1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/gaussian_distribution.h"
#include <algorithm>
#include <cmath>
#include <cstddef>
#include <ios>
#include <iterator>
#include <random>
#include <string>
#include <type_traits>
#include <vector>
#include "gmock/gmock.h"
#include "gtest/gtest.h"
#include "absl/base/macros.h"
#include "absl/log/log.h"
#include "absl/numeric/internal/representation.h"
#include "absl/random/internal/chi_square.h"
#include "absl/random/internal/distribution_test_util.h"
#include "absl/random/internal/sequence_urbg.h"
#include "absl/random/random.h"
#include "absl/strings/str_cat.h"
#include "absl/strings/str_format.h"
#include "absl/strings/str_replace.h"
#include "absl/strings/strip.h"
namespace {
using absl::random_internal::kChiSquared;
template <typename RealType>
class GaussianDistributionInterfaceTest : public ::testing::Test {};
// double-double arithmetic is not supported well by either GCC or Clang; see
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=99048,
// https://bugs.llvm.org/show_bug.cgi?id=49131, and
// https://bugs.llvm.org/show_bug.cgi?id=49132. Don't bother running these tests
// with double doubles until compiler support is better.
using RealTypes =
std::conditional<absl::numeric_internal::IsDoubleDouble(),
::testing::Types<float, double>,
::testing::Types<float, double, long double>>::type;
TYPED_TEST_SUITE(GaussianDistributionInterfaceTest, RealTypes);
TYPED_TEST(GaussianDistributionInterfaceTest, SerializeTest) {
using param_type =
typename absl::gaussian_distribution<TypeParam>::param_type;
const TypeParam kParams[] = {
// Cases around 1.
1, //
std::nextafter(TypeParam(1), TypeParam(0)), // 1 - epsilon
std::nextafter(TypeParam(1), TypeParam(2)), // 1 + epsilon
// Arbitrary values.
TypeParam(1e-8), TypeParam(1e-4), TypeParam(2), TypeParam(1e4),
TypeParam(1e8), TypeParam(1e20), TypeParam(2.5),
// Boundary cases.
std::numeric_limits<TypeParam>::infinity(),
std::numeric_limits<TypeParam>::max(),
std::numeric_limits<TypeParam>::epsilon(),
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(1)), // min + epsilon
std::numeric_limits<TypeParam>::min(), // smallest normal
// There are some errors dealing with denorms on apple platforms.
std::numeric_limits<TypeParam>::denorm_min(), // smallest denorm
std::numeric_limits<TypeParam>::min() / 2,
std::nextafter(std::numeric_limits<TypeParam>::min(),
TypeParam(0)), // denorm_max
};
constexpr int kCount = 1000;
absl::InsecureBitGen gen;
// Use a loop to generate the combinations of {+/-x, +/-y}, and assign x, y to
// all values in kParams,
for (const auto mod : {0, 1, 2, 3}) {
for (const auto x : kParams) {
if (!std::isfinite(x)) continue;
for (const auto y : kParams) {
const TypeParam mean = (mod & 0x1) ? -x : x;
const TypeParam stddev = (mod & 0x2) ? -y : y;
const param_type param(mean, stddev);
absl::gaussian_distribution<TypeParam> before(mean, stddev);
EXPECT_EQ(before.mean(), param.mean());
EXPECT_EQ(before.stddev(), param.stddev());
{
absl::gaussian_distribution<TypeParam> via_param(param);
EXPECT_EQ(via_param, before);
EXPECT_EQ(via_param.param(), before.param());
}
// Smoke test.
auto sample_min = before.max();
auto sample_max = before.min();
for (int i = 0; i < kCount; i++) {
auto sample = before(gen);
if (sample > sample_max) sample_max = sample;
if (sample < sample_min) sample_min = sample;
EXPECT_GE(sample, before.min()) << before;
EXPECT_LE(sample, before.max()) << before;
}
if (!std::is_same<TypeParam, long double>::value) {
LOG(INFO) << "Range{" << mean << ", " << stddev << "}: " << sample_min
<< ", " << sample_max;
}
std::stringstream ss;
ss << before;
if (!std::isfinite(mean) || !std::isfinite(stddev)) {
// Streams do not parse inf/nan.
continue;
}
// Validate stream serialization.
absl::gaussian_distribution<TypeParam> after(-0.53f, 2.3456f);
EXPECT_NE(before.mean(), after.mean());
EXPECT_NE(before.stddev(), after.stddev());
EXPECT_NE(before.param(), after.param());
EXPECT_NE(before, after);
ss >> after;
EXPECT_EQ(before.mean(), after.mean());
EXPECT_EQ(before.stddev(), after.stddev()) //
<< ss.str() << " " //
<< (ss.good() ? "good " : "") //
<< (ss.bad() ? "bad " : "") //
<< (ss.eof() ? "eof " : "") //
<< (ss.fail() ? "fail " : "");
}
}
}
}
// http://www.itl.nist.gov/div898/handbook/eda/section3/eda3661.htm
class GaussianModel {
public:
GaussianModel(double mean, double stddev) : mean_(mean), stddev_(stddev) {}
double mean() const { return mean_; }
double variance() const { return stddev() * stddev(); }
double stddev() const { return stddev_; }
double skew() const { return 0; }
double kurtosis() const { return 3.0; }
// The inverse CDF, or PercentPoint function.
double InverseCDF(double p) {
ABSL_ASSERT(p >= 0.0);
ABSL_ASSERT(p < 1.0);
return mean() + stddev() * -absl::random_internal::InverseNormalSurvival(p);
}
private:
const double mean_;
const double stddev_;
};
struct Param {
double mean;
double stddev;
double p_fail; // Z-Test probability of failure.
int trials; // Z-Test trials.
};
// GaussianDistributionTests implements a z-test for the gaussian
// distribution.
class GaussianDistributionTests : public testing::TestWithParam<Param>,
public GaussianModel {
public:
GaussianDistributionTests()
: GaussianModel(GetParam().mean, GetParam().stddev) {}
// SingleZTest provides a basic z-squared test of the mean vs. expected
// mean for data generated by the poisson distribution.
template <typename D>
bool SingleZTest(const double p, const size_t samples);
// SingleChiSquaredTest provides a basic chi-squared test of the normal
// distribution.
template <typename D>
double SingleChiSquaredTest();
// We use a fixed bit generator for distribution accuracy tests. This allows
// these tests to be deterministic, while still testing the qualify of the
// implementation.
absl::random_internal::pcg64_2018_engine rng_{0x2B7E151628AED2A6};
};
template <typename D>
bool GaussianDistributionTests::SingleZTest(const double p,
const size_t samples) {
D dis(mean(), stddev());
std::vector<double> data;
data.reserve(samples);
for (size_t i = 0; i < samples; i++) {
const double x = dis(rng_);
data.push_back(x);
}
const double max_err = absl::random_internal::MaxErrorTolerance(p);
const auto m = absl::random_internal::ComputeDistributionMoments(data);
const double z = absl::random_internal::ZScore(mean(), m);
const bool pass = absl::random_internal::Near("z", z, 0.0, max_err);
// NOTE: Informational statistical test:
//
// Compute the Jarque-Bera test statistic given the excess skewness
// and kurtosis. The statistic is drawn from a chi-square(2) distribution.
// https://en.wikipedia.org/wiki/Jarque%E2%80%93Bera_test
//
// The null-hypothesis (normal distribution) is rejected when
// (p = 0.05 => jb > 5.99)
// (p = 0.01 => jb > 9.21)
// NOTE: JB has a large type-I error rate, so it will reject the
// null-hypothesis even when it is true more often than the z-test.
//
const double jb =
static_cast<double>(m.n) / 6.0 *
(std::pow(m.skewness, 2.0) + std::pow(m.kurtosis - 3.0, 2.0) / 4.0);
if (!pass || jb > 9.21) {
// clang-format off
LOG(INFO)
<< "p=" << p << " max_err=" << max_err << "\n"
" mean=" << m.mean << " vs. " << mean() << "\n"
" stddev=" << std::sqrt(m.variance) << " vs. " << stddev() << "\n"
" skewness=" << m.skewness << " vs. " << skew() << "\n"
" kurtosis=" << m.kurtosis << " vs. " << kurtosis() << "\n"
" z=" << z << " vs. 0\n"
" jb=" << jb << " vs. 9.21";
// clang-format on
}
return pass;
}
template <typename D>
double GaussianDistributionTests::SingleChiSquaredTest() {
const size_t kSamples = 10000;
const int kBuckets = 50;
// The InverseCDF is the percent point function of the
// distribution, and can be used to assign buckets
// roughly uniformly.
std::vector<double> cutoffs;
const double kInc = 1.0 / static_cast<double>(kBuckets);
for (double p = kInc; p < 1.0; p += kInc) {
cutoffs.push_back(InverseCDF(p));
}
if (cutoffs.back() != std::numeric_limits<double>::infinity()) {
cutoffs.push_back(std::numeric_limits<double>::infinity());
}
D dis(mean(), stddev());
std::vector<int32_t> counts(cutoffs.size(), 0);
for (int j = 0; j < kSamples; j++) {
const double x = dis(rng_);
auto it = std::upper_bound(cutoffs.begin(), cutoffs.end(), x);
counts[std::distance(cutoffs.begin(), it)]++;
}
// Null-hypothesis is that the distribution is a gaussian distribution
// with the provided mean and stddev (not estimated from the data).
const int dof = static_cast<int>(counts.size()) - 1;
// Our threshold for logging is 1-in-50.
const double threshold = absl::random_internal::ChiSquareValue(dof, 0.98);
const double expected =
static_cast<double>(kSamples) / static_cast<double>(counts.size());
double chi_square = absl::random_internal::ChiSquareWithExpected(
std::begin(counts), std::end(counts), expected);
double p = absl::random_internal::ChiSquarePValue(chi_square, dof);
// Log if the chi_square value is above the threshold.
if (chi_square > threshold) {
for (size_t i = 0; i < cutoffs.size(); i++) {
LOG(INFO) << i << " : (" << cutoffs[i] << ") = " << counts[i];
}
// clang-format off
LOG(INFO) << "mean=" << mean() << " stddev=" << stddev() << "\n"
" expected " << expected << "\n"
<< kChiSquared << " " << chi_square << " (" << p << ")\n"
<< kChiSquared << " @ 0.98 = " << threshold;
// clang-format on
}
return p;
}
TEST_P(GaussianDistributionTests, ZTest) {
// TODO(absl-team): Run these tests against std::normal_distribution<double>
// to validate outcomes are similar.
const size_t kSamples = 10000;
const auto& param = GetParam();
const int expected_failures =
std::max(1, static_cast<int>(std::ceil(param.trials * param.p_fail)));
const double p = absl::random_internal::RequiredSuccessProbability(
param.p_fail, param.trials);
int failures = 0;
for (int i = 0; i < param.trials; i++) {
failures +=
SingleZTest<absl::gaussian_distribution<double>>(p, kSamples) ? 0 : 1;
}
EXPECT_LE(failures, expected_failures);
}
TEST_P(GaussianDistributionTests, ChiSquaredTest) {
const int kTrials = 20;
int failures = 0;
for (int i = 0; i < kTrials; i++) {
double p_value =
SingleChiSquaredTest<absl::gaussian_distribution<double>>();
if (p_value < 0.0025) { // 1/400
failures++;
}
}
// There is a 0.05% chance of producing at least one failure, so raise the
// failure threshold high enough to allow for a flake rate of less than one in
// 10,000.
EXPECT_LE(failures, 4);
}
std::vector<Param> GenParams() {
return {
// Mean around 0.
Param{0.0, 1.0, 0.01, 100},
Param{0.0, 1e2, 0.01, 100},
Param{0.0, 1e4, 0.01, 100},
Param{0.0, 1e8, 0.01, 100},
Param{0.0, 1e16, 0.01, 100},
Param{0.0, 1e-3, 0.01, 100},
Param{0.0, 1e-5, 0.01, 100},
Param{0.0, 1e-9, 0.01, 100},
Param{0.0, 1e-17, 0.01, 100},
// Mean around 1.
Param{1.0, 1.0, 0.01, 100},
Param{1.0, 1e2, 0.01, 100},
Param{1.0, 1e-2, 0.01, 100},
// Mean around 100 / -100
Param{1e2, 1.0, 0.01, 100},
Param{-1e2, 1.0, 0.01, 100},
Param{1e2, 1e6, 0.01, 100},
Param{-1e2, 1e6, 0.01, 100},
// More extreme
Param{1e4, 1e4, 0.01, 100},
Param{1e8, 1e4, 0.01, 100},
Param{1e12, 1e4, 0.01, 100},
};
}
std::string ParamName(const ::testing::TestParamInfo<Param>& info) {
const auto& p = info.param;
std::string name = absl::StrCat("mean_", absl::SixDigits(p.mean), "__stddev_",
absl::SixDigits(p.stddev));
return absl::StrReplaceAll(name, {{"+", "_"}, {"-", "_"}, {".", "_"}});
}
INSTANTIATE_TEST_SUITE_P(All, GaussianDistributionTests,
::testing::ValuesIn(GenParams()), ParamName);
// NOTE: absl::gaussian_distribution is not guaranteed to be stable.
TEST(GaussianDistributionTest, StabilityTest) {
// absl::gaussian_distribution stability relies on the underlying zignor
// data, absl::random_interna::RandU64ToDouble, std::exp, std::log, and
// std::abs.
absl::random_internal::sequence_urbg urbg(
{0x0003eb76f6f7f755ull, 0xFFCEA50FDB2F953Bull, 0xC332DDEFBE6C5AA5ull,
0x6558218568AB9702ull, 0x2AEF7DAD5B6E2F84ull, 0x1521B62829076170ull,
0xECDD4775619F1510ull, 0x13CCA830EB61BD96ull, 0x0334FE1EAA0363CFull,
0xB5735C904C70A239ull, 0xD59E9E0BCBAADE14ull, 0xEECC86BC60622CA7ull});
std::vector<int> output(11);
{
absl::gaussian_distribution<double> dist;
std::generate(std::begin(output), std::end(output),
[&] { return static_cast<int>(10000000.0 * dist(urbg)); });
EXPECT_EQ(13, urbg.invocations());
EXPECT_THAT(output, //
testing::ElementsAre(1494, 25518841, 9991550, 1351856,
-20373238, 3456682, 333530, -6804981,
-15279580, -16459654, 1494));
}
urbg.reset();
{
absl::gaussian_distribution<float> dist;
std::generate(std::begin(output), std::end(output),
[&] { return static_cast<int>(1000000.0f * dist(urbg)); });
EXPECT_EQ(13, urbg.invocations());
EXPECT_THAT(
output, //
testing::ElementsAre(149, 2551884, 999155, 135185, -2037323, 345668,
33353, -680498, -1527958, -1645965, 149));
}
}
// This is an implementation-specific test. If any part of the implementation
// changes, then it is likely that this test will change as well.
// Also, if dependencies of the distribution change, such as RandU64ToDouble,
// then this is also likely to change.
TEST(GaussianDistributionTest, AlgorithmBounds) {
absl::gaussian_distribution<double> dist;
// In ~95% of cases, a single value is used to generate the output.
// for all inputs where |x| < 0.750461021389 this should be the case.
//
// The exact constraints are based on the ziggurat tables, and any
// changes to the ziggurat tables may require adjusting these bounds.
//
// for i in range(0, len(X)-1):
// print i, X[i+1]/X[i], (X[i+1]/X[i] > 0.984375)
//
// 0.125 <= |values| <= 0.75
const uint64_t kValues[] = {
0x1000000000000100ull, 0x2000000000000100ull, 0x3000000000000100ull,
0x4000000000000100ull, 0x5000000000000100ull, 0x6000000000000100ull,
// negative values
0x9000000000000100ull, 0xa000000000000100ull, 0xb000000000000100ull,
0xc000000000000100ull, 0xd000000000000100ull, 0xe000000000000100ull};
// 0.875 <= |values| <= 0.984375
const uint64_t kExtraValues[] = {
0x7000000000000100ull, 0x7800000000000100ull, //
0x7c00000000000100ull, 0x7e00000000000100ull, //
// negative values
0xf000000000000100ull, 0xf800000000000100ull, //
0xfc00000000000100ull, 0xfe00000000000100ull};
auto make_box = [](uint64_t v, uint64_t box) {
return (v & 0xffffffffffffff80ull) | box;
};
// The box is the lower 7 bits of the value. When the box == 0, then
// the algorithm uses an escape hatch to select the result for large
// outputs.
for (uint64_t box = 0; box < 0x7f; box++) {
for (const uint64_t v : kValues) {
// Extra values are added to the sequence to attempt to avoid
// infinite loops from rejection sampling on bugs/errors.
absl::random_internal::sequence_urbg urbg(
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
auto a = dist(urbg);
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
if (v & 0x8000000000000000ull) {
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
} else {
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
}
}
if (box > 10 && box < 100) {
// The center boxes use the fast algorithm for more
// than 98.4375% of values.
for (const uint64_t v : kExtraValues) {
absl::random_internal::sequence_urbg urbg(
{make_box(v, box), 0x0003eb76f6f7f755ull, 0x5FCEA50FDB2F953Bull});
auto a = dist(urbg);
EXPECT_EQ(1, urbg.invocations()) << box << " " << std::hex << v;
if (v & 0x8000000000000000ull) {
EXPECT_LT(a, 0.0) << box << " " << std::hex << v;
} else {
EXPECT_GT(a, 0.0) << box << " " << std::hex << v;
}
}
}
}
// When the box == 0, the fallback algorithm uses a ratio of uniforms,
// which consumes 2 additional values from the urbg.
// Fallback also requires that the initial value be > 0.9271586026096681.
auto make_fallback = [](uint64_t v) { return (v & 0xffffffffffffff80ull); };
double tail[2];
{
// 0.9375
absl::random_internal::sequence_urbg urbg(
{make_fallback(0x7800000000000000ull), 0x13CCA830EB61BD96ull,
0x00000076f6f7f755ull});
tail[0] = dist(urbg);
EXPECT_EQ(3, urbg.invocations());
EXPECT_GT(tail[0], 0);
}
{
// -0.9375
absl::random_internal::sequence_urbg urbg(
{make_fallback(0xf800000000000000ull), 0x13CCA830EB61BD96ull,
0x00000076f6f7f755ull});
tail[1] = dist(urbg);
EXPECT_EQ(3, urbg.invocations());
EXPECT_LT(tail[1], 0);
}
EXPECT_EQ(tail[0], -tail[1]);
EXPECT_EQ(418610, static_cast<int64_t>(tail[0] * 100000.0));
// When the box != 0, the fallback algorithm computes a wedge function.
// Depending on the box, the threshold for varies as high as
// 0.991522480228.
{
// 0.9921875, 0.875
absl::random_internal::sequence_urbg urbg(
{make_box(0x7f00000000000000ull, 120), 0xe000000000000001ull,
0x13CCA830EB61BD96ull});
tail[0] = dist(urbg);
EXPECT_EQ(2, urbg.invocations());
EXPECT_GT(tail[0], 0);
}
{
// -0.9921875, 0.875
absl::random_internal::sequence_urbg urbg(
{make_box(0xff00000000000000ull, 120), 0xe000000000000001ull,
0x13CCA830EB61BD96ull});
tail[1] = dist(urbg);
EXPECT_EQ(2, urbg.invocations());
EXPECT_LT(tail[1], 0);
}
EXPECT_EQ(tail[0], -tail[1]);
EXPECT_EQ(61948, static_cast<int64_t>(tail[0] * 100000.0));
// Fallback rejected, try again.
{
// -0.9921875, 0.0625
absl::random_internal::sequence_urbg urbg(
{make_box(0xff00000000000000ull, 120), 0x1000000000000001,
make_box(0x1000000000000100ull, 50), 0x13CCA830EB61BD96ull});
dist(urbg);
EXPECT_EQ(3, urbg.invocations());
}
}
} // namespace
|