1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/distributions.h"
#include <cfloat>
#include <cmath>
#include <cstdint>
#include <random>
#include <vector>
#include "gtest/gtest.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/random.h"
namespace {
constexpr int kSize = 400000;
class RandomDistributionsTest : public testing::Test {};
struct Invalid {};
template <typename A, typename B>
auto InferredUniformReturnT(int)
-> decltype(absl::Uniform(std::declval<absl::InsecureBitGen&>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename>
Invalid InferredUniformReturnT(...);
template <typename TagType, typename A, typename B>
auto InferredTaggedUniformReturnT(int)
-> decltype(absl::Uniform(std::declval<TagType>(),
std::declval<absl::InsecureBitGen&>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename>
Invalid InferredTaggedUniformReturnT(...);
// Given types <A, B, Expect>, CheckArgsInferType() verifies that
//
// absl::Uniform(gen, A{}, B{})
//
// returns the type "Expect".
//
// This interface can also be used to assert that a given absl::Uniform()
// overload does not exist / will not compile. Given types <A, B>, the
// expression
//
// decltype(absl::Uniform(..., std::declval<A>(), std::declval<B>()))
//
// will not compile, leaving the definition of InferredUniformReturnT<A, B> to
// resolve (via SFINAE) to the overload which returns type "Invalid". This
// allows tests to assert that an invocation such as
//
// absl::Uniform(gen, 1.23f, std::numeric_limits<int>::max() - 1)
//
// should not compile, since neither type, float nor int, can precisely
// represent both endpoint-values. Writing:
//
// CheckArgsInferType<float, int, Invalid>()
//
// will assert that this overload does not exist.
template <typename A, typename B, typename Expect>
void CheckArgsInferType() {
static_assert(
absl::conjunction<
std::is_same<Expect, decltype(InferredUniformReturnT<A, B>(0))>,
std::is_same<Expect,
decltype(InferredUniformReturnT<B, A>(0))>>::value,
"");
static_assert(
absl::conjunction<
std::is_same<Expect, decltype(InferredTaggedUniformReturnT<
absl::IntervalOpenOpenTag, A, B>(0))>,
std::is_same<Expect,
decltype(InferredTaggedUniformReturnT<
absl::IntervalOpenOpenTag, B, A>(0))>>::value,
"");
}
template <typename A, typename B, typename ExplicitRet>
auto ExplicitUniformReturnT(int) -> decltype(
absl::Uniform<ExplicitRet>(*std::declval<absl::InsecureBitGen*>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename ExplicitRet>
Invalid ExplicitUniformReturnT(...);
template <typename TagType, typename A, typename B, typename ExplicitRet>
auto ExplicitTaggedUniformReturnT(int) -> decltype(absl::Uniform<ExplicitRet>(
std::declval<TagType>(), *std::declval<absl::InsecureBitGen*>(),
std::declval<A>(), std::declval<B>()));
template <typename, typename, typename, typename ExplicitRet>
Invalid ExplicitTaggedUniformReturnT(...);
// Given types <A, B, Expect>, CheckArgsReturnExpectedType() verifies that
//
// absl::Uniform<Expect>(gen, A{}, B{})
//
// returns the type "Expect", and that the function-overload has the signature
//
// Expect(URBG&, Expect, Expect)
template <typename A, typename B, typename Expect>
void CheckArgsReturnExpectedType() {
static_assert(
absl::conjunction<
std::is_same<Expect,
decltype(ExplicitUniformReturnT<A, B, Expect>(0))>,
std::is_same<Expect, decltype(ExplicitUniformReturnT<B, A, Expect>(
0))>>::value,
"");
static_assert(
absl::conjunction<
std::is_same<Expect,
decltype(ExplicitTaggedUniformReturnT<
absl::IntervalOpenOpenTag, A, B, Expect>(0))>,
std::is_same<Expect, decltype(ExplicitTaggedUniformReturnT<
absl::IntervalOpenOpenTag, B, A,
Expect>(0))>>::value,
"");
}
TEST_F(RandomDistributionsTest, UniformTypeInference) {
// Infers common types.
CheckArgsInferType<uint16_t, uint16_t, uint16_t>();
CheckArgsInferType<uint32_t, uint32_t, uint32_t>();
CheckArgsInferType<uint64_t, uint64_t, uint64_t>();
CheckArgsInferType<int16_t, int16_t, int16_t>();
CheckArgsInferType<int32_t, int32_t, int32_t>();
CheckArgsInferType<int64_t, int64_t, int64_t>();
CheckArgsInferType<float, float, float>();
CheckArgsInferType<double, double, double>();
// Explicitly-specified return-values override inferences.
CheckArgsReturnExpectedType<int16_t, int16_t, int32_t>();
CheckArgsReturnExpectedType<uint16_t, uint16_t, int32_t>();
CheckArgsReturnExpectedType<int16_t, int16_t, int64_t>();
CheckArgsReturnExpectedType<int16_t, int32_t, int64_t>();
CheckArgsReturnExpectedType<int16_t, int32_t, double>();
CheckArgsReturnExpectedType<float, float, double>();
CheckArgsReturnExpectedType<int, int, int16_t>();
// Properly promotes uint16_t.
CheckArgsInferType<uint16_t, uint32_t, uint32_t>();
CheckArgsInferType<uint16_t, uint64_t, uint64_t>();
CheckArgsInferType<uint16_t, int32_t, int32_t>();
CheckArgsInferType<uint16_t, int64_t, int64_t>();
CheckArgsInferType<uint16_t, float, float>();
CheckArgsInferType<uint16_t, double, double>();
// Properly promotes int16_t.
CheckArgsInferType<int16_t, int32_t, int32_t>();
CheckArgsInferType<int16_t, int64_t, int64_t>();
CheckArgsInferType<int16_t, float, float>();
CheckArgsInferType<int16_t, double, double>();
// Invalid (u)int16_t-pairings do not compile.
// See "CheckArgsInferType" comments above, for how this is achieved.
CheckArgsInferType<uint16_t, int16_t, Invalid>();
CheckArgsInferType<int16_t, uint32_t, Invalid>();
CheckArgsInferType<int16_t, uint64_t, Invalid>();
// Properly promotes uint32_t.
CheckArgsInferType<uint32_t, uint64_t, uint64_t>();
CheckArgsInferType<uint32_t, int64_t, int64_t>();
CheckArgsInferType<uint32_t, double, double>();
// Properly promotes int32_t.
CheckArgsInferType<int32_t, int64_t, int64_t>();
CheckArgsInferType<int32_t, double, double>();
// Invalid (u)int32_t-pairings do not compile.
CheckArgsInferType<uint32_t, int32_t, Invalid>();
CheckArgsInferType<int32_t, uint64_t, Invalid>();
CheckArgsInferType<int32_t, float, Invalid>();
CheckArgsInferType<uint32_t, float, Invalid>();
// Invalid (u)int64_t-pairings do not compile.
CheckArgsInferType<uint64_t, int64_t, Invalid>();
CheckArgsInferType<int64_t, float, Invalid>();
CheckArgsInferType<int64_t, double, Invalid>();
// Properly promotes float.
CheckArgsInferType<float, double, double>();
}
TEST_F(RandomDistributionsTest, UniformExamples) {
// Examples.
absl::InsecureBitGen gen;
EXPECT_NE(1, absl::Uniform(gen, static_cast<uint16_t>(0), 1.0f));
EXPECT_NE(1, absl::Uniform(gen, 0, 1.0));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen,
static_cast<uint16_t>(0), 1.0f));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, 0, 1.0));
EXPECT_NE(1, absl::Uniform(absl::IntervalOpenOpen, gen, -1, 1.0));
EXPECT_NE(1, absl::Uniform<double>(absl::IntervalOpenOpen, gen, -1, 1));
EXPECT_NE(1, absl::Uniform<float>(absl::IntervalOpenOpen, gen, 0, 1));
EXPECT_NE(1, absl::Uniform<float>(gen, 0, 1));
}
TEST_F(RandomDistributionsTest, UniformNoBounds) {
absl::InsecureBitGen gen;
absl::Uniform<uint8_t>(gen);
absl::Uniform<uint16_t>(gen);
absl::Uniform<uint32_t>(gen);
absl::Uniform<uint64_t>(gen);
absl::Uniform<absl::uint128>(gen);
}
TEST_F(RandomDistributionsTest, UniformNonsenseRanges) {
// The ranges used in this test are undefined behavior.
// The results are arbitrary and subject to future changes.
#if (defined(__i386__) || defined(_M_IX86)) && FLT_EVAL_METHOD != 0
// We're using an x87-compatible FPU, and intermediate operations can be
// performed with 80-bit floats. This produces slightly different results from
// what we expect below.
GTEST_SKIP()
<< "Skipping the test because we detected x87 floating-point semantics";
#endif
absl::InsecureBitGen gen;
// <uint>
EXPECT_EQ(0, absl::Uniform<uint64_t>(gen, 0, 0));
EXPECT_EQ(1, absl::Uniform<uint64_t>(gen, 1, 0));
EXPECT_EQ(0, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 0, 0));
EXPECT_EQ(1, absl::Uniform<uint64_t>(absl::IntervalOpenOpen, gen, 1, 0));
constexpr auto m = (std::numeric_limits<uint64_t>::max)();
EXPECT_EQ(m, absl::Uniform(gen, m, m));
EXPECT_EQ(m, absl::Uniform(gen, m, m - 1));
EXPECT_EQ(m - 1, absl::Uniform(gen, m - 1, m));
EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m));
EXPECT_EQ(m, absl::Uniform(absl::IntervalOpenOpen, gen, m, m - 1));
EXPECT_EQ(m - 1, absl::Uniform(absl::IntervalOpenOpen, gen, m - 1, m));
// <int>
EXPECT_EQ(0, absl::Uniform<int64_t>(gen, 0, 0));
EXPECT_EQ(1, absl::Uniform<int64_t>(gen, 1, 0));
EXPECT_EQ(0, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 0, 0));
EXPECT_EQ(1, absl::Uniform<int64_t>(absl::IntervalOpenOpen, gen, 1, 0));
constexpr auto l = (std::numeric_limits<int64_t>::min)();
constexpr auto r = (std::numeric_limits<int64_t>::max)();
EXPECT_EQ(l, absl::Uniform(gen, l, l));
EXPECT_EQ(r, absl::Uniform(gen, r, r));
EXPECT_EQ(r, absl::Uniform(gen, r, r - 1));
EXPECT_EQ(r - 1, absl::Uniform(gen, r - 1, r));
EXPECT_EQ(l, absl::Uniform(absl::IntervalOpenOpen, gen, l, l));
EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r));
EXPECT_EQ(r, absl::Uniform(absl::IntervalOpenOpen, gen, r, r - 1));
EXPECT_EQ(r - 1, absl::Uniform(absl::IntervalOpenOpen, gen, r - 1, r));
// <double>
const double e = std::nextafter(1.0, 2.0); // 1 + epsilon
const double f = std::nextafter(1.0, 0.0); // 1 - epsilon
const double g = std::numeric_limits<double>::denorm_min();
EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, e));
EXPECT_EQ(1.0, absl::Uniform(gen, 1.0, f));
EXPECT_EQ(0.0, absl::Uniform(gen, 0.0, g));
EXPECT_EQ(e, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, e));
EXPECT_EQ(f, absl::Uniform(absl::IntervalOpenOpen, gen, 1.0, f));
EXPECT_EQ(g, absl::Uniform(absl::IntervalOpenOpen, gen, 0.0, g));
}
// TODO(lar): Validate properties of non-default interval-semantics.
TEST_F(RandomDistributionsTest, UniformReal) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Uniform(gen, 0, 1.0);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.5, moments.mean, 0.02);
EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
EXPECT_NEAR(0.0, moments.skewness, 0.02);
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
}
TEST_F(RandomDistributionsTest, UniformInt) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
const int64_t kMax = 1000000000000ll;
int64_t j = absl::Uniform(absl::IntervalClosedClosed, gen, 0, kMax);
// convert to double.
values[i] = static_cast<double>(j) / static_cast<double>(kMax);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.5, moments.mean, 0.02);
EXPECT_NEAR(1 / 12.0, moments.variance, 0.02);
EXPECT_NEAR(0.0, moments.skewness, 0.02);
EXPECT_NEAR(9 / 5.0, moments.kurtosis, 0.02);
/*
// NOTE: These are not supported by absl::Uniform, which is specialized
// on integer and real valued types.
enum E { E0, E1 }; // enum
enum S : int { S0, S1 }; // signed enum
enum U : unsigned int { U0, U1 }; // unsigned enum
absl::Uniform(gen, E0, E1);
absl::Uniform(gen, S0, S1);
absl::Uniform(gen, U0, U1);
*/
}
TEST_F(RandomDistributionsTest, Exponential) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Exponential<double>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(1.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.025);
EXPECT_NEAR(2.0, moments.skewness, 0.1);
EXPECT_LT(5.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, PoissonDefault) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Poisson<int64_t>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(1.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.02);
EXPECT_NEAR(1.0, moments.skewness, 0.025);
EXPECT_LT(2.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, PoissonLarge) {
constexpr double kMean = 100000000.0;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Poisson<int64_t>(gen, kMean);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(kMean, moments.mean, kMean * 0.015);
EXPECT_NEAR(kMean, moments.variance, kMean * 0.015);
EXPECT_NEAR(std::sqrt(kMean), moments.skewness, kMean * 0.02);
EXPECT_LT(2.0, moments.kurtosis);
}
TEST_F(RandomDistributionsTest, Bernoulli) {
constexpr double kP = 0.5151515151;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Bernoulli(gen, kP);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(kP, moments.mean, 0.01);
}
TEST_F(RandomDistributionsTest, Beta) {
constexpr double kAlpha = 2.0;
constexpr double kBeta = 3.0;
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Beta(gen, kAlpha, kBeta);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.4, moments.mean, 0.01);
}
TEST_F(RandomDistributionsTest, Zipf) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Zipf<int64_t>(gen, 100);
}
// The mean of a zipf distribution is: H(N, s-1) / H(N,s).
// Given the parameter v = 1, this gives the following function:
// (Hn(100, 1) - Hn(1,1)) / (Hn(100,2) - Hn(1,2)) = 6.5944
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(6.5944, moments.mean, 2000) << moments;
}
TEST_F(RandomDistributionsTest, Gaussian) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::Gaussian<double>(gen);
}
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(0.0, moments.mean, 0.02);
EXPECT_NEAR(1.0, moments.variance, 0.04);
EXPECT_NEAR(0, moments.skewness, 0.2);
EXPECT_NEAR(3.0, moments.kurtosis, 0.5);
}
TEST_F(RandomDistributionsTest, LogUniform) {
std::vector<double> values(kSize);
absl::InsecureBitGen gen;
for (int i = 0; i < kSize; i++) {
values[i] = absl::LogUniform<int64_t>(gen, 0, (1 << 10) - 1);
}
// The mean is the sum of the fractional means of the uniform distributions:
// [0..0][1..1][2..3][4..7][8..15][16..31][32..63]
// [64..127][128..255][256..511][512..1023]
const double mean = (0 + 1 + 1 + 2 + 3 + 4 + 7 + 8 + 15 + 16 + 31 + 32 + 63 +
64 + 127 + 128 + 255 + 256 + 511 + 512 + 1023) /
(2.0 * 11.0);
const auto moments =
absl::random_internal::ComputeDistributionMoments(values);
EXPECT_NEAR(mean, moments.mean, 2) << moments;
}
} // namespace
|