1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#define ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <type_traits>
#include "gtest/gtest.h"
#include "absl/base/config.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace container_internal {
// This is a stateful allocator, but the state lives outside of the
// allocator (in whatever test is using the allocator). This is odd
// but helps in tests where the allocator is propagated into nested
// containers - that chain of allocators uses the same state and is
// thus easier to query for aggregate allocation information.
template <typename T>
class CountingAllocator {
public:
using Allocator = std::allocator<T>;
using AllocatorTraits = std::allocator_traits<Allocator>;
using value_type = typename AllocatorTraits::value_type;
using pointer = typename AllocatorTraits::pointer;
using const_pointer = typename AllocatorTraits::const_pointer;
using size_type = typename AllocatorTraits::size_type;
using difference_type = typename AllocatorTraits::difference_type;
CountingAllocator() = default;
explicit CountingAllocator(int64_t* bytes_used) : bytes_used_(bytes_used) {}
CountingAllocator(int64_t* bytes_used, int64_t* instance_count)
: bytes_used_(bytes_used), instance_count_(instance_count) {}
template <typename U>
CountingAllocator(const CountingAllocator<U>& x)
: bytes_used_(x.bytes_used_), instance_count_(x.instance_count_) {}
pointer allocate(
size_type n,
typename AllocatorTraits::const_void_pointer hint = nullptr) {
Allocator allocator;
pointer ptr = AllocatorTraits::allocate(allocator, n, hint);
if (bytes_used_ != nullptr) {
*bytes_used_ += n * sizeof(T);
}
return ptr;
}
void deallocate(pointer p, size_type n) {
Allocator allocator;
AllocatorTraits::deallocate(allocator, p, n);
if (bytes_used_ != nullptr) {
*bytes_used_ -= n * sizeof(T);
}
}
template <typename U, typename... Args>
void construct(U* p, Args&&... args) {
Allocator allocator;
AllocatorTraits::construct(allocator, p, std::forward<Args>(args)...);
if (instance_count_ != nullptr) {
*instance_count_ += 1;
}
}
template <typename U>
void destroy(U* p) {
Allocator allocator;
// Ignore GCC warning bug.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wuse-after-free"
#endif
AllocatorTraits::destroy(allocator, p);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
if (instance_count_ != nullptr) {
*instance_count_ -= 1;
}
}
template <typename U>
class rebind {
public:
using other = CountingAllocator<U>;
};
friend bool operator==(const CountingAllocator& a,
const CountingAllocator& b) {
return a.bytes_used_ == b.bytes_used_ &&
a.instance_count_ == b.instance_count_;
}
friend bool operator!=(const CountingAllocator& a,
const CountingAllocator& b) {
return !(a == b);
}
int64_t* bytes_used_ = nullptr;
int64_t* instance_count_ = nullptr;
};
template <typename T>
struct CopyAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_copy_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit CopyAssignPropagatingCountingAlloc(
const CopyAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = CopyAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct MoveAssignPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_move_assignment = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit MoveAssignPropagatingCountingAlloc(
const MoveAssignPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = MoveAssignPropagatingCountingAlloc<U>;
};
};
template <typename T>
struct SwapPropagatingCountingAlloc : public CountingAllocator<T> {
using propagate_on_container_swap = std::true_type;
using Base = CountingAllocator<T>;
using Base::Base;
template <typename U>
explicit SwapPropagatingCountingAlloc(
const SwapPropagatingCountingAlloc<U>& other)
: Base(other.bytes_used_, other.instance_count_) {}
template <typename U>
struct rebind {
using other = SwapPropagatingCountingAlloc<U>;
};
};
// Tries to allocate memory at the minimum alignment even when the default
// allocator uses a higher alignment.
template <typename T>
struct MinimumAlignmentAlloc : std::allocator<T> {
MinimumAlignmentAlloc() = default;
template <typename U>
explicit MinimumAlignmentAlloc(const MinimumAlignmentAlloc<U>& /*other*/) {}
template <class U>
struct rebind {
using other = MinimumAlignmentAlloc<U>;
};
T* allocate(size_t n) {
T* ptr = std::allocator<T>::allocate(n + 1);
char* cptr = reinterpret_cast<char*>(ptr);
cptr += alignof(T);
return reinterpret_cast<T*>(cptr);
}
void deallocate(T* ptr, size_t n) {
char* cptr = reinterpret_cast<char*>(ptr);
cptr -= alignof(T);
std::allocator<T>::deallocate(reinterpret_cast<T*>(cptr), n + 1);
}
};
inline bool IsAssertEnabled() {
// Use an assert with side-effects to figure out if they are actually enabled.
bool assert_enabled = false;
assert([&]() { // NOLINT
assert_enabled = true;
return true;
}());
return assert_enabled;
}
template <template <class Alloc> class Container>
void TestCopyAssignAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
CopyAssignPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
CopyAssignPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<CopyAssignPropagatingCountingAlloc<int>> c1(allocator1);
Container<CopyAssignPropagatingCountingAlloc<int>> c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = c1;
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 200);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = c1;
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 100);
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestMoveAssignAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
MoveAssignPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
MoveAssignPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<MoveAssignPropagatingCountingAlloc<int>> c1(allocator1);
Container<MoveAssignPropagatingCountingAlloc<int>> c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with equal allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator1);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2 = std::move(c1);
EXPECT_EQ(c2.get_allocator(), allocator2);
EXPECT_LE(instances1, 100); // The values in c1 may or may not have been
// destroyed at this point.
EXPECT_EQ(instances2, 100);
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestSwapAllocPropagation() {
int64_t bytes1 = 0, instances1 = 0, bytes2 = 0, instances2 = 0;
SwapPropagatingCountingAlloc<int> allocator1(&bytes1, &instances1);
SwapPropagatingCountingAlloc<int> allocator2(&bytes2, &instances2);
// Test propagating allocator_type.
{
Container<SwapPropagatingCountingAlloc<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2.swap(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with equal allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator1);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
c2.swap(c1);
EXPECT_EQ(c2.get_allocator(), allocator1);
EXPECT_EQ(instances1, 100);
EXPECT_EQ(instances2, 0);
}
// Test non-propagating allocator_type with different allocators.
{
Container<CountingAllocator<int>> c1(allocator1), c2(allocator2);
for (int i = 0; i < 100; ++i) c1.insert(i);
EXPECT_NE(c1.get_allocator(), c2.get_allocator());
if (IsAssertEnabled()) {
EXPECT_DEATH_IF_SUPPORTED(c2.swap(c1), "");
}
}
EXPECT_EQ(bytes1, 0);
EXPECT_EQ(instances1, 0);
EXPECT_EQ(bytes2, 0);
EXPECT_EQ(instances2, 0);
}
template <template <class Alloc> class Container>
void TestAllocPropagation() {
TestCopyAssignAllocPropagation<Container>();
TestMoveAssignAllocPropagation<Container>();
TestSwapAllocPropagation<Container>();
}
} // namespace container_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_CONTAINER_INTERNAL_TEST_ALLOCATOR_H_
|