1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891
|
// Copyright 2022 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// Implementation details for `absl::AnyInvocable`
#ifndef ABSL_FUNCTIONAL_INTERNAL_ANY_INVOCABLE_H_
#define ABSL_FUNCTIONAL_INTERNAL_ANY_INVOCABLE_H_
////////////////////////////////////////////////////////////////////////////////
// //
// This implementation of the proposed `any_invocable` uses an approach that //
// chooses between local storage and remote storage for the contained target //
// object based on the target object's size, alignment requirements, and //
// whether or not it has a nothrow move constructor. Additional optimizations //
// are performed when the object is a trivially copyable type [basic.types]. //
// //
// There are three datamembers per `AnyInvocable` instance //
// //
// 1) A union containing either //
// - A pointer to the target object referred to via a void*, or //
// - the target object, emplaced into a raw char buffer //
// //
// 2) A function pointer to a "manager" function operation that takes a //
// discriminator and logically branches to either perform a move operation //
// or destroy operation based on that discriminator. //
// //
// 3) A function pointer to an "invoker" function operation that invokes the //
// target object, directly returning the result. //
// //
// When in the logically empty state, the manager function is an empty //
// function and the invoker function is one that would be undefined-behavior //
// to call. //
// //
// An additional optimization is performed when converting from one //
// AnyInvocable to another where only the noexcept specification and/or the //
// cv/ref qualifiers of the function type differ. In these cases, the //
// conversion works by "moving the guts", similar to if they were the same //
// exact type, as opposed to having to perform an additional layer of //
// wrapping through remote storage. //
// //
////////////////////////////////////////////////////////////////////////////////
// IWYU pragma: private, include "absl/functional/any_invocable.h"
#include <cassert>
#include <cstddef>
#include <cstring>
#include <exception>
#include <functional>
#include <initializer_list>
#include <memory>
#include <new>
#include <type_traits>
#include <utility>
#include "absl/base/config.h"
#include "absl/base/internal/invoke.h"
#include "absl/base/macros.h"
#include "absl/base/optimization.h"
#include "absl/meta/type_traits.h"
#include "absl/utility/utility.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// Helper macro used to prevent spelling `noexcept` in language versions older
// than C++17, where it is not part of the type system, in order to avoid
// compilation failures and internal compiler errors.
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L
#define ABSL_INTERNAL_NOEXCEPT_SPEC(noex) noexcept(noex)
#else
#define ABSL_INTERNAL_NOEXCEPT_SPEC(noex)
#endif
// Defined in functional/any_invocable.h
template <class Sig>
class AnyInvocable;
namespace internal_any_invocable {
// Constants relating to the small-object-storage for AnyInvocable
enum StorageProperty : std::size_t {
kAlignment = alignof(std::max_align_t), // The alignment of the storage
kStorageSize = sizeof(void*) * 2 // The size of the storage
};
////////////////////////////////////////////////////////////////////////////////
//
// A metafunction for checking if a type is an AnyInvocable instantiation.
// This is used during conversion operations.
template <class T>
struct IsAnyInvocable : std::false_type {};
template <class Sig>
struct IsAnyInvocable<AnyInvocable<Sig>> : std::true_type {};
//
////////////////////////////////////////////////////////////////////////////////
// A type trait that tells us whether or not a target function type should be
// stored locally in the small object optimization storage
template <class T>
using IsStoredLocally = std::integral_constant<
bool, sizeof(T) <= kStorageSize && alignof(T) <= kAlignment &&
kAlignment % alignof(T) == 0 &&
std::is_nothrow_move_constructible<T>::value>;
// An implementation of std::remove_cvref_t of C++20.
template <class T>
using RemoveCVRef =
typename std::remove_cv<typename std::remove_reference<T>::type>::type;
////////////////////////////////////////////////////////////////////////////////
//
// An implementation of the C++ standard INVOKE<R> pseudo-macro, operation is
// equivalent to std::invoke except that it forces an implicit conversion to the
// specified return type. If "R" is void, the function is executed and the
// return value is simply ignored.
template <class ReturnType, class F, class... P,
typename = absl::enable_if_t<std::is_void<ReturnType>::value>>
void InvokeR(F&& f, P&&... args) {
absl::base_internal::invoke(std::forward<F>(f), std::forward<P>(args)...);
}
template <class ReturnType, class F, class... P,
absl::enable_if_t<!std::is_void<ReturnType>::value, int> = 0>
ReturnType InvokeR(F&& f, P&&... args) {
// GCC 12 has a false-positive -Wmaybe-uninitialized warning here.
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wmaybe-uninitialized"
#endif
return absl::base_internal::invoke(std::forward<F>(f),
std::forward<P>(args)...);
#if ABSL_INTERNAL_HAVE_MIN_GNUC_VERSION(12, 0)
#pragma GCC diagnostic pop
#endif
}
//
////////////////////////////////////////////////////////////////////////////////
////////////////////////////////////////////////////////////////////////////////
///
// A metafunction that takes a "T" corresponding to a parameter type of the
// user's specified function type, and yields the parameter type to use for the
// type-erased invoker. In order to prevent observable moves, this must be
// either a reference or, if the type is trivial, the original parameter type
// itself. Since the parameter type may be incomplete at the point that this
// metafunction is used, we can only do this optimization for scalar types
// rather than for any trivial type.
template <typename T>
T ForwardImpl(std::true_type);
template <typename T>
T&& ForwardImpl(std::false_type);
// NOTE: We deliberately use an intermediate struct instead of a direct alias,
// as a workaround for b/206991861 on MSVC versions < 1924.
template <class T>
struct ForwardedParameter {
using type = decltype((
ForwardImpl<T>)(std::integral_constant<bool,
std::is_scalar<T>::value>()));
};
template <class T>
using ForwardedParameterType = typename ForwardedParameter<T>::type;
//
////////////////////////////////////////////////////////////////////////////////
// A discriminator when calling the "manager" function that describes operation
// type-erased operation should be invoked.
//
// "relocate_from_to" specifies that the manager should perform a move.
//
// "dispose" specifies that the manager should perform a destroy.
enum class FunctionToCall : bool { relocate_from_to, dispose };
// The portion of `AnyInvocable` state that contains either a pointer to the
// target object or the object itself in local storage
union TypeErasedState {
struct {
// A pointer to the type-erased object when remotely stored
void* target;
// The size of the object for `RemoteManagerTrivial`
std::size_t size;
} remote;
// Local-storage for the type-erased object when small and trivial enough
alignas(kAlignment) char storage[kStorageSize];
};
// A typed accessor for the object in `TypeErasedState` storage
template <class T>
T& ObjectInLocalStorage(TypeErasedState* const state) {
// We launder here because the storage may be reused with the same type.
#if defined(__cpp_lib_launder) && __cpp_lib_launder >= 201606L
return *std::launder(reinterpret_cast<T*>(&state->storage));
#elif ABSL_HAVE_BUILTIN(__builtin_launder)
return *__builtin_launder(reinterpret_cast<T*>(&state->storage));
#else
// When `std::launder` or equivalent are not available, we rely on undefined
// behavior, which works as intended on Abseil's officially supported
// platforms as of Q2 2022.
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wstrict-aliasing"
#endif
return *reinterpret_cast<T*>(&state->storage);
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
#endif
}
// The type for functions issuing lifetime-related operations: move and dispose
// A pointer to such a function is contained in each `AnyInvocable` instance.
// NOTE: When specifying `FunctionToCall::`dispose, the same state must be
// passed as both "from" and "to".
using ManagerType = void(FunctionToCall /*operation*/,
TypeErasedState* /*from*/, TypeErasedState* /*to*/)
ABSL_INTERNAL_NOEXCEPT_SPEC(true);
// The type for functions issuing the actual invocation of the object
// A pointer to such a function is contained in each AnyInvocable instance.
template <bool SigIsNoexcept, class ReturnType, class... P>
using InvokerType = ReturnType(TypeErasedState*, ForwardedParameterType<P>...)
ABSL_INTERNAL_NOEXCEPT_SPEC(SigIsNoexcept);
// The manager that is used when AnyInvocable is empty
inline void EmptyManager(FunctionToCall /*operation*/,
TypeErasedState* /*from*/,
TypeErasedState* /*to*/) noexcept {}
// The manager that is used when a target function is in local storage and is
// a trivially copyable type.
inline void LocalManagerTrivial(FunctionToCall /*operation*/,
TypeErasedState* const from,
TypeErasedState* const to) noexcept {
// This single statement without branching handles both possible operations.
//
// For FunctionToCall::dispose, "from" and "to" point to the same state, and
// so this assignment logically would do nothing.
//
// Note: Correctness here relies on http://wg21.link/p0593, which has only
// become standard in C++20, though implementations do not break it in
// practice for earlier versions of C++.
//
// The correct way to do this without that paper is to first placement-new a
// default-constructed T in "to->storage" prior to the memmove, but doing so
// requires a different function to be created for each T that is stored
// locally, which can cause unnecessary bloat and be less cache friendly.
*to = *from;
// Note: Because the type is trivially copyable, the destructor does not need
// to be called ("trivially copyable" requires a trivial destructor).
}
// The manager that is used when a target function is in local storage and is
// not a trivially copyable type.
template <class T>
void LocalManagerNontrivial(FunctionToCall operation,
TypeErasedState* const from,
TypeErasedState* const to) noexcept {
static_assert(IsStoredLocally<T>::value,
"Local storage must only be used for supported types.");
static_assert(!std::is_trivially_copyable<T>::value,
"Locally stored types must be trivially copyable.");
T& from_object = (ObjectInLocalStorage<T>)(from);
switch (operation) {
case FunctionToCall::relocate_from_to:
// NOTE: Requires that the left-hand operand is already empty.
::new (static_cast<void*>(&to->storage)) T(std::move(from_object));
ABSL_FALLTHROUGH_INTENDED;
case FunctionToCall::dispose:
from_object.~T(); // Must not throw. // NOLINT
return;
}
ABSL_UNREACHABLE();
}
// The invoker that is used when a target function is in local storage
// Note: QualTRef here is the target function type along with cv and reference
// qualifiers that must be used when calling the function.
template <bool SigIsNoexcept, class ReturnType, class QualTRef, class... P>
ReturnType LocalInvoker(
TypeErasedState* const state,
ForwardedParameterType<P>... args) noexcept(SigIsNoexcept) {
using RawT = RemoveCVRef<QualTRef>;
static_assert(
IsStoredLocally<RawT>::value,
"Target object must be in local storage in order to be invoked from it.");
auto& f = (ObjectInLocalStorage<RawT>)(state);
return (InvokeR<ReturnType>)(static_cast<QualTRef>(f),
static_cast<ForwardedParameterType<P>>(args)...);
}
// The manager that is used when a target function is in remote storage and it
// has a trivial destructor
inline void RemoteManagerTrivial(FunctionToCall operation,
TypeErasedState* const from,
TypeErasedState* const to) noexcept {
switch (operation) {
case FunctionToCall::relocate_from_to:
// NOTE: Requires that the left-hand operand is already empty.
to->remote = from->remote;
return;
case FunctionToCall::dispose:
#if defined(__cpp_sized_deallocation)
::operator delete(from->remote.target, from->remote.size);
#else // __cpp_sized_deallocation
::operator delete(from->remote.target);
#endif // __cpp_sized_deallocation
return;
}
ABSL_UNREACHABLE();
}
// The manager that is used when a target function is in remote storage and the
// destructor of the type is not trivial
template <class T>
void RemoteManagerNontrivial(FunctionToCall operation,
TypeErasedState* const from,
TypeErasedState* const to) noexcept {
static_assert(!IsStoredLocally<T>::value,
"Remote storage must only be used for types that do not "
"qualify for local storage.");
switch (operation) {
case FunctionToCall::relocate_from_to:
// NOTE: Requires that the left-hand operand is already empty.
to->remote.target = from->remote.target;
return;
case FunctionToCall::dispose:
::delete static_cast<T*>(from->remote.target); // Must not throw.
return;
}
ABSL_UNREACHABLE();
}
// The invoker that is used when a target function is in remote storage
template <bool SigIsNoexcept, class ReturnType, class QualTRef, class... P>
ReturnType RemoteInvoker(
TypeErasedState* const state,
ForwardedParameterType<P>... args) noexcept(SigIsNoexcept) {
using RawT = RemoveCVRef<QualTRef>;
static_assert(!IsStoredLocally<RawT>::value,
"Target object must be in remote storage in order to be "
"invoked from it.");
auto& f = *static_cast<RawT*>(state->remote.target);
return (InvokeR<ReturnType>)(static_cast<QualTRef>(f),
static_cast<ForwardedParameterType<P>>(args)...);
}
////////////////////////////////////////////////////////////////////////////////
//
// A metafunction that checks if a type T is an instantiation of
// absl::in_place_type_t (needed for constructor constraints of AnyInvocable).
template <class T>
struct IsInPlaceType : std::false_type {};
template <class T>
struct IsInPlaceType<absl::in_place_type_t<T>> : std::true_type {};
//
////////////////////////////////////////////////////////////////////////////////
// A constructor name-tag used with CoreImpl (below) to request the
// conversion-constructor. QualDecayedTRef is the decayed-type of the object to
// wrap, along with the cv and reference qualifiers that must be applied when
// performing an invocation of the wrapped object.
template <class QualDecayedTRef>
struct TypedConversionConstruct {};
// A helper base class for all core operations of AnyInvocable. Most notably,
// this class creates the function call operator and constraint-checkers so that
// the top-level class does not have to be a series of partial specializations.
//
// Note: This definition exists (as opposed to being a declaration) so that if
// the user of the top-level template accidentally passes a template argument
// that is not a function type, they will get a static_assert in AnyInvocable's
// class body rather than an error stating that Impl is not defined.
template <class Sig>
class Impl {}; // Note: This is partially-specialized later.
// A std::unique_ptr deleter that deletes memory allocated via ::operator new.
#if defined(__cpp_sized_deallocation)
class TrivialDeleter {
public:
explicit TrivialDeleter(std::size_t size) : size_(size) {}
void operator()(void* target) const {
::operator delete(target, size_);
}
private:
std::size_t size_;
};
#else // __cpp_sized_deallocation
class TrivialDeleter {
public:
explicit TrivialDeleter(std::size_t) {}
void operator()(void* target) const { ::operator delete(target); }
};
#endif // __cpp_sized_deallocation
template <bool SigIsNoexcept, class ReturnType, class... P>
class CoreImpl;
constexpr bool IsCompatibleConversion(void*, void*) { return false; }
template <bool NoExceptSrc, bool NoExceptDest, class... T>
constexpr bool IsCompatibleConversion(CoreImpl<NoExceptSrc, T...>*,
CoreImpl<NoExceptDest, T...>*) {
return !NoExceptDest || NoExceptSrc;
}
// A helper base class for all core operations of AnyInvocable that do not
// depend on the cv/ref qualifiers of the function type.
template <bool SigIsNoexcept, class ReturnType, class... P>
class CoreImpl {
public:
using result_type = ReturnType;
CoreImpl() noexcept : manager_(EmptyManager), invoker_(nullptr) {}
enum class TargetType {
kPointer,
kCompatibleAnyInvocable,
kIncompatibleAnyInvocable,
kOther,
};
// Note: QualDecayedTRef here includes the cv-ref qualifiers associated with
// the invocation of the Invocable. The unqualified type is the target object
// type to be stored.
template <class QualDecayedTRef, class F>
explicit CoreImpl(TypedConversionConstruct<QualDecayedTRef>, F&& f) {
using DecayedT = RemoveCVRef<QualDecayedTRef>;
constexpr TargetType kTargetType =
(std::is_pointer<DecayedT>::value ||
std::is_member_pointer<DecayedT>::value)
? TargetType::kPointer
: IsCompatibleAnyInvocable<DecayedT>::value
? TargetType::kCompatibleAnyInvocable
: IsAnyInvocable<DecayedT>::value
? TargetType::kIncompatibleAnyInvocable
: TargetType::kOther;
// NOTE: We only use integers instead of enums as template parameters in
// order to work around a bug on C++14 under MSVC 2017.
// See b/236131881.
Initialize<kTargetType, QualDecayedTRef>(std::forward<F>(f));
}
// Note: QualTRef here includes the cv-ref qualifiers associated with the
// invocation of the Invocable. The unqualified type is the target object
// type to be stored.
template <class QualTRef, class... Args>
explicit CoreImpl(absl::in_place_type_t<QualTRef>, Args&&... args) {
InitializeStorage<QualTRef>(std::forward<Args>(args)...);
}
CoreImpl(CoreImpl&& other) noexcept {
other.manager_(FunctionToCall::relocate_from_to, &other.state_, &state_);
manager_ = other.manager_;
invoker_ = other.invoker_;
other.manager_ = EmptyManager;
other.invoker_ = nullptr;
}
CoreImpl& operator=(CoreImpl&& other) noexcept {
// Put the left-hand operand in an empty state.
//
// Note: A full reset that leaves us with an object that has its invariants
// intact is necessary in order to handle self-move. This is required by
// types that are used with certain operations of the standard library, such
// as the default definition of std::swap when both operands target the same
// object.
Clear();
// Perform the actual move/destroy operation on the target function.
other.manager_(FunctionToCall::relocate_from_to, &other.state_, &state_);
manager_ = other.manager_;
invoker_ = other.invoker_;
other.manager_ = EmptyManager;
other.invoker_ = nullptr;
return *this;
}
~CoreImpl() { manager_(FunctionToCall::dispose, &state_, &state_); }
// Check whether or not the AnyInvocable is in the empty state.
bool HasValue() const { return invoker_ != nullptr; }
// Effects: Puts the object into its empty state.
void Clear() {
manager_(FunctionToCall::dispose, &state_, &state_);
manager_ = EmptyManager;
invoker_ = nullptr;
}
template <TargetType target_type, class QualDecayedTRef, class F,
absl::enable_if_t<target_type == TargetType::kPointer, int> = 0>
void Initialize(F&& f) {
// This condition handles types that decay into pointers, which includes
// function references. Since function references cannot be null, GCC warns
// against comparing their decayed form with nullptr.
// Since this is template-heavy code, we prefer to disable these warnings
// locally instead of adding yet another overload of this function.
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wpragmas"
#pragma GCC diagnostic ignored "-Waddress"
#pragma GCC diagnostic ignored "-Wnonnull-compare"
#endif
if (static_cast<RemoveCVRef<QualDecayedTRef>>(f) == nullptr) {
#if !defined(__clang__) && defined(__GNUC__)
#pragma GCC diagnostic pop
#endif
manager_ = EmptyManager;
invoker_ = nullptr;
return;
}
InitializeStorage<QualDecayedTRef>(std::forward<F>(f));
}
template <TargetType target_type, class QualDecayedTRef, class F,
absl::enable_if_t<
target_type == TargetType::kCompatibleAnyInvocable, int> = 0>
void Initialize(F&& f) {
// In this case we can "steal the guts" of the other AnyInvocable.
f.manager_(FunctionToCall::relocate_from_to, &f.state_, &state_);
manager_ = f.manager_;
invoker_ = f.invoker_;
f.manager_ = EmptyManager;
f.invoker_ = nullptr;
}
template <TargetType target_type, class QualDecayedTRef, class F,
absl::enable_if_t<
target_type == TargetType::kIncompatibleAnyInvocable, int> = 0>
void Initialize(F&& f) {
if (f.HasValue()) {
InitializeStorage<QualDecayedTRef>(std::forward<F>(f));
} else {
manager_ = EmptyManager;
invoker_ = nullptr;
}
}
template <TargetType target_type, class QualDecayedTRef, class F,
typename = absl::enable_if_t<target_type == TargetType::kOther>>
void Initialize(F&& f) {
InitializeStorage<QualDecayedTRef>(std::forward<F>(f));
}
// Use local (inline) storage for applicable target object types.
template <class QualTRef, class... Args,
typename = absl::enable_if_t<
IsStoredLocally<RemoveCVRef<QualTRef>>::value>>
void InitializeStorage(Args&&... args) {
using RawT = RemoveCVRef<QualTRef>;
::new (static_cast<void*>(&state_.storage))
RawT(std::forward<Args>(args)...);
invoker_ = LocalInvoker<SigIsNoexcept, ReturnType, QualTRef, P...>;
// We can simplify our manager if we know the type is trivially copyable.
InitializeLocalManager<RawT>();
}
// Use remote storage for target objects that cannot be stored locally.
template <class QualTRef, class... Args,
absl::enable_if_t<!IsStoredLocally<RemoveCVRef<QualTRef>>::value,
int> = 0>
void InitializeStorage(Args&&... args) {
InitializeRemoteManager<RemoveCVRef<QualTRef>>(std::forward<Args>(args)...);
// This is set after everything else in case an exception is thrown in an
// earlier step of the initialization.
invoker_ = RemoteInvoker<SigIsNoexcept, ReturnType, QualTRef, P...>;
}
template <class T,
typename = absl::enable_if_t<std::is_trivially_copyable<T>::value>>
void InitializeLocalManager() {
manager_ = LocalManagerTrivial;
}
template <class T,
absl::enable_if_t<!std::is_trivially_copyable<T>::value, int> = 0>
void InitializeLocalManager() {
manager_ = LocalManagerNontrivial<T>;
}
template <class T>
using HasTrivialRemoteStorage =
std::integral_constant<bool, std::is_trivially_destructible<T>::value &&
alignof(T) <=
ABSL_INTERNAL_DEFAULT_NEW_ALIGNMENT>;
template <class T, class... Args,
typename = absl::enable_if_t<HasTrivialRemoteStorage<T>::value>>
void InitializeRemoteManager(Args&&... args) {
// unique_ptr is used for exception-safety in case construction throws.
std::unique_ptr<void, TrivialDeleter> uninitialized_target(
::operator new(sizeof(T)), TrivialDeleter(sizeof(T)));
::new (uninitialized_target.get()) T(std::forward<Args>(args)...);
state_.remote.target = uninitialized_target.release();
state_.remote.size = sizeof(T);
manager_ = RemoteManagerTrivial;
}
template <class T, class... Args,
absl::enable_if_t<!HasTrivialRemoteStorage<T>::value, int> = 0>
void InitializeRemoteManager(Args&&... args) {
state_.remote.target = ::new T(std::forward<Args>(args)...);
manager_ = RemoteManagerNontrivial<T>;
}
//////////////////////////////////////////////////////////////////////////////
//
// Type trait to determine if the template argument is an AnyInvocable whose
// function type is compatible enough with ours such that we can
// "move the guts" out of it when moving, rather than having to place a new
// object into remote storage.
template <typename Other>
struct IsCompatibleAnyInvocable {
static constexpr bool value = false;
};
template <typename Sig>
struct IsCompatibleAnyInvocable<AnyInvocable<Sig>> {
static constexpr bool value =
(IsCompatibleConversion)(static_cast<
typename AnyInvocable<Sig>::CoreImpl*>(
nullptr),
static_cast<CoreImpl*>(nullptr));
};
//
//////////////////////////////////////////////////////////////////////////////
TypeErasedState state_;
ManagerType* manager_;
InvokerType<SigIsNoexcept, ReturnType, P...>* invoker_;
};
// A constructor name-tag used with Impl to request the
// conversion-constructor
struct ConversionConstruct {};
////////////////////////////////////////////////////////////////////////////////
//
// A metafunction that is normally an identity metafunction except that when
// given a std::reference_wrapper<T>, it yields T&. This is necessary because
// currently std::reference_wrapper's operator() is not conditionally noexcept,
// so when checking if such an Invocable is nothrow-invocable, we must pull out
// the underlying type.
template <class T>
struct UnwrapStdReferenceWrapperImpl {
using type = T;
};
template <class T>
struct UnwrapStdReferenceWrapperImpl<std::reference_wrapper<T>> {
using type = T&;
};
template <class T>
using UnwrapStdReferenceWrapper =
typename UnwrapStdReferenceWrapperImpl<T>::type;
//
////////////////////////////////////////////////////////////////////////////////
// An alias that always yields std::true_type (used with constraints) where
// substitution failures happen when forming the template arguments.
template <class... T>
using TrueAlias =
std::integral_constant<bool, sizeof(absl::void_t<T...>*) != 0>;
/*SFINAE constraints for the conversion-constructor.*/
template <class Sig, class F,
class = absl::enable_if_t<
!std::is_same<RemoveCVRef<F>, AnyInvocable<Sig>>::value>>
using CanConvert = TrueAlias<
absl::enable_if_t<!IsInPlaceType<RemoveCVRef<F>>::value>,
absl::enable_if_t<Impl<Sig>::template CallIsValid<F>::value>,
absl::enable_if_t<
Impl<Sig>::template CallIsNoexceptIfSigIsNoexcept<F>::value>,
absl::enable_if_t<std::is_constructible<absl::decay_t<F>, F>::value>>;
/*SFINAE constraints for the std::in_place constructors.*/
template <class Sig, class F, class... Args>
using CanEmplace = TrueAlias<
absl::enable_if_t<Impl<Sig>::template CallIsValid<F>::value>,
absl::enable_if_t<
Impl<Sig>::template CallIsNoexceptIfSigIsNoexcept<F>::value>,
absl::enable_if_t<std::is_constructible<absl::decay_t<F>, Args...>::value>>;
/*SFINAE constraints for the conversion-assign operator.*/
template <class Sig, class F,
class = absl::enable_if_t<
!std::is_same<RemoveCVRef<F>, AnyInvocable<Sig>>::value>>
using CanAssign = TrueAlias<
absl::enable_if_t<Impl<Sig>::template CallIsValid<F>::value>,
absl::enable_if_t<
Impl<Sig>::template CallIsNoexceptIfSigIsNoexcept<F>::value>,
absl::enable_if_t<std::is_constructible<absl::decay_t<F>, F>::value>>;
/*SFINAE constraints for the reference-wrapper conversion-assign operator.*/
template <class Sig, class F>
using CanAssignReferenceWrapper = TrueAlias<
absl::enable_if_t<
Impl<Sig>::template CallIsValid<std::reference_wrapper<F>>::value>,
absl::enable_if_t<Impl<Sig>::template CallIsNoexceptIfSigIsNoexcept<
std::reference_wrapper<F>>::value>>;
////////////////////////////////////////////////////////////////////////////////
//
// The constraint for checking whether or not a call meets the noexcept
// callability requirements. This is a preprocessor macro because specifying it
// this way as opposed to a disjunction/branch can improve the user-side error
// messages and avoids an instantiation of std::is_nothrow_invocable_r in the
// cases where the user did not specify a noexcept function type.
//
#define ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT(inv_quals, noex) \
ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT_##noex(inv_quals)
// The disjunction below is because we can't rely on std::is_nothrow_invocable_r
// to give the right result when ReturnType is non-moveable in toolchains that
// don't treat non-moveable result types correctly. For example this was the
// case in libc++ before commit c3a24882 (2022-05).
#define ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT_true(inv_quals) \
absl::enable_if_t<absl::disjunction< \
std::is_nothrow_invocable_r< \
ReturnType, UnwrapStdReferenceWrapper<absl::decay_t<F>> inv_quals, \
P...>, \
std::conjunction< \
std::is_nothrow_invocable< \
UnwrapStdReferenceWrapper<absl::decay_t<F>> inv_quals, P...>, \
std::is_same< \
ReturnType, \
absl::base_internal::invoke_result_t< \
UnwrapStdReferenceWrapper<absl::decay_t<F>> inv_quals, \
P...>>>>::value>
#define ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT_false(inv_quals)
//
////////////////////////////////////////////////////////////////////////////////
// A macro to generate partial specializations of Impl with the different
// combinations of supported cv/reference qualifiers and noexcept specifier.
//
// Here, `cv` are the cv-qualifiers if any, `ref` is the ref-qualifier if any,
// inv_quals is the reference type to be used when invoking the target, and
// noex is "true" if the function type is noexcept, or false if it is not.
//
// The CallIsValid condition is more complicated than simply using
// absl::base_internal::is_invocable_r because we can't rely on it to give the
// right result when ReturnType is non-moveable in toolchains that don't treat
// non-moveable result types correctly. For example this was the case in libc++
// before commit c3a24882 (2022-05).
#define ABSL_INTERNAL_ANY_INVOCABLE_IMPL_(cv, ref, inv_quals, noex) \
template <class ReturnType, class... P> \
class Impl<ReturnType(P...) cv ref ABSL_INTERNAL_NOEXCEPT_SPEC(noex)> \
: public CoreImpl<noex, ReturnType, P...> { \
public: \
/*The base class, which contains the datamembers and core operations*/ \
using Core = CoreImpl<noex, ReturnType, P...>; \
\
/*SFINAE constraint to check if F is invocable with the proper signature*/ \
template <class F> \
using CallIsValid = TrueAlias<absl::enable_if_t<absl::disjunction< \
absl::base_internal::is_invocable_r<ReturnType, \
absl::decay_t<F> inv_quals, P...>, \
std::is_same<ReturnType, \
absl::base_internal::invoke_result_t< \
absl::decay_t<F> inv_quals, P...>>>::value>>; \
\
/*SFINAE constraint to check if F is nothrow-invocable when necessary*/ \
template <class F> \
using CallIsNoexceptIfSigIsNoexcept = \
TrueAlias<ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT(inv_quals, \
noex)>; \
\
/*Put the AnyInvocable into an empty state.*/ \
Impl() = default; \
\
/*The implementation of a conversion-constructor from "f*/ \
/*This forwards to Core, attaching inv_quals so that the base class*/ \
/*knows how to properly type-erase the invocation.*/ \
template <class F> \
explicit Impl(ConversionConstruct, F&& f) \
: Core(TypedConversionConstruct< \
typename std::decay<F>::type inv_quals>(), \
std::forward<F>(f)) {} \
\
/*Forward along the in-place construction parameters.*/ \
template <class T, class... Args> \
explicit Impl(absl::in_place_type_t<T>, Args&&... args) \
: Core(absl::in_place_type<absl::decay_t<T> inv_quals>, \
std::forward<Args>(args)...) {} \
\
/*Raises a fatal error when the AnyInvocable is invoked after a move*/ \
static ReturnType InvokedAfterMove( \
TypeErasedState*, \
ForwardedParameterType<P>...) noexcept(noex) { \
ABSL_HARDENING_ASSERT(false && "AnyInvocable use-after-move"); \
std::terminate(); \
} \
\
InvokerType<noex, ReturnType, P...>* ExtractInvoker() cv { \
using QualifiedTestType = int cv ref; \
auto* invoker = this->invoker_; \
if (!std::is_const<QualifiedTestType>::value && \
std::is_rvalue_reference<QualifiedTestType>::value) { \
ABSL_ASSERT([this]() { \
/* We checked that this isn't const above, so const_cast is safe */ \
const_cast<Impl*>(this)->invoker_ = InvokedAfterMove; \
return this->HasValue(); \
}()); \
} \
return invoker; \
} \
\
/*The actual invocation operation with the proper signature*/ \
ReturnType operator()(P... args) cv ref noexcept(noex) { \
assert(this->invoker_ != nullptr); \
return this->ExtractInvoker()( \
const_cast<TypeErasedState*>(&this->state_), \
static_cast<ForwardedParameterType<P>>(args)...); \
} \
}
// Define the `noexcept(true)` specialization only for C++17 and beyond, when
// `noexcept` is part of the type system.
#if ABSL_INTERNAL_CPLUSPLUS_LANG >= 201703L
// A convenience macro that defines specializations for the noexcept(true) and
// noexcept(false) forms, given the other properties.
#define ABSL_INTERNAL_ANY_INVOCABLE_IMPL(cv, ref, inv_quals) \
ABSL_INTERNAL_ANY_INVOCABLE_IMPL_(cv, ref, inv_quals, false); \
ABSL_INTERNAL_ANY_INVOCABLE_IMPL_(cv, ref, inv_quals, true)
#else
#define ABSL_INTERNAL_ANY_INVOCABLE_IMPL(cv, ref, inv_quals) \
ABSL_INTERNAL_ANY_INVOCABLE_IMPL_(cv, ref, inv_quals, false)
#endif
// Non-ref-qualified partial specializations
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(, , &);
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(const, , const&);
// Lvalue-ref-qualified partial specializations
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(, &, &);
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(const, &, const&);
// Rvalue-ref-qualified partial specializations
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(, &&, &&);
ABSL_INTERNAL_ANY_INVOCABLE_IMPL(const, &&, const&&);
// Undef the detail-only macros.
#undef ABSL_INTERNAL_ANY_INVOCABLE_IMPL
#undef ABSL_INTERNAL_ANY_INVOCABLE_IMPL_
#undef ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT_false
#undef ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT_true
#undef ABSL_INTERNAL_ANY_INVOCABLE_NOEXCEPT_CONSTRAINT
#undef ABSL_INTERNAL_NOEXCEPT_SPEC
} // namespace internal_any_invocable
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_FUNCTIONAL_INTERNAL_ANY_INVOCABLE_H_
|