find_first_non_full(common, hash);
const size_t new_i = target.offset;
total_probe_length += target.probe_length;
// Verify if the old and new i fall within the same group wrt the hash.
// If they do, we don't need to move the object as it falls already in the
// best probe we can.
const size_t probe_offset = probe(common, hash).offset();
const auto probe_index = [probe_offset, capacity](size_t pos) {
return ((pos - probe_offset) & capacity) / Group::kWidth;
};
// Element doesn't move.
if (ABSL_PREDICT_TRUE(probe_index(new_i) == probe_index(i))) {
SetCtrl(common, i, H2(hash), slot_size);
continue;
}
void* new_slot_ptr = SlotAddress(slot_array, new_i, slot_size);
if (IsEmpty(ctrl[new_i])) {
// Transfer element to the empty spot.
// SetCtrl poisons/unpoisons the slots so we have to call it at the
// right time.
SetCtrl(common, new_i, H2(hash), slot_size);
(*transfer)(set, new_slot_ptr, slot_ptr);
SetCtrl(common, i, ctrl_t::kEmpty, slot_size);
} else {
assert(IsDeleted(ctrl[new_i]));
SetCtrl(common, new_i, H2(hash), slot_size);
// Until we are done rehashing, DELETED marks previously FULL slots.
// Swap i and new_i elements.
(*transfer)(set, tmp_space, new_slot_ptr);
(*transfer)(set, new_slot_ptr, slot_ptr);
(*transfer)(set, slot_ptr, tmp_space);
// repeat the processing of the ith slot
--i;
slot_ptr = PrevSlot(slot_ptr, slot_size);
}
}
ResetGrowthLeft(common);
common.infoz().RecordRehash(total_probe_length);
}
static bool WasNeverFull(CommonFields& c, size_t index) {
if (is_single_group(c.capacity())) {
return true;
}
const size_t index_before = (index - Group::kWidth) & c.capacity();
const auto empty_after = Group(c.control() + index).MaskEmpty();
const auto empty_before = Group(c.control() + index_before).MaskEmpty();
// We count how many consecutive non empties we have to the right and to the
// left of `it`. If the sum is >= kWidth then there is at least one probe
// window that might have seen a full group.
return empty_before && empty_after &&
static_cast<size_t>(empty_after.TrailingZeros()) +
empty_before.LeadingZeros() <
Group::kWidth;
}
void EraseMetaOnly(CommonFields& c, size_t index, size_t slot_size) {
assert(IsFull(c.control()[index]) && "erasing a dangling iterator");
c.decrement_size();
c.infoz().RecordErase();
if (WasNeverFull(c, index)) {
SetCtrl(c, index, ctrl_t::kEmpty, slot_size);
c.set_growth_left(c.growth_left() + 1);
return;
}
SetCtrl(c, index, ctrl_t::kDeleted, slot_size);
}
void ClearBackingArray(CommonFields& c, const PolicyFunctions& policy,
bool reuse, bool soo_enabled) {
c.set_size(0);
if (reuse) {
assert(!soo_enabled || c.capacity() > SooCapacity());
ResetCtrl(c, policy.slot_size);
ResetGrowthLeft(c);
c.infoz().RecordStorageChanged(0, c.capacity());
} else {
// We need to record infoz before calling dealloc, which will unregister
// infoz.
c.infoz().RecordClearedReservation();
c.infoz().RecordStorageChanged(0, soo_enabled ? SooCapacity() : 0);
(*policy.dealloc)(c, policy);
c = soo_enabled ? CommonFields{soo_tag_t{}} : CommonFields{};
}
}
void HashSetResizeHelper::GrowIntoSingleGroupShuffleControlBytes(
ctrl_t* new_ctrl, size_t new_capacity) const {
assert(is_single_group(new_capacity));
constexpr size_t kHalfWidth = Group::kWidth / 2;
assert(old_capacity_ < kHalfWidth);
const size_t half_old_capacity = old_capacity_ / 2;
// NOTE: operations are done with compile time known size = kHalfWidth.
// Compiler optimizes that into single ASM operation.
// Copy second half of bytes to the beginning.
// We potentially copy more bytes in order to have compile time known size.
// Mirrored bytes from the old_ctrl() will also be copied.
// In case of old_capacity_ == 3, we will copy 1st element twice.
// Examples:
// old_ctrl = 0S0EEEEEEE...
// new_ctrl = S0EEEEEEEE...
//
// old_ctrl = 01S01EEEEE...
// new_ctrl = 1S01EEEEEE...
//
// old_ctrl = 0123456S0123456EE...
// new_ctrl = 456S0123?????????...
std::memcpy(new_ctrl, old_ctrl() + half_old_capacity + 1, kHalfWidth);
// Clean up copied kSentinel from old_ctrl.
new_ctrl[half_old_capacity] = ctrl_t::kEmpty;
// Clean up damaged or uninitialized bytes.
// Clean bytes after the intended size of the copy.
// Example:
// new_ctrl = 1E01EEEEEEE????
// *new_ctrl= 1E0EEEEEEEE????
// position /
std::memset(new_ctrl + old_capacity_ + 1, static_cast<int8_t>(ctrl_t::kEmpty),
kHalfWidth);
// Clean non-mirrored bytes that are not initialized.
// For small old_capacity that may be inside of mirrored bytes zone.
// Examples:
// new_ctrl = 1E0EEEEEEEE??????????....
// *new_ctrl= 1E0EEEEEEEEEEEEE?????....
// position /
//
// new_ctrl = 456E0123???????????...
// *new_ctrl= 456E0123EEEEEEEE???...
// position /
std::memset(new_ctrl + kHalfWidth, static_cast<int8_t>(ctrl_t::kEmpty),
kHalfWidth);
// Clean last mirrored bytes that are not initialized
// and will not be overwritten by mirroring.
// Examples:
// new_ctrl = 1E0EEEEEEEEEEEEE????????
// *new_ctrl= 1E0EEEEEEEEEEEEEEEEEEEEE
// position S /
//
// new_ctrl = 456E0123EEEEEEEE???????????????
// *new_ctrl= 456E0123EEEEEEEE???????EEEEEEEE
// position S /
std::memset(new_ctrl + new_capacity + kHalfWidth,
static_cast<int8_t>(ctrl_t::kEmpty), kHalfWidth);
// Create mirrored bytes. old_capacity_ < kHalfWidth
// Example:
// new_ctrl = 456E0123EEEEEEEE???????EEEEEEEE
// *new_ctrl= 456E0123EEEEEEEE456E0123EEEEEEE
// position S/
ctrl_t g[kHalfWidth];
std::memcpy(g, new_ctrl, kHalfWidth);
std::memcpy(new_ctrl + new_capacity + 1, g, kHalfWidth);
// Finally set sentinel to its place.
new_ctrl[new_capacity] = ctrl_t::kSentinel;
}
void HashSetResizeHelper::InitControlBytesAfterSoo(ctrl_t* new_ctrl, ctrl_t h2,
size_t new_capacity) {
assert(is_single_group(new_capacity));
std::memset(new_ctrl, static_cast<int8_t>(ctrl_t::kEmpty),
NumControlBytes(new_capacity));
assert(HashSetResizeHelper::SooSlotIndex() == 1);
// This allows us to avoid branching on had_soo_slot_.
assert(had_soo_slot_ || h2 == ctrl_t::kEmpty);
new_ctrl[1] = new_ctrl[new_capacity + 2] = h2;
new_ctrl[new_capacity] = ctrl_t::kSentinel;
}
void HashSetResizeHelper::GrowIntoSingleGroupShuffleTransferableSlots(
void* new_slots, size_t slot_size) const {
assert(old_capacity_ > 0);
const size_t half_old_capacity = old_capacity_ / 2;
SanitizerUnpoisonMemoryRegion(old_slots(), slot_size * old_capacity_);
std::memcpy(new_slots,
SlotAddress(old_slots(), half_old_capacity + 1, slot_size),
slot_size * half_old_capacity);
std::memcpy(SlotAddress(new_slots, half_old_capacity + 1, slot_size),
old_slots(), slot_size * (half_old_capacity + 1));
}
void HashSetResizeHelper::GrowSizeIntoSingleGroupTransferable(
CommonFields& c, size_t slot_size) {
assert(old_capacity_ < Group::kWidth / 2);
assert(is_single_group(c.capacity()));
assert(IsGrowingIntoSingleGroupApplicable(old_capacity_, c.capacity()));
GrowIntoSingleGroupShuffleControlBytes(c.control(), c.capacity());
GrowIntoSingleGroupShuffleTransferableSlots(c.slot_array(), slot_size);
// We poison since GrowIntoSingleGroupShuffleTransferableSlots
// may leave empty slots unpoisoned.
PoisonSingleGroupEmptySlots(c, slot_size);
}
void HashSetResizeHelper::TransferSlotAfterSoo(CommonFields& c,
size_t slot_size) {
assert(was_soo_);
assert(had_soo_slot_);
assert(is_single_group(c.capacity()));
std::memcpy(SlotAddress(c.slot_array(), SooSlotIndex(), slot_size),
old_soo_data(), slot_size);
PoisonSingleGroupEmptySlots(c, slot_size);
}
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
|