1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
// Benchmarks for absl random distributions as well as a selection of the
// C++ standard library random distributions.
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <initializer_list>
#include <iterator>
#include <limits>
#include <random>
#include <type_traits>
#include <vector>
#include "absl/base/macros.h"
#include "absl/meta/type_traits.h"
#include "absl/random/bernoulli_distribution.h"
#include "absl/random/beta_distribution.h"
#include "absl/random/exponential_distribution.h"
#include "absl/random/gaussian_distribution.h"
#include "absl/random/internal/fast_uniform_bits.h"
#include "absl/random/internal/randen_engine.h"
#include "absl/random/log_uniform_int_distribution.h"
#include "absl/random/poisson_distribution.h"
#include "absl/random/random.h"
#include "absl/random/uniform_int_distribution.h"
#include "absl/random/uniform_real_distribution.h"
#include "absl/random/zipf_distribution.h"
#include "benchmark/benchmark.h"
namespace {
// Seed data to avoid reading random_device() for benchmarks.
uint32_t kSeedData[] = {
0x1B510052, 0x9A532915, 0xD60F573F, 0xBC9BC6E4, 0x2B60A476, 0x81E67400,
0x08BA6FB5, 0x571BE91F, 0xF296EC6B, 0x2A0DD915, 0xB6636521, 0xE7B9F9B6,
0xFF34052E, 0xC5855664, 0x53B02D5D, 0xA99F8FA1, 0x08BA4799, 0x6E85076A,
0x4B7A70E9, 0xB5B32944, 0xDB75092E, 0xC4192623, 0xAD6EA6B0, 0x49A7DF7D,
0x9CEE60B8, 0x8FEDB266, 0xECAA8C71, 0x699A18FF, 0x5664526C, 0xC2B19EE1,
0x193602A5, 0x75094C29, 0xA0591340, 0xE4183A3E, 0x3F54989A, 0x5B429D65,
0x6B8FE4D6, 0x99F73FD6, 0xA1D29C07, 0xEFE830F5, 0x4D2D38E6, 0xF0255DC1,
0x4CDD2086, 0x8470EB26, 0x6382E9C6, 0x021ECC5E, 0x09686B3F, 0x3EBAEFC9,
0x3C971814, 0x6B6A70A1, 0x687F3584, 0x52A0E286, 0x13198A2E, 0x03707344,
};
// PrecompiledSeedSeq provides kSeedData to a conforming
// random engine to speed initialization in the benchmarks.
class PrecompiledSeedSeq {
public:
using result_type = uint32_t;
PrecompiledSeedSeq() = default;
template <typename Iterator>
PrecompiledSeedSeq(Iterator begin, Iterator end) {}
template <typename T>
PrecompiledSeedSeq(std::initializer_list<T> il) {}
template <typename OutIterator>
void generate(OutIterator begin, OutIterator end) {
static size_t idx = 0;
for (; begin != end; begin++) {
*begin = kSeedData[idx++];
if (idx >= ABSL_ARRAYSIZE(kSeedData)) {
idx = 0;
}
}
}
size_t size() const { return ABSL_ARRAYSIZE(kSeedData); }
template <typename OutIterator>
void param(OutIterator out) const {
std::copy(std::begin(kSeedData), std::end(kSeedData), out);
}
};
// use_default_initialization<T> indicates whether the random engine
// T must be default initialized, or whether we may initialize it using
// a seed sequence. This is used because some engines do not accept seed
// sequence-based initialization.
template <typename E>
using use_default_initialization = std::false_type;
// make_engine<T, SSeq> returns a random_engine which is initialized,
// either via the default constructor, when use_default_initialization<T>
// is true, or via the indicated seed sequence, SSeq.
template <typename Engine, typename SSeq = PrecompiledSeedSeq>
typename absl::enable_if_t<!use_default_initialization<Engine>::value, Engine>
make_engine() {
// Initialize the random engine using the seed sequence SSeq, which
// is constructed from the precompiled seed data.
SSeq seq(std::begin(kSeedData), std::end(kSeedData));
return Engine(seq);
}
template <typename Engine, typename SSeq = PrecompiledSeedSeq>
typename absl::enable_if_t<use_default_initialization<Engine>::value, Engine>
make_engine() {
// Initialize the random engine using the default constructor.
return Engine();
}
template <typename Engine, typename SSeq>
void BM_Construct(benchmark::State& state) {
for (auto _ : state) {
auto rng = make_engine<Engine, SSeq>();
benchmark::DoNotOptimize(rng());
}
}
template <typename Engine>
void BM_Direct(benchmark::State& state) {
using value_type = typename Engine::result_type;
// Direct use of the URBG.
auto rng = make_engine<Engine>();
for (auto _ : state) {
benchmark::DoNotOptimize(rng());
}
state.SetBytesProcessed(sizeof(value_type) * state.iterations());
}
template <typename Engine>
void BM_Generate(benchmark::State& state) {
// std::generate makes a copy of the RNG; thus this tests the
// copy-constructor efficiency.
using value_type = typename Engine::result_type;
std::vector<value_type> v(64);
auto rng = make_engine<Engine>();
while (state.KeepRunningBatch(64)) {
std::generate(std::begin(v), std::end(v), rng);
}
}
template <typename Engine, size_t elems>
void BM_Shuffle(benchmark::State& state) {
// Direct use of the Engine.
std::vector<uint32_t> v(elems);
while (state.KeepRunningBatch(elems)) {
auto rng = make_engine<Engine>();
std::shuffle(std::begin(v), std::end(v), rng);
}
}
template <typename Engine, size_t elems>
void BM_ShuffleReuse(benchmark::State& state) {
// Direct use of the Engine.
std::vector<uint32_t> v(elems);
auto rng = make_engine<Engine>();
while (state.KeepRunningBatch(elems)) {
std::shuffle(std::begin(v), std::end(v), rng);
}
}
template <typename Engine, typename Dist, typename... Args>
void BM_Dist(benchmark::State& state, Args&&... args) {
using value_type = typename Dist::result_type;
auto rng = make_engine<Engine>();
Dist dis{std::forward<Args>(args)...};
// Compare the following loop performance:
for (auto _ : state) {
benchmark::DoNotOptimize(dis(rng));
}
state.SetBytesProcessed(sizeof(value_type) * state.iterations());
}
template <typename Engine, typename Dist>
void BM_Large(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile value_type kMin = 0;
volatile value_type kMax = std::numeric_limits<value_type>::max() / 2 + 1;
BM_Dist<Engine, Dist>(state, kMin, kMax);
}
template <typename Engine, typename Dist>
void BM_Small(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile value_type kMin = 0;
volatile value_type kMax = std::numeric_limits<value_type>::max() / 64 + 1;
BM_Dist<Engine, Dist>(state, kMin, kMax);
}
template <typename Engine, typename Dist, int A>
void BM_Bernoulli(benchmark::State& state) {
volatile double a = static_cast<double>(A) / 1000000;
BM_Dist<Engine, Dist>(state, a);
}
template <typename Engine, typename Dist, int A, int B>
void BM_Beta(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile value_type a = static_cast<value_type>(A) / 100;
volatile value_type b = static_cast<value_type>(B) / 100;
BM_Dist<Engine, Dist>(state, a, b);
}
template <typename Engine, typename Dist, int A>
void BM_Gamma(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile value_type a = static_cast<value_type>(A) / 100;
BM_Dist<Engine, Dist>(state, a);
}
template <typename Engine, typename Dist, int A = 100>
void BM_Poisson(benchmark::State& state) {
volatile double a = static_cast<double>(A) / 100;
BM_Dist<Engine, Dist>(state, a);
}
template <typename Engine, typename Dist, int Q = 2, int V = 1>
void BM_Zipf(benchmark::State& state) {
using value_type = typename Dist::result_type;
volatile double q = Q;
volatile double v = V;
BM_Dist<Engine, Dist>(state, std::numeric_limits<value_type>::max(), q, v);
}
template <typename Engine, typename Dist>
void BM_Thread(benchmark::State& state) {
using value_type = typename Dist::result_type;
auto rng = make_engine<Engine>();
Dist dis{};
for (auto _ : state) {
benchmark::DoNotOptimize(dis(rng));
}
state.SetBytesProcessed(sizeof(value_type) * state.iterations());
}
// NOTES:
//
// std::geometric_distribution is similar to the zipf distributions.
// The algorithm for the geometric_distribution is, basically,
// floor(log(1-X) / log(1-p))
// Normal benchmark suite
#define BM_BASIC(Engine) \
BENCHMARK_TEMPLATE(BM_Construct, Engine, PrecompiledSeedSeq); \
BENCHMARK_TEMPLATE(BM_Construct, Engine, std::seed_seq); \
BENCHMARK_TEMPLATE(BM_Direct, Engine); \
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 10); \
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100); \
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000); \
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100); \
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::random_internal::FastUniformBits<uint32_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::random_internal::FastUniformBits<uint64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Large, Engine, \
std::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Large, Engine, \
std::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Large, Engine, \
absl::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Large, Engine, \
absl::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<float>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::uniform_real_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<float>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::uniform_real_distribution<double>)
#define BM_COPY(Engine) BENCHMARK_TEMPLATE(BM_Generate, Engine)
#define BM_THREAD(Engine) \
BENCHMARK_TEMPLATE(BM_Thread, Engine, \
absl::uniform_int_distribution<int64_t>) \
->ThreadPerCpu(); \
BENCHMARK_TEMPLATE(BM_Thread, Engine, \
absl::uniform_real_distribution<double>) \
->ThreadPerCpu(); \
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 100)->ThreadPerCpu(); \
BENCHMARK_TEMPLATE(BM_Shuffle, Engine, 1000)->ThreadPerCpu(); \
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 100)->ThreadPerCpu(); \
BENCHMARK_TEMPLATE(BM_ShuffleReuse, Engine, 1000)->ThreadPerCpu();
#define BM_EXTENDED(Engine) \
/* -------------- Extended Uniform -----------------------*/ \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
std::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
std::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
absl::uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
absl::uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, std::uniform_real_distribution<float>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
std::uniform_real_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
absl::uniform_real_distribution<float>); \
BENCHMARK_TEMPLATE(BM_Small, Engine, \
absl::uniform_real_distribution<double>); \
/* -------------- Other -----------------------*/ \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::normal_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::gaussian_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::exponential_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, absl::exponential_distribution<double>); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
100); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
100); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
10 * 100); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
10 * 100); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, std::poisson_distribution<int64_t>, \
13 * 100); \
BENCHMARK_TEMPLATE(BM_Poisson, Engine, absl::poisson_distribution<int64_t>, \
13 * 100); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::log_uniform_int_distribution<int32_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, \
absl::log_uniform_int_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Dist, Engine, std::geometric_distribution<int64_t>); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>); \
BENCHMARK_TEMPLATE(BM_Zipf, Engine, absl::zipf_distribution<uint64_t>, 2, \
3); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, std::bernoulli_distribution, \
257305); \
BENCHMARK_TEMPLATE(BM_Bernoulli, Engine, absl::bernoulli_distribution, \
257305); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 65, \
41); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 99, \
330); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 150, \
150); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<double>, 410, \
580); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 65, 41); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 99, \
330); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 150, \
150); \
BENCHMARK_TEMPLATE(BM_Beta, Engine, absl::beta_distribution<float>, 410, \
580); \
BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<float>, 199); \
BENCHMARK_TEMPLATE(BM_Gamma, Engine, std::gamma_distribution<double>, 199);
// ABSL Recommended interfaces.
BM_BASIC(absl::InsecureBitGen); // === pcg64_2018_engine
BM_BASIC(absl::BitGen); // === randen_engine<uint64_t>.
BM_THREAD(absl::BitGen);
BM_EXTENDED(absl::BitGen);
// Instantiate benchmarks for multiple engines.
using randen_engine_64 = absl::random_internal::randen_engine<uint64_t>;
using randen_engine_32 = absl::random_internal::randen_engine<uint32_t>;
// Comparison interfaces.
BM_BASIC(std::mt19937_64);
BM_COPY(std::mt19937_64);
BM_EXTENDED(std::mt19937_64);
BM_BASIC(randen_engine_64);
BM_COPY(randen_engine_64);
BM_EXTENDED(randen_engine_64);
BM_BASIC(std::mt19937);
BM_COPY(std::mt19937);
BM_BASIC(randen_engine_32);
BM_COPY(randen_engine_32);
} // namespace
|