1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/beta_distribution.h"
#include <algorithm>
#include <cfloat>
#include <cstddef>
#include <cstdint>
#include <iterator>
#include <random>
#include <sstream>
#include <string>
#include <type_traits>
#include <unordered_map>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/log/log.h"
#include "absl/numeric/internal/representation.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/pcg_engine.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
template <typename IntType>
class BetaDistributionInterfaceTest : public ::testing::Test {};
constexpr bool ShouldExerciseLongDoubleTests() {
// long double arithmetic is not supported well by either GCC or Clang on
// most platforms specifically not when implemented in terms of double-double;
// see https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
// https://bugs.llvm.org/show_bug.cgi?id=49131, and
// https://bugs.llvm.org/show_bug.cgi?id=49132.
// So a conservative choice here is to disable long-double tests pretty much
// everywhere except on x64 but only if long double is not implemented as
// double-double.
#if defined(__i686__) && defined(__x86_64__)
return !absl::numeric_internal::IsDoubleDouble();
#else
return false;
#endif
}
using RealTypes = std::conditional<ShouldExerciseLongDoubleTests(),
::testing::Types<float, double, long double>,
::testing::Types<float, double>>::type;
TYPED_TEST_SUITE(BetaDistributionInterfaceTest, RealTypes);
TYPED_TEST(BetaDistributionInterfaceTest, SerializeTest) {
// The threshold for whether std::exp(1/a) is finite.
const TypeParam kSmallA =
1.0f / std::log((std::numeric_limits<TypeParam>::max)());
// The threshold for whether a * std::log(a) is finite.
const TypeParam kLargeA =
std::exp(std::log((std::numeric_limits<TypeParam>::max)()) -
std::log(std::log((std::numeric_limits<TypeParam>::max)())));
using param_type = typename absl::beta_distribution<TypeParam>::param_type;
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
const TypeParam kValues[] = {
TypeParam(1e-20), TypeParam(1e-12), TypeParam(1e-8), TypeParam(1e-4),
TypeParam(1e-3), TypeParam(0.1), TypeParam(0.25),
std::nextafter(TypeParam(0.5), TypeParam(0)), // 0.5 - epsilon
std::nextafter(TypeParam(0.5), TypeParam(1)), // 0.5 + epsilon
TypeParam(0.5), TypeParam(1.0), //
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
TypeParam(12.5), TypeParam(1e2), TypeParam(1e8), TypeParam(1e12),
TypeParam(1e20), //
kSmallA, //
std::nextafter(kSmallA, TypeParam(0)), //
std::nextafter(kSmallA, TypeParam(1)), //
kLargeA, //
std::nextafter(kLargeA, TypeParam(0)), //
std::nextafter(kLargeA, std::numeric_limits<TypeParam>::max()),
// Boundary cases.
std::numeric_limits<TypeParam>::max(),
std::numeric_limits<TypeParam>::epsilon(),
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(1)), // min + epsilon
std::numeric_limits<TypeParam>::min(), // smallest normal
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
std::numeric_limits<TypeParam>::min() / 2, // denorm
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(0)), // denorm_max
};
for (TypeParam alpha : kValues) {
for (TypeParam beta : kValues) {
LOG(INFO) << absl::StreamFormat("Smoke test for Beta(%a, %a)", alpha,
beta);
param_type param(alpha, beta);
absl::beta_distribution<TypeParam> before(alpha, beta);
EXPECT_EQ(before.alpha(), param.alpha());
EXPECT_EQ(before.beta(), param.beta());
{
absl::beta_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
EXPECT_EQ(via_param.param(), before.param());
}
// Smoke test.
for (int i = 0; i < kCount; ++i) {
auto sample = before(gen);
EXPECT_TRUE(std::isfinite(sample));
EXPECT_GE(sample, before.min());
EXPECT_LE(sample, before.max());
}
// Validate stream serialization.
std::stringstream ss;
ss << before;
absl::beta_distribution<TypeParam> after(3.8f, 1.43f);
EXPECT_NE(before.alpha(), after.alpha());
EXPECT_NE(before.beta(), after.beta());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.alpha(), after.alpha());
EXPECT_EQ(before.beta(), after.beta());
EXPECT_EQ(before, after) //
<< ss.str() << " " //
<< (ss.good() ? "good " : "") //
<< (ss.bad() ? "bad " : "") //
<< (ss.eof() ? "eof " : "") //
<< (ss.fail() ? "fail " : "");
}
}
}
TYPED_TEST(BetaDistributionInterfaceTest, DegenerateCases) {
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng(0x2B7E151628AED2A6);
// Extreme cases when the params are abnormal.
constexpr int kCount = 1000;
const TypeParam kSmallValues[] = {
std::numeric_limits<TypeParam>::min(),
std::numeric_limits<TypeParam>::denorm_min(),
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(0)), // denorm_max
std::numeric_limits<TypeParam>::epsilon(),
};
const TypeParam kLargeValues[] = {
std::numeric_limits<TypeParam>::max() * static_cast<TypeParam>(0.9999),
std::numeric_limits<TypeParam>::max() - 1,
std::numeric_limits<TypeParam>::max(),
};
{
// Small alpha and beta.
// Useful WolframAlpha plots:
// * plot InverseBetaRegularized[x, 0.0001, 0.0001] from 0.495 to 0.505
// * Beta[1.0, 0.0000001, 0.0000001]
// * Beta[0.9999, 0.0000001, 0.0000001]
for (TypeParam alpha : kSmallValues) {
for (TypeParam beta : kSmallValues) {
int zeros = 0;
int ones = 0;
absl::beta_distribution<TypeParam> d(alpha, beta);
for (int i = 0; i < kCount; ++i) {
TypeParam x = d(rng);
if (x == 0.0) {
zeros++;
} else if (x == 1.0) {
ones++;
}
}
EXPECT_EQ(ones + zeros, kCount);
if (alpha == beta) {
EXPECT_NE(ones, 0);
EXPECT_NE(zeros, 0);
}
}
}
}
{
// Small alpha, large beta.
// Useful WolframAlpha plots:
// * plot InverseBetaRegularized[x, 0.0001, 10000] from 0.995 to 1
// * Beta[0, 0.0000001, 1000000]
// * Beta[0.001, 0.0000001, 1000000]
// * Beta[1, 0.0000001, 1000000]
for (TypeParam alpha : kSmallValues) {
for (TypeParam beta : kLargeValues) {
absl::beta_distribution<TypeParam> d(alpha, beta);
for (int i = 0; i < kCount; ++i) {
EXPECT_EQ(d(rng), 0.0);
}
}
}
}
{
// Large alpha, small beta.
// Useful WolframAlpha plots:
// * plot InverseBetaRegularized[x, 10000, 0.0001] from 0 to 0.001
// * Beta[0.99, 1000000, 0.0000001]
// * Beta[1, 1000000, 0.0000001]
for (TypeParam alpha : kLargeValues) {
for (TypeParam beta : kSmallValues) {
absl::beta_distribution<TypeParam> d(alpha, beta);
for (int i = 0; i < kCount; ++i) {
EXPECT_EQ(d(rng), 1.0);
}
}
}
}
{
// Large alpha and beta.
absl::beta_distribution<TypeParam> d(std::numeric_limits<TypeParam>::max(),
std::numeric_limits<TypeParam>::max());
for (int i = 0; i < kCount; ++i) {
EXPECT_EQ(d(rng), 0.5);
}
}
{
// Large alpha and beta but unequal.
absl::beta_distribution<TypeParam> d(
std::numeric_limits<TypeParam>::max(),
std::numeric_limits<TypeParam>::max() * 0.9999);
for (int i = 0; i < kCount; ++i) {
TypeParam x = d(rng);
EXPECT_NE(x, 0.5f);
EXPECT_FLOAT_EQ(x, 0.500025f);
}
}
}
class BetaDistributionModel {
public:
explicit BetaDistributionModel(::testing::tuple<double, double> p)
: alpha_(::testing::get<0>(p)), beta_(::testing::get<1>(p)) {}
double Mean() const { return alpha_ / (alpha_ + beta_); }
double Variance() const {
return alpha_ * beta_ / (alpha_ + beta_ + 1) / (alpha_ + beta_) /
(alpha_ + beta_);
}
double Kurtosis() const {
return 3 + 6 *
((alpha_ - beta_) * (alpha_ - beta_) * (alpha_ + beta_ + 1) -
alpha_ * beta_ * (2 + alpha_ + beta_)) /
alpha_ / beta_ / (alpha_ + beta_ + 2) / (alpha_ + beta_ + 3);
}
protected:
const double alpha_;
const double beta_;
};
class BetaDistributionTest
: public ::testing::TestWithParam<::testing::tuple<double, double>>,
public BetaDistributionModel {
public:
BetaDistributionTest() : BetaDistributionModel(GetParam()) {}
protected:
template <class D>
bool SingleZTestOnMeanAndVariance(double p, size_t samples);
template <class D>
bool SingleChiSquaredTest(double p, size_t samples, size_t buckets);
absl::InsecureBitGen rng_;
};
template <class D>
bool BetaDistributionTest::SingleZTestOnMeanAndVariance(double p,
size_t samples) {
D dis(alpha_, beta_);
std::vector<double> data;
data.reserve(samples);
for (size_t i = 0; i < samples; i++) {
const double variate = dis(rng_);
EXPECT_FALSE(std::isnan(variate));
// Note that equality is allowed on both sides.
EXPECT_GE(variate, 0.0);
EXPECT_LE(variate, 1.0);
data.push_back(variate);
}
// We validate that the sample mean and sample variance are indeed from a
// Beta distribution with the given shape parameters.
const auto m = absl::random_internal::ComputeDistributionMoments(data);
// The variance of the sample mean is variance / n.
const double mean_stddev = std::sqrt(Variance() / static_cast<double>(m.n));
// The variance of the sample variance is (approximately):
// (kurtosis - 1) * variance^2 / n
const double variance_stddev = std::sqrt(
(Kurtosis() - 1) * Variance() * Variance() / static_cast<double>(m.n));
// z score for the sample variance.
const double z_variance = (m.variance - Variance()) / variance_stddev;
const double max_err = absl::random_internal::MaxErrorTolerance(p);
const double z_mean = absl::random_internal::ZScore(Mean(), m);
const bool pass =
absl::random_internal::Near("z", z_mean, 0.0, max_err) &&
absl::random_internal::Near("z_variance", z_variance, 0.0, max_err);
if (!pass) {
LOG(INFO) << "Beta(" << alpha_ << ", " << beta_ << "), mean: sample "
<< m.mean << ", expect " << Mean() << ", which is "
<< std::abs(m.mean - Mean()) / mean_stddev
<< " stddevs away, variance: sample " << m.variance << ", expect "
<< Variance() << ", which is "
<< std::abs(m.variance - Variance()) / variance_stddev
<< " stddevs away.";
}
return pass;
}
template <class D>
bool BetaDistributionTest::SingleChiSquaredTest(double p, size_t samples,
size_t buckets) {
constexpr double kErr = 1e-7;
std::vector<double> cutoffs, expected;
const double bucket_width = 1.0 / static_cast<double>(buckets);
int i = 1;
int unmerged_buckets = 0;
for (; i < buckets; ++i) {
const double p = bucket_width * static_cast<double>(i);
const double boundary =
absl::random_internal::BetaIncompleteInv(alpha_, beta_, p);
// The intention is to add `boundary` to the list of `cutoffs`. It becomes
// problematic, however, when the boundary values are not monotone, due to
// numerical issues when computing the inverse regularized incomplete
// Beta function. In these cases, we merge that bucket with its previous
// neighbor and merge their expected counts.
if ((cutoffs.empty() && boundary < kErr) ||
(!cutoffs.empty() && boundary <= cutoffs.back())) {
unmerged_buckets++;
continue;
}
if (boundary >= 1.0 - 1e-10) {
break;
}
cutoffs.push_back(boundary);
expected.push_back(static_cast<double>(1 + unmerged_buckets) *
bucket_width * static_cast<double>(samples));
unmerged_buckets = 0;
}
cutoffs.push_back(std::numeric_limits<double>::infinity());
// Merge all remaining buckets.
expected.push_back(static_cast<double>(buckets - i + 1) * bucket_width *
static_cast<double>(samples));
// Make sure that we don't merge all the buckets, making this test
// meaningless.
EXPECT_GE(cutoffs.size(), 3) << alpha_ << ", " << beta_;
D dis(alpha_, beta_);
std::vector<int32_t> counts(cutoffs.size(), 0);
for (int i = 0; i < samples; i++) {
const double x = dis(rng_);
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
counts[std::distance(cutoffs.begin(), it)]++;
}
// Null-hypothesis is that the distribution is beta distributed with the
// provided alpha, beta params (not estimated from the data).
const int dof = cutoffs.size() - 1;
const double chi_square = absl::random_internal::ChiSquare(
counts.begin(), counts.end(), expected.begin(), expected.end());
const bool pass =
(absl::random_internal::ChiSquarePValue(chi_square, dof) >= p);
if (!pass) {
for (size_t i = 0; i < cutoffs.size(); i++) {
LOG(INFO) << "cutoff[" << i << "] = " << cutoffs[i] << ", actual count "
<< counts[i] << ", expected " << static_cast<int>(expected[i]);
}
LOG(INFO) << "Beta(" << alpha_ << ", " << beta_ << ") "
<< absl::random_internal::kChiSquared << " " << chi_square
<< ", p = "
<< absl::random_internal::ChiSquarePValue(chi_square, dof);
}
return pass;
}
TEST_P(BetaDistributionTest, TestSampleStatistics) {
static constexpr int kRuns = 20;
static constexpr double kPFail = 0.02;
const double p =
absl::random_internal::RequiredSuccessProbability(kPFail, kRuns);
static constexpr int kSampleCount = 10000;
static constexpr int kBucketCount = 100;
int failed = 0;
for (int i = 0; i < kRuns; ++i) {
if (!SingleZTestOnMeanAndVariance<absl::beta_distribution<double>>(
p, kSampleCount)) {
failed++;
}
if (!SingleChiSquaredTest<absl::beta_distribution<double>>(
0.005, kSampleCount, kBucketCount)) {
failed++;
}
}
// Set so that the test is not flaky at --runs_per_test=10000
EXPECT_LE(failed, 5);
}
std::string ParamName(
const ::testing::TestParamInfo<::testing::tuple<double, double>>& info) {
std::string name = absl::StrCat("alpha_", ::testing::get<0>(info.param),
"__beta_", ::testing::get<1>(info.param));
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(
TestSampleStatisticsCombinations, BetaDistributionTest,
::testing::Combine(::testing::Values(0.1, 0.2, 0.9, 1.1, 2.5, 10.0, 123.4),
::testing::Values(0.1, 0.2, 0.9, 1.1, 2.5, 10.0, 123.4)),
ParamName);
INSTANTIATE_TEST_SUITE_P(
TestSampleStatistics_SelectedPairs, BetaDistributionTest,
::testing::Values(std::make_pair(0.5, 1000), std::make_pair(1000, 0.5),
std::make_pair(900, 1000), std::make_pair(10000, 20000),
std::make_pair(4e5, 2e7), std::make_pair(1e7, 1e5)),
ParamName);
// NOTE: absl::beta_distribution is not guaranteed to be stable.
TEST(BetaDistributionTest, StabilityTest) {
// absl::beta_distribution stability relies on the stability of
// absl::random_interna::RandU64ToDouble, std::exp, std::log, std::pow,
// and std::sqrt.
//
// This test also depends on the stability of std::frexp.
using testing::ElementsAre;
absl::random_internal::sequence_urbg urbg({
0xffff00000000e6c8ull, 0xffff0000000006c8ull, 0x800003766295CFA9ull,
0x11C819684E734A41ull, 0x832603766295CFA9ull, 0x7fbe76c8b4395800ull,
0xB3472DCA7B14A94Aull, 0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull,
0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull, 0x00035C904C70A239ull,
0x00009E0BCBAADE14ull, 0x0000000000622CA7ull, 0x4864f22c059bf29eull,
0x247856d8b862665cull, 0xe46e86e9a1337e10ull, 0xd8c8541f3519b133ull,
0xffe75b52c567b9e4ull, 0xfffff732e5709c5bull, 0xff1f7f0b983532acull,
0x1ec2e8986d2362caull, 0xC332DDEFBE6C5AA5ull, 0x6558218568AB9702ull,
0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull, 0xECDD4775619F1510ull,
0x814c8e35fe9a961aull, 0x0c3cd59c9b638a02ull, 0xcb3bb6478a07715cull,
0x1224e62c978bbc7full, 0x671ef2cb04e81f6eull, 0x3c1cbd811eaf1808ull,
0x1bbc23cfa8fac721ull, 0xa4c2cda65e596a51ull, 0xb77216fad37adf91ull,
0x836d794457c08849ull, 0xe083df03475f49d7ull, 0xbc9feb512e6b0d6cull,
0xb12d74fdd718c8c5ull, 0x12ff09653bfbe4caull, 0x8dd03a105bc4ee7eull,
0x5738341045ba0d85ull, 0xf3fd722dc65ad09eull, 0xfa14fd21ea2a5705ull,
0xffe6ea4d6edb0c73ull, 0xD07E9EFE2BF11FB4ull, 0x95DBDA4DAE909198ull,
0xEAAD8E716B93D5A0ull, 0xD08ED1D0AFC725E0ull, 0x8E3C5B2F8E7594B7ull,
0x8FF6E2FBF2122B64ull, 0x8888B812900DF01Cull, 0x4FAD5EA0688FC31Cull,
0xD1CFF191B3A8C1ADull, 0x2F2F2218BE0E1777ull, 0xEA752DFE8B021FA1ull,
});
// Convert the real-valued result into a unit64 where we compare
// 5 (float) or 10 (double) decimal digits plus the base-2 exponent.
auto float_to_u64 = [](float d) {
int exp = 0;
auto f = std::frexp(d, &exp);
return (static_cast<uint64_t>(1e5 * f) * 10000) + std::abs(exp);
};
auto double_to_u64 = [](double d) {
int exp = 0;
auto f = std::frexp(d, &exp);
return (static_cast<uint64_t>(1e10 * f) * 10000) + std::abs(exp);
};
std::vector<uint64_t> output(20);
{
// Algorithm Joehnk (float)
absl::beta_distribution<float> dist(0.1f, 0.2f);
std::generate(std::begin(output), std::end(output),
[&] { return float_to_u64(dist(urbg)); });
EXPECT_EQ(44, urbg.invocations());
EXPECT_THAT(output, //
testing::ElementsAre(
998340000, 619030004, 500000001, 999990000, 996280000,
500000001, 844740004, 847210001, 999970000, 872320000,
585480007, 933280000, 869080042, 647670031, 528240004,
969980004, 626050008, 915930002, 833440033, 878040015));
}
urbg.reset();
{
// Algorithm Joehnk (double)
absl::beta_distribution<double> dist(0.1, 0.2);
std::generate(std::begin(output), std::end(output),
[&] { return double_to_u64(dist(urbg)); });
EXPECT_EQ(44, urbg.invocations());
EXPECT_THAT(
output, //
testing::ElementsAre(
99834713000000, 61903356870004, 50000000000001, 99999721170000,
99628374770000, 99999999990000, 84474397860004, 84721276240001,
99997407490000, 87232528120000, 58548364780007, 93328932910000,
86908237770042, 64767917930031, 52824581970004, 96998544140004,
62605946270008, 91593604380002, 83345031740033, 87804397230015));
}
urbg.reset();
{
// Algorithm Cheng 1
absl::beta_distribution<double> dist(0.9, 2.0);
std::generate(std::begin(output), std::end(output),
[&] { return double_to_u64(dist(urbg)); });
EXPECT_EQ(62, urbg.invocations());
EXPECT_THAT(
output, //
testing::ElementsAre(
62069004780001, 64433204450001, 53607416560000, 89644295430008,
61434586310019, 55172615890002, 62187161490000, 56433684810003,
80454622050005, 86418558710003, 92920514700001, 64645184680001,
58549183380000, 84881283650005, 71078728590002, 69949694970000,
73157461710001, 68592191300001, 70747623900000, 78584696930005));
}
urbg.reset();
{
// Algorithm Cheng 2
absl::beta_distribution<double> dist(1.5, 2.5);
std::generate(std::begin(output), std::end(output),
[&] { return double_to_u64(dist(urbg)); });
EXPECT_EQ(54, urbg.invocations());
EXPECT_THAT(
output, //
testing::ElementsAre(
75000029250001, 76751482860001, 53264575220000, 69193133650005,
78028324470013, 91573587560002, 59167523770000, 60658618560002,
80075870540000, 94141320460004, 63196592770003, 78883906300002,
96797992590001, 76907587800001, 56645167560000, 65408302280003,
53401156320001, 64731238570000, 83065573750001, 79788333820001));
}
}
// This is an implementation-specific test. If any part of the implementation
// changes, then it is likely that this test will change as well. Also, if
// dependencies of the distribution change, such as RandU64ToDouble, then this
// is also likely to change.
TEST(BetaDistributionTest, AlgorithmBounds) {
#if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
// We're using an x87-compatible FPU, and intermediate operations are
// performed with 80-bit floats. This produces slightly different results from
// what we expect below.
GTEST_SKIP()
<< "Skipping the test because we detected x87 floating-point semantics";
#endif
{
absl::random_internal::sequence_urbg urbg(
{0x7fbe76c8b4395800ull, 0x8000000000000000ull});
// u=0.499, v=0.5
absl::beta_distribution<double> dist(1e-4, 1e-4);
double a = dist(urbg);
EXPECT_EQ(a, 2.0202860861567108529e-09);
EXPECT_EQ(2, urbg.invocations());
}
// Test that both the float & double algorithms appropriately reject the
// initial draw.
{
// 1/alpha = 1/beta = 2.
absl::beta_distribution<float> dist(0.5, 0.5);
// first two outputs are close to 1.0 - epsilon,
// thus: (u ^ 2 + v ^ 2) > 1.0
absl::random_internal::sequence_urbg urbg(
{0xffff00000006e6c8ull, 0xffff00000007c7c8ull, 0x800003766295CFA9ull,
0x11C819684E734A41ull});
{
double y = absl::beta_distribution<double>(0.5, 0.5)(urbg);
EXPECT_EQ(4, urbg.invocations());
EXPECT_EQ(y, 0.9810668952633862) << y;
}
// ...and: log(u) * a ~= log(v) * b ~= -0.02
// thus z ~= -0.02 + log(1 + e(~0))
// ~= -0.02 + 0.69
// thus z > 0
urbg.reset();
{
float x = absl::beta_distribution<float>(0.5, 0.5)(urbg);
EXPECT_EQ(4, urbg.invocations());
EXPECT_NEAR(0.98106688261032104, x, 0.0000005) << x << "f";
}
}
}
} // namespace
|