1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
|
#ifndef ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
#define ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
// Generate stack tracer for aarch64
#if defined(__linux__)
#include <signal.h>
#include <sys/mman.h>
#include <ucontext.h>
#include <unistd.h>
#endif
#include <atomic>
#include <cassert>
#include <cstdint>
#include <iostream>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/debugging/internal/address_is_readable.h"
#include "absl/debugging/internal/vdso_support.h" // a no-op on non-elf or non-glibc systems
#include "absl/debugging/stacktrace.h"
static const size_t kUnknownFrameSize = 0;
// Stack end to use when we don't know the actual stack end
// (effectively just the end of address space).
constexpr uintptr_t kUnknownStackEnd =
std::numeric_limits<size_t>::max() - sizeof(void *);
#if defined(__linux__)
// Returns the address of the VDSO __kernel_rt_sigreturn function, if present.
static const unsigned char* GetKernelRtSigreturnAddress() {
constexpr uintptr_t kImpossibleAddress = 1;
ABSL_CONST_INIT static std::atomic<uintptr_t> memoized{kImpossibleAddress};
uintptr_t address = memoized.load(std::memory_order_relaxed);
if (address != kImpossibleAddress) {
return reinterpret_cast<const unsigned char*>(address);
}
address = reinterpret_cast<uintptr_t>(nullptr);
#ifdef ABSL_HAVE_VDSO_SUPPORT
absl::debugging_internal::VDSOSupport vdso;
if (vdso.IsPresent()) {
absl::debugging_internal::VDSOSupport::SymbolInfo symbol_info;
auto lookup = [&](int type) {
return vdso.LookupSymbol("__kernel_rt_sigreturn", "LINUX_2.6.39", type,
&symbol_info);
};
if ((!lookup(STT_FUNC) && !lookup(STT_NOTYPE)) ||
symbol_info.address == nullptr) {
// Unexpected: VDSO is present, yet the expected symbol is missing
// or null.
assert(false && "VDSO is present, but doesn't have expected symbol");
} else {
if (reinterpret_cast<uintptr_t>(symbol_info.address) !=
kImpossibleAddress) {
address = reinterpret_cast<uintptr_t>(symbol_info.address);
} else {
assert(false && "VDSO returned invalid address");
}
}
}
#endif
memoized.store(address, std::memory_order_relaxed);
return reinterpret_cast<const unsigned char*>(address);
}
#endif // __linux__
// Compute the size of a stack frame in [low..high). We assume that
// low < high. Return size of kUnknownFrameSize.
template<typename T>
static size_t ComputeStackFrameSize(const T* low,
const T* high) {
const char* low_char_ptr = reinterpret_cast<const char *>(low);
const char* high_char_ptr = reinterpret_cast<const char *>(high);
return low < high ? static_cast<size_t>(high_char_ptr - low_char_ptr)
: kUnknownFrameSize;
}
// Saves stack info that is expensive to calculate to avoid recalculating per frame.
struct StackInfo {
uintptr_t stack_low;
uintptr_t stack_high;
uintptr_t sig_stack_low;
uintptr_t sig_stack_high;
};
static bool InsideSignalStack(void** ptr, const StackInfo* stack_info) {
uintptr_t comparable_ptr = reinterpret_cast<uintptr_t>(ptr);
return (comparable_ptr >= stack_info->sig_stack_low &&
comparable_ptr < stack_info->sig_stack_high);
}
// Given a pointer to a stack frame, locate and return the calling
// stackframe, or return null if no stackframe can be found. Perform sanity
// checks (the strictness of which is controlled by the boolean parameter
// "STRICT_UNWINDING") to reduce the chance that a bad pointer is returned.
template<bool STRICT_UNWINDING, bool WITH_CONTEXT>
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
static void **NextStackFrame(void **old_frame_pointer, const void *uc,
const StackInfo *stack_info) {
void **new_frame_pointer = reinterpret_cast<void**>(*old_frame_pointer);
#if defined(__linux__)
if (WITH_CONTEXT && uc != nullptr) {
// Check to see if next frame's return address is __kernel_rt_sigreturn.
if (old_frame_pointer[1] == GetKernelRtSigreturnAddress()) {
const ucontext_t *ucv = static_cast<const ucontext_t *>(uc);
// old_frame_pointer[0] is not suitable for unwinding, look at
// ucontext to discover frame pointer before signal.
void **const pre_signal_frame_pointer =
reinterpret_cast<void **>(ucv->uc_mcontext.regs[29]);
// The most recent signal always needs special handling to find the frame
// pointer, but a nested signal does not. If pre_signal_frame_pointer is
// earlier in the stack than the old_frame_pointer, then use it. If it is
// later, then we have already unwound through it and it needs no special
// handling.
if (pre_signal_frame_pointer >= old_frame_pointer) {
new_frame_pointer = pre_signal_frame_pointer;
}
}
#endif
// The frame pointer should be 8-byte aligned.
if ((reinterpret_cast<uintptr_t>(new_frame_pointer) & 7) != 0)
return nullptr;
// Check that alleged frame pointer is actually readable. This is to
// prevent "double fault" in case we hit the first fault due to e.g.
// stack corruption.
if (!absl::debugging_internal::AddressIsReadable(
new_frame_pointer))
return nullptr;
}
// Only check the size if both frames are in the same stack.
if (InsideSignalStack(new_frame_pointer, stack_info) ==
InsideSignalStack(old_frame_pointer, stack_info)) {
// Check frame size. In strict mode, we assume frames to be under
// 100,000 bytes. In non-strict mode, we relax the limit to 1MB.
const size_t max_size = STRICT_UNWINDING ? 100000 : 1000000;
const size_t frame_size =
ComputeStackFrameSize(old_frame_pointer, new_frame_pointer);
if (frame_size == kUnknownFrameSize)
return nullptr;
// A very large frame may mean corrupt memory or an erroneous frame
// pointer. But also maybe just a plain-old large frame. Assume that if the
// frame is within a known stack, then it is valid.
if (frame_size > max_size) {
size_t stack_low = stack_info->stack_low;
size_t stack_high = stack_info->stack_high;
if (InsideSignalStack(new_frame_pointer, stack_info)) {
stack_low = stack_info->sig_stack_low;
stack_high = stack_info->sig_stack_high;
}
if (stack_high < kUnknownStackEnd &&
static_cast<size_t>(getpagesize()) < stack_low) {
const uintptr_t new_fp_u =
reinterpret_cast<uintptr_t>(new_frame_pointer);
// Stack bounds are known.
if (!(stack_low < new_fp_u && new_fp_u <= stack_high)) {
// new_frame_pointer is not within a known stack.
return nullptr;
}
} else {
// Stack bounds are unknown, prefer truncated stack to possible crash.
return nullptr;
}
}
}
return new_frame_pointer;
}
template <bool IS_STACK_FRAMES, bool IS_WITH_CONTEXT>
// We count on the bottom frame being this one. See the comment
// at prev_return_address
ABSL_ATTRIBUTE_NOINLINE
ABSL_ATTRIBUTE_NO_SANITIZE_ADDRESS // May read random elements from stack.
ABSL_ATTRIBUTE_NO_SANITIZE_MEMORY // May read random elements from stack.
static int UnwindImpl(void** result, int* sizes, int max_depth, int skip_count,
const void *ucp, int *min_dropped_frames) {
#ifdef __GNUC__
void **frame_pointer = reinterpret_cast<void**>(__builtin_frame_address(0));
#else
# error reading stack point not yet supported on this platform.
#endif
skip_count++; // Skip the frame for this function.
int n = 0;
// Assume that the first page is not stack.
StackInfo stack_info;
stack_info.stack_low = static_cast<uintptr_t>(getpagesize());
stack_info.stack_high = kUnknownStackEnd;
stack_info.sig_stack_low = stack_info.stack_low;
stack_info.sig_stack_high = kUnknownStackEnd;
// The frame pointer points to low address of a frame. The first 64-bit
// word of a frame points to the next frame up the call chain, which normally
// is just after the high address of the current frame. The second word of
// a frame contains return address of to the caller. To find a pc value
// associated with the current frame, we need to go down a level in the call
// chain. So we remember return the address of the last frame seen. This
// does not work for the first stack frame, which belongs to UnwindImp() but
// we skip the frame for UnwindImp() anyway.
void* prev_return_address = nullptr;
// The nth frame size is the difference between the nth frame pointer and the
// the frame pointer below it in the call chain. There is no frame below the
// leaf frame, but this function is the leaf anyway, and we skip it.
void** prev_frame_pointer = nullptr;
while (frame_pointer && n < max_depth) {
if (skip_count > 0) {
skip_count--;
} else {
result[n] = prev_return_address;
if (IS_STACK_FRAMES) {
sizes[n] = static_cast<int>(
ComputeStackFrameSize(prev_frame_pointer, frame_pointer));
}
n++;
}
prev_return_address = frame_pointer[1];
prev_frame_pointer = frame_pointer;
// The absl::GetStackFrames routine is called when we are in some
// informational context (the failure signal handler for example).
// Use the non-strict unwinding rules to produce a stack trace
// that is as complete as possible (even if it contains a few bogus
// entries in some rare cases).
frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
frame_pointer, ucp, &stack_info);
}
if (min_dropped_frames != nullptr) {
// Implementation detail: we clamp the max of frames we are willing to
// count, so as not to spend too much time in the loop below.
const int kMaxUnwind = 200;
int num_dropped_frames = 0;
for (int j = 0; frame_pointer != nullptr && j < kMaxUnwind; j++) {
if (skip_count > 0) {
skip_count--;
} else {
num_dropped_frames++;
}
frame_pointer = NextStackFrame<!IS_STACK_FRAMES, IS_WITH_CONTEXT>(
frame_pointer, ucp, &stack_info);
}
*min_dropped_frames = num_dropped_frames;
}
return n;
}
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace debugging_internal {
bool StackTraceWorksForTest() {
return true;
}
} // namespace debugging_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_DEBUGGING_INTERNAL_STACKTRACE_AARCH64_INL_H_
|