1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/bernoulli_distribution.h"
#include <cmath>
#include <cstddef>
#include <random>
#include <sstream>
#include <utility>
#include "gtest/gtest.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
namespace {
class BernoulliTest : public testing::TestWithParam<std::pair<double, size_t>> {
};
TEST_P(BernoulliTest, Serialize) {
const double d = GetParam().first;
absl::bernoulli_distribution before(d);
{
absl::bernoulli_distribution via_param{
absl::bernoulli_distribution::param_type(d)};
EXPECT_EQ(via_param, before);
}
std::stringstream ss;
ss << before;
absl::bernoulli_distribution after(0.6789);
EXPECT_NE(before.p(), after.p());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.p(), after.p());
EXPECT_EQ(before.param(), after.param());
EXPECT_EQ(before, after);
}
TEST_P(BernoulliTest, Accuracy) {
// Sadly, the claim to fame for this implementation is precise accuracy, which
// is very, very hard to measure, the improvements come as trials approach the
// limit of double accuracy; thus the outcome differs from the
// std::bernoulli_distribution with a probability of approximately 1 in 2^-53.
const std::pair<double, size_t> para = GetParam();
size_t trials = para.second;
double p = para.first;
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
size_t yes = 0;
absl::bernoulli_distribution dist(p);
for (size_t i = 0; i < trials; ++i) {
if (dist(rng)) yes++;
}
// Compute the distribution parameters for a binomial test, using a normal
// approximation for the confidence interval, as there are a sufficiently
// large number of trials that the central limit theorem applies.
const double stddev_p = std::sqrt((p * (1.0 - p)) / trials);
const double expected = trials * p;
const double stddev = trials * stddev_p;
// 5 sigma, approved by Richard Feynman
EXPECT_NEAR(yes, expected, 5 * stddev)
<< "@" << p << ", "
<< std::abs(static_cast<double>(yes) - expected) / stddev << " stddev";
}
// There must be many more trials to make the mean approximately normal for `p`
// closes to 0 or 1.
INSTANTIATE_TEST_SUITE_P(
All, BernoulliTest,
::testing::Values(
// Typical values.
std::make_pair(0, 30000), std::make_pair(1e-3, 30000000),
std::make_pair(0.1, 3000000), std::make_pair(0.5, 3000000),
std::make_pair(0.9, 30000000), std::make_pair(0.999, 30000000),
std::make_pair(1, 30000),
// Boundary cases.
std::make_pair(std::nextafter(1.0, 0.0), 1), // ~1 - epsilon
std::make_pair(std::numeric_limits<double>::epsilon(), 1),
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
1.0), // min + epsilon
1),
std::make_pair(std::numeric_limits<double>::min(), // smallest normal
1),
std::make_pair(
std::numeric_limits<double>::denorm_min(), // smallest denorm
1),
std::make_pair(std::numeric_limits<double>::min() / 2, 1), // denorm
std::make_pair(std::nextafter(std::numeric_limits<double>::min(),
0.0), // denorm_max
1)));
// NOTE: absl::bernoulli_distribution is not guaranteed to be stable.
TEST(BernoulliTest, StabilityTest) {
// absl::bernoulli_distribution stability relies on FastUniformBits and
// integer arithmetic.
absl::random_internal::sequence_urbg urbg({
0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull,
0x4864f22c059bf29eull, 0x247856d8b862665cull, 0xe46e86e9a1337e10ull,
0xd8c8541f3519b133ull, 0xe75b5162c567b9e4ull, 0xf732e5ded7009c5bull,
0xb170b98353121eacull, 0x1ec2e8986d2362caull, 0x814c8e35fe9a961aull,
0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull, 0x1224e62c978bbc7full,
0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull, 0x1bbc23cfa8fac721ull,
0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull, 0x836d794457c08849ull,
0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull, 0xb12d74fdd718c8c5ull,
0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull, 0x5738341045ba0d85ull,
0xe3fd722dc65ad09eull, 0x5a14fd21ea2a5705ull, 0x14e6ea4d6edb0c73ull,
0x275b0dc7e0a18acfull, 0x36cebe0d2653682eull, 0x0361e9b23861596bull,
});
// Generate a string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(36);
urbg.reset();
for (int i = 0; i < 35; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
const double kP = 0.0331289862362;
{
absl::bernoulli_distribution dist(kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000000000010000000000010000000000") << dist;
}
{
absl::bernoulli_distribution dist(kP * 10.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00000100010010010010000011000011010") << dist;
}
{
absl::bernoulli_distribution dist(kP * 20.0);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "00011110010110110011011111110111011") << dist;
}
{
absl::bernoulli_distribution dist(1.0 - kP);
auto v = generate(dist);
EXPECT_EQ(35, urbg.invocations());
EXPECT_EQ(v, "11111111111111111111011111111111111") << dist;
}
}
TEST(BernoulliTest, StabilityTest2) {
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
// Generate a string of '0' and '1' for the distribution output.
auto generate = [&urbg](absl::bernoulli_distribution& dist) {
std::string output;
output.reserve(13);
urbg.reset();
for (int i = 0; i < 12; i++) {
output.append(dist(urbg) ? "1" : "0");
}
return output;
};
constexpr double b0 = 1.0 / 13.0 / 0.2;
constexpr double b1 = 2.0 / 13.0 / 0.2;
constexpr double b3 = (5.0 / 13.0 / 0.2) - ((1 - b0) + (1 - b1) + (1 - b1));
{
absl::bernoulli_distribution dist(b0);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "000011100101") << dist;
}
{
absl::bernoulli_distribution dist(b1);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101101") << dist;
}
{
absl::bernoulli_distribution dist(b3);
auto v = generate(dist);
EXPECT_EQ(12, urbg.invocations());
EXPECT_EQ(v, "001111101111") << dist;
}
}
} // namespace
|