1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187
|
//
// Copyright 2020 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#ifndef ABSL_FLAGS_INTERNAL_SEQUENCE_LOCK_H_
#define ABSL_FLAGS_INTERNAL_SEQUENCE_LOCK_H_
#include <stddef.h>
#include <stdint.h>
#include <atomic>
#include <cassert>
#include <cstring>
#include "absl/base/optimization.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace flags_internal {
// Align 'x' up to the nearest 'align' bytes.
inline constexpr size_t AlignUp(size_t x, size_t align) {
return align * ((x + align - 1) / align);
}
// A SequenceLock implements lock-free reads. A sequence counter is incremented
// before and after each write, and readers access the counter before and after
// accessing the protected data. If the counter is verified to not change during
// the access, and the sequence counter value was even, then the reader knows
// that the read was race-free and valid. Otherwise, the reader must fall back
// to a Mutex-based code path.
//
// This particular SequenceLock starts in an "uninitialized" state in which
// TryRead() returns false. It must be enabled by calling MarkInitialized().
// This serves as a marker that the associated flag value has not yet been
// initialized and a slow path needs to be taken.
//
// The memory reads and writes protected by this lock must use the provided
// `TryRead()` and `Write()` functions. These functions behave similarly to
// `memcpy()`, with one oddity: the protected data must be an array of
// `std::atomic<uint64>`. This is to comply with the C++ standard, which
// considers data races on non-atomic objects to be undefined behavior. See "Can
// Seqlocks Get Along With Programming Language Memory Models?"[1] by Hans J.
// Boehm for more details.
//
// [1] https://www.hpl.hp.com/techreports/2012/HPL-2012-68.pdf
class SequenceLock {
public:
constexpr SequenceLock() : lock_(kUninitialized) {}
// Mark that this lock is ready for use.
void MarkInitialized() {
assert(lock_.load(std::memory_order_relaxed) == kUninitialized);
lock_.store(0, std::memory_order_release);
}
// Copy "size" bytes of data from "src" to "dst", protected as a read-side
// critical section of the sequence lock.
//
// Unlike traditional sequence lock implementations which loop until getting a
// clean read, this implementation returns false in the case of concurrent
// calls to `Write`. In such a case, the caller should fall back to a
// locking-based slow path.
//
// Returns false if the sequence lock was not yet marked as initialized.
//
// NOTE: If this returns false, "dst" may be overwritten with undefined
// (potentially uninitialized) data.
bool TryRead(void* dst, const std::atomic<uint64_t>* src, size_t size) const {
// Acquire barrier ensures that no loads done by f() are reordered
// above the first load of the sequence counter.
int64_t seq_before = lock_.load(std::memory_order_acquire);
if (ABSL_PREDICT_FALSE(seq_before & 1) == 1) return false;
RelaxedCopyFromAtomic(dst, src, size);
// Another acquire fence ensures that the load of 'lock_' below is
// strictly ordered after the RelaxedCopyToAtomic call above.
std::atomic_thread_fence(std::memory_order_acquire);
int64_t seq_after = lock_.load(std::memory_order_relaxed);
return ABSL_PREDICT_TRUE(seq_before == seq_after);
}
// Copy "size" bytes from "src" to "dst" as a write-side critical section
// of the sequence lock. Any concurrent readers will be forced to retry
// until they get a read that does not conflict with this write.
//
// This call must be externally synchronized against other calls to Write,
// but may proceed concurrently with reads.
void Write(std::atomic<uint64_t>* dst, const void* src, size_t size) {
// We can use relaxed instructions to increment the counter since we
// are extenally synchronized. The std::atomic_thread_fence below
// ensures that the counter updates don't get interleaved with the
// copy to the data.
int64_t orig_seq = lock_.load(std::memory_order_relaxed);
assert((orig_seq & 1) == 0); // Must be initially unlocked.
lock_.store(orig_seq + 1, std::memory_order_relaxed);
// We put a release fence between update to lock_ and writes to shared data.
// Thus all stores to shared data are effectively release operations and
// update to lock_ above cannot be re-ordered past any of them. Note that
// this barrier is not for the fetch_add above. A release barrier for the
// fetch_add would be before it, not after.
std::atomic_thread_fence(std::memory_order_release);
RelaxedCopyToAtomic(dst, src, size);
// "Release" semantics ensure that none of the writes done by
// RelaxedCopyToAtomic() can be reordered after the following modification.
lock_.store(orig_seq + 2, std::memory_order_release);
}
// Return the number of times that Write() has been called.
//
// REQUIRES: This must be externally synchronized against concurrent calls to
// `Write()` or `IncrementModificationCount()`.
// REQUIRES: `MarkInitialized()` must have been previously called.
int64_t ModificationCount() const {
int64_t val = lock_.load(std::memory_order_relaxed);
assert(val != kUninitialized && (val & 1) == 0);
return val / 2;
}
// REQUIRES: This must be externally synchronized against concurrent calls to
// `Write()` or `ModificationCount()`.
// REQUIRES: `MarkInitialized()` must have been previously called.
void IncrementModificationCount() {
int64_t val = lock_.load(std::memory_order_relaxed);
assert(val != kUninitialized);
lock_.store(val + 2, std::memory_order_relaxed);
}
private:
// Perform the equivalent of "memcpy(dst, src, size)", but using relaxed
// atomics.
static void RelaxedCopyFromAtomic(void* dst, const std::atomic<uint64_t>* src,
size_t size) {
char* dst_byte = static_cast<char*>(dst);
while (size >= sizeof(uint64_t)) {
uint64_t word = src->load(std::memory_order_relaxed);
std::memcpy(dst_byte, &word, sizeof(word));
dst_byte += sizeof(word);
src++;
size -= sizeof(word);
}
if (size > 0) {
uint64_t word = src->load(std::memory_order_relaxed);
std::memcpy(dst_byte, &word, size);
}
}
// Perform the equivalent of "memcpy(dst, src, size)", but using relaxed
// atomics.
static void RelaxedCopyToAtomic(std::atomic<uint64_t>* dst, const void* src,
size_t size) {
const char* src_byte = static_cast<const char*>(src);
while (size >= sizeof(uint64_t)) {
uint64_t word;
std::memcpy(&word, src_byte, sizeof(word));
dst->store(word, std::memory_order_relaxed);
src_byte += sizeof(word);
dst++;
size -= sizeof(word);
}
if (size > 0) {
uint64_t word = 0;
std::memcpy(&word, src_byte, size);
dst->store(word, std::memory_order_relaxed);
}
}
static constexpr int64_t kUninitialized = -1;
std::atomic<int64_t> lock_;
};
} // namespace flags_internal
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FLAGS_INTERNAL_SEQUENCE_LOCK_H_
|