1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804
|
// Copyright 2017 Google Inc. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/random/internal/nanobenchmark.h"
#include <sys/types.h>
#include <algorithm> // sort
#include <atomic>
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring> // memcpy
#include <limits>
#include <string>
#include <utility>
#include <vector>
#include "absl/base/attributes.h"
#include "absl/base/internal/raw_logging.h"
#include "absl/random/internal/platform.h"
#include "absl/random/internal/randen_engine.h"
// OS
#if defined(_WIN32) || defined(_WIN64)
#define ABSL_OS_WIN
#include <windows.h> // NOLINT
#elif defined(__ANDROID__)
#define ABSL_OS_ANDROID
#elif defined(__linux__)
#define ABSL_OS_LINUX
#include <sched.h> // NOLINT
#include <sys/syscall.h> // NOLINT
#endif
#if defined(ABSL_ARCH_X86_64) && !defined(ABSL_OS_WIN)
#include <cpuid.h> // NOLINT
#endif
// __ppc_get_timebase_freq
#if defined(ABSL_ARCH_PPC)
#include <sys/platform/ppc.h> // NOLINT
#endif
// clock_gettime
#if defined(ABSL_ARCH_ARM) || defined(ABSL_ARCH_AARCH64)
#include <time.h> // NOLINT
#endif
// ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE prevents inlining of the method.
#if ABSL_HAVE_ATTRIBUTE(noinline) || (defined(__GNUC__) && !defined(__clang__))
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __attribute__((noinline))
#elif defined(_MSC_VER)
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE __declspec(noinline)
#else
#define ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE
#endif
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace random_internal_nanobenchmark {
namespace {
// For code folding.
namespace platform {
#if defined(ABSL_ARCH_X86_64)
// TODO(janwas): Merge with the one in randen_hwaes.cc?
void Cpuid(const uint32_t level, const uint32_t count,
uint32_t* ABSL_RANDOM_INTERNAL_RESTRICT abcd) {
#if defined(ABSL_OS_WIN)
int regs[4];
__cpuidex(regs, level, count);
for (int i = 0; i < 4; ++i) {
abcd[i] = regs[i];
}
#else
uint32_t a, b, c, d;
__cpuid_count(level, count, a, b, c, d);
abcd[0] = a;
abcd[1] = b;
abcd[2] = c;
abcd[3] = d;
#endif
}
std::string BrandString() {
char brand_string[49];
uint32_t abcd[4];
// Check if brand string is supported (it is on all reasonable Intel/AMD)
Cpuid(0x80000000U, 0, abcd);
if (abcd[0] < 0x80000004U) {
return std::string();
}
for (int i = 0; i < 3; ++i) {
Cpuid(0x80000002U + i, 0, abcd);
memcpy(brand_string + i * 16, &abcd, sizeof(abcd));
}
brand_string[48] = 0;
return brand_string;
}
// Returns the frequency quoted inside the brand string. This does not
// account for throttling nor Turbo Boost.
double NominalClockRate() {
const std::string& brand_string = BrandString();
// Brand strings include the maximum configured frequency. These prefixes are
// defined by Intel CPUID documentation.
const char* prefixes[3] = {"MHz", "GHz", "THz"};
const double multipliers[3] = {1E6, 1E9, 1E12};
for (size_t i = 0; i < 3; ++i) {
const size_t pos_prefix = brand_string.find(prefixes[i]);
if (pos_prefix != std::string::npos) {
const size_t pos_space = brand_string.rfind(' ', pos_prefix - 1);
if (pos_space != std::string::npos) {
const std::string digits =
brand_string.substr(pos_space + 1, pos_prefix - pos_space - 1);
return std::stod(digits) * multipliers[i];
}
}
}
return 0.0;
}
#endif // ABSL_ARCH_X86_64
} // namespace platform
// Prevents the compiler from eliding the computations that led to "output".
template <class T>
inline void PreventElision(T&& output) {
#ifndef ABSL_OS_WIN
// Works by indicating to the compiler that "output" is being read and
// modified. The +r constraint avoids unnecessary writes to memory, but only
// works for built-in types (typically FuncOutput).
asm volatile("" : "+r"(output) : : "memory");
#else
// MSVC does not support inline assembly anymore (and never supported GCC's
// RTL constraints). Self-assignment with #pragma optimize("off") might be
// expected to prevent elision, but it does not with MSVC 2015. Type-punning
// with volatile pointers generates inefficient code on MSVC 2017.
static std::atomic<T> dummy(T{});
dummy.store(output, std::memory_order_relaxed);
#endif
}
namespace timer {
// Start/Stop return absolute timestamps and must be placed immediately before
// and after the region to measure. We provide separate Start/Stop functions
// because they use different fences.
//
// Background: RDTSC is not 'serializing'; earlier instructions may complete
// after it, and/or later instructions may complete before it. 'Fences' ensure
// regions' elapsed times are independent of such reordering. The only
// documented unprivileged serializing instruction is CPUID, which acts as a
// full fence (no reordering across it in either direction). Unfortunately
// the latency of CPUID varies wildly (perhaps made worse by not initializing
// its EAX input). Because it cannot reliably be deducted from the region's
// elapsed time, it must not be included in the region to measure (i.e.
// between the two RDTSC).
//
// The newer RDTSCP is sometimes described as serializing, but it actually
// only serves as a half-fence with release semantics. Although all
// instructions in the region will complete before the final timestamp is
// captured, subsequent instructions may leak into the region and increase the
// elapsed time. Inserting another fence after the final RDTSCP would prevent
// such reordering without affecting the measured region.
//
// Fortunately, such a fence exists. The LFENCE instruction is only documented
// to delay later loads until earlier loads are visible. However, Intel's
// reference manual says it acts as a full fence (waiting until all earlier
// instructions have completed, and delaying later instructions until it
// completes). AMD assigns the same behavior to MFENCE.
//
// We need a fence before the initial RDTSC to prevent earlier instructions
// from leaking into the region, and arguably another after RDTSC to avoid
// region instructions from completing before the timestamp is recorded.
// When surrounded by fences, the additional RDTSCP half-fence provides no
// benefit, so the initial timestamp can be recorded via RDTSC, which has
// lower overhead than RDTSCP because it does not read TSC_AUX. In summary,
// we define Start = LFENCE/RDTSC/LFENCE; Stop = RDTSCP/LFENCE.
//
// Using Start+Start leads to higher variance and overhead than Stop+Stop.
// However, Stop+Stop includes an LFENCE in the region measurements, which
// adds a delay dependent on earlier loads. The combination of Start+Stop
// is faster than Start+Start and more consistent than Stop+Stop because
// the first LFENCE already delayed subsequent loads before the measured
// region. This combination seems not to have been considered in prior work:
// http://akaros.cs.berkeley.edu/lxr/akaros/kern/arch/x86/rdtsc_test.c
//
// Note: performance counters can measure 'exact' instructions-retired or
// (unhalted) cycle counts. The RDPMC instruction is not serializing and also
// requires fences. Unfortunately, it is not accessible on all OSes and we
// prefer to avoid kernel-mode drivers. Performance counters are also affected
// by several under/over-count errata, so we use the TSC instead.
// Returns a 64-bit timestamp in unit of 'ticks'; to convert to seconds,
// divide by InvariantTicksPerSecond.
inline uint64_t Start64() {
uint64_t t;
#if defined(ABSL_ARCH_PPC)
asm volatile("mfspr %0, %1" : "=r"(t) : "i"(268));
#elif defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
t = __rdtsc();
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"lfence\n\t"
"rdtsc\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rdx = TSC >> 32.
// "cc" = flags modified by SHL.
: "rdx", "memory", "cc");
#endif
#else
// Fall back to OS - unsure how to reliably query cntvct_el0 frequency.
timespec ts;
clock_gettime(CLOCK_REALTIME, &ts);
t = ts.tv_sec * 1000000000LL + ts.tv_nsec;
#endif
return t;
}
inline uint64_t Stop64() {
uint64_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
unsigned aux;
t = __rdtscp(&aux);
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
asm volatile(
"rdtscp\n\t"
"shl $32, %%rdx\n\t"
"or %%rdx, %0\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
// "cc" = flags modified by SHL.
: "rcx", "rdx", "memory", "cc");
#endif
#else
t = Start64();
#endif
return t;
}
// Returns a 32-bit timestamp with about 4 cycles less overhead than
// Start64. Only suitable for measuring very short regions because the
// timestamp overflows about once a second.
inline uint32_t Start32() {
uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
t = static_cast<uint32_t>(__rdtsc());
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
asm volatile(
"lfence\n\t"
"rdtsc\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rdx = TSC >> 32.
: "rdx", "memory");
#endif
#else
t = static_cast<uint32_t>(Start64());
#endif
return t;
}
inline uint32_t Stop32() {
uint32_t t;
#if defined(ABSL_ARCH_X86_64)
#if defined(ABSL_OS_WIN)
_ReadWriteBarrier();
unsigned aux;
t = static_cast<uint32_t>(__rdtscp(&aux));
_ReadWriteBarrier();
_mm_lfence();
_ReadWriteBarrier();
#else
// Use inline asm because __rdtscp generates code to store TSC_AUX (ecx).
asm volatile(
"rdtscp\n\t"
"lfence"
: "=a"(t)
:
// "memory" avoids reordering. rcx = TSC_AUX. rdx = TSC >> 32.
: "rcx", "rdx", "memory");
#endif
#else
t = static_cast<uint32_t>(Stop64());
#endif
return t;
}
} // namespace timer
namespace robust_statistics {
// Sorts integral values in ascending order (e.g. for Mode). About 3x faster
// than std::sort for input distributions with very few unique values.
template <class T>
void CountingSort(T* values, size_t num_values) {
// Unique values and their frequency (similar to flat_map).
using Unique = std::pair<T, int>;
std::vector<Unique> unique;
for (size_t i = 0; i < num_values; ++i) {
const T value = values[i];
const auto pos =
std::find_if(unique.begin(), unique.end(),
[value](const Unique u) { return u.first == value; });
if (pos == unique.end()) {
unique.push_back(std::make_pair(value, 1));
} else {
++pos->second;
}
}
// Sort in ascending order of value (pair.first).
std::sort(unique.begin(), unique.end());
// Write that many copies of each unique value to the array.
T* ABSL_RANDOM_INTERNAL_RESTRICT p = values;
for (const auto& value_count : unique) {
std::fill_n(p, value_count.second, value_count.first);
p += value_count.second;
}
ABSL_RAW_CHECK(p == values + num_values, "Did not produce enough output");
}
// @return i in [idx_begin, idx_begin + half_count) that minimizes
// sorted[i + half_count] - sorted[i].
template <typename T>
size_t MinRange(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
const size_t idx_begin, const size_t half_count) {
T min_range = (std::numeric_limits<T>::max)();
size_t min_idx = 0;
for (size_t idx = idx_begin; idx < idx_begin + half_count; ++idx) {
ABSL_RAW_CHECK(sorted[idx] <= sorted[idx + half_count], "Not sorted");
const T range = sorted[idx + half_count] - sorted[idx];
if (range < min_range) {
min_range = range;
min_idx = idx;
}
}
return min_idx;
}
// Returns an estimate of the mode by calling MinRange on successively
// halved intervals. "sorted" must be in ascending order. This is the
// Half Sample Mode estimator proposed by Bickel in "On a fast, robust
// estimator of the mode", with complexity O(N log N). The mode is less
// affected by outliers in highly-skewed distributions than the median.
// The averaging operation below assumes "T" is an unsigned integer type.
template <typename T>
T ModeOfSorted(const T* const ABSL_RANDOM_INTERNAL_RESTRICT sorted,
const size_t num_values) {
size_t idx_begin = 0;
size_t half_count = num_values / 2;
while (half_count > 1) {
idx_begin = MinRange(sorted, idx_begin, half_count);
half_count >>= 1;
}
const T x = sorted[idx_begin + 0];
if (half_count == 0) {
return x;
}
ABSL_RAW_CHECK(half_count == 1, "Should stop at half_count=1");
const T average = (x + sorted[idx_begin + 1] + 1) / 2;
return average;
}
// Returns the mode. Side effect: sorts "values".
template <typename T>
T Mode(T* values, const size_t num_values) {
CountingSort(values, num_values);
return ModeOfSorted(values, num_values);
}
template <typename T, size_t N>
T Mode(T (&values)[N]) {
return Mode(&values[0], N);
}
// Returns the median value. Side effect: sorts "values".
template <typename T>
T Median(T* values, const size_t num_values) {
ABSL_RAW_CHECK(num_values != 0, "Empty input");
std::sort(values, values + num_values);
const size_t half = num_values / 2;
// Odd count: return middle
if (num_values % 2) {
return values[half];
}
// Even count: return average of middle two.
return (values[half] + values[half - 1] + 1) / 2;
}
// Returns a robust measure of variability.
template <typename T>
T MedianAbsoluteDeviation(const T* values, const size_t num_values,
const T median) {
ABSL_RAW_CHECK(num_values != 0, "Empty input");
std::vector<T> abs_deviations;
abs_deviations.reserve(num_values);
for (size_t i = 0; i < num_values; ++i) {
const int64_t abs = std::abs(int64_t(values[i]) - int64_t(median));
abs_deviations.push_back(static_cast<T>(abs));
}
return Median(abs_deviations.data(), num_values);
}
} // namespace robust_statistics
// Ticks := platform-specific timer values (CPU cycles on x86). Must be
// unsigned to guarantee wraparound on overflow. 32 bit timers are faster to
// read than 64 bit.
using Ticks = uint32_t;
// Returns timer overhead / minimum measurable difference.
Ticks TimerResolution() {
// Nested loop avoids exceeding stack/L1 capacity.
Ticks repetitions[Params::kTimerSamples];
for (size_t rep = 0; rep < Params::kTimerSamples; ++rep) {
Ticks samples[Params::kTimerSamples];
for (size_t i = 0; i < Params::kTimerSamples; ++i) {
const Ticks t0 = timer::Start32();
const Ticks t1 = timer::Stop32();
samples[i] = t1 - t0;
}
repetitions[rep] = robust_statistics::Mode(samples);
}
return robust_statistics::Mode(repetitions);
}
static const Ticks timer_resolution = TimerResolution();
// Estimates the expected value of "lambda" values with a variable number of
// samples until the variability "rel_mad" is less than "max_rel_mad".
template <class Lambda>
Ticks SampleUntilStable(const double max_rel_mad, double* rel_mad,
const Params& p, const Lambda& lambda) {
auto measure_duration = [&lambda]() -> Ticks {
const Ticks t0 = timer::Start32();
lambda();
const Ticks t1 = timer::Stop32();
return t1 - t0;
};
// Choose initial samples_per_eval based on a single estimated duration.
Ticks est = measure_duration();
static const double ticks_per_second = InvariantTicksPerSecond();
const size_t ticks_per_eval = ticks_per_second * p.seconds_per_eval;
size_t samples_per_eval = ticks_per_eval / est;
samples_per_eval = (std::max)(samples_per_eval, p.min_samples_per_eval);
std::vector<Ticks> samples;
samples.reserve(1 + samples_per_eval);
samples.push_back(est);
// Percentage is too strict for tiny differences, so also allow a small
// absolute "median absolute deviation".
const Ticks max_abs_mad = (timer_resolution + 99) / 100;
*rel_mad = 0.0; // ensure initialized
for (size_t eval = 0; eval < p.max_evals; ++eval, samples_per_eval *= 2) {
samples.reserve(samples.size() + samples_per_eval);
for (size_t i = 0; i < samples_per_eval; ++i) {
const Ticks r = measure_duration();
samples.push_back(r);
}
if (samples.size() >= p.min_mode_samples) {
est = robust_statistics::Mode(samples.data(), samples.size());
} else {
// For "few" (depends also on the variance) samples, Median is safer.
est = robust_statistics::Median(samples.data(), samples.size());
}
ABSL_RAW_CHECK(est != 0, "Estimator returned zero duration");
// Median absolute deviation (mad) is a robust measure of 'variability'.
const Ticks abs_mad = robust_statistics::MedianAbsoluteDeviation(
samples.data(), samples.size(), est);
*rel_mad = static_cast<double>(static_cast<int>(abs_mad)) / est;
if (*rel_mad <= max_rel_mad || abs_mad <= max_abs_mad) {
if (p.verbose) {
ABSL_RAW_LOG(INFO,
"%6zu samples => %5u (abs_mad=%4u, rel_mad=%4.2f%%)\n",
samples.size(), est, abs_mad, *rel_mad * 100.0);
}
return est;
}
}
if (p.verbose) {
ABSL_RAW_LOG(WARNING,
"rel_mad=%4.2f%% still exceeds %4.2f%% after %6zu samples.\n",
*rel_mad * 100.0, max_rel_mad * 100.0, samples.size());
}
return est;
}
using InputVec = std::vector<FuncInput>;
// Returns vector of unique input values.
InputVec UniqueInputs(const FuncInput* inputs, const size_t num_inputs) {
InputVec unique(inputs, inputs + num_inputs);
std::sort(unique.begin(), unique.end());
unique.erase(std::unique(unique.begin(), unique.end()), unique.end());
return unique;
}
// Returns how often we need to call func for sufficient precision, or zero
// on failure (e.g. the elapsed time is too long for a 32-bit tick count).
size_t NumSkip(const Func func, const void* arg, const InputVec& unique,
const Params& p) {
// Min elapsed ticks for any input.
Ticks min_duration = ~0u;
for (const FuncInput input : unique) {
// Make sure a 32-bit timer is sufficient.
const uint64_t t0 = timer::Start64();
PreventElision(func(arg, input));
const uint64_t t1 = timer::Stop64();
const uint64_t elapsed = t1 - t0;
if (elapsed >= (1ULL << 30)) {
ABSL_RAW_LOG(WARNING,
"Measurement failed: need 64-bit timer for input=%zu\n",
static_cast<size_t>(input));
return 0;
}
double rel_mad;
const Ticks total = SampleUntilStable(
p.target_rel_mad, &rel_mad, p,
[func, arg, input]() { PreventElision(func(arg, input)); });
min_duration = (std::min)(min_duration, total - timer_resolution);
}
// Number of repetitions required to reach the target resolution.
const size_t max_skip = p.precision_divisor;
// Number of repetitions given the estimated duration.
const size_t num_skip =
min_duration == 0 ? 0 : (max_skip + min_duration - 1) / min_duration;
if (p.verbose) {
ABSL_RAW_LOG(INFO, "res=%u max_skip=%zu min_dur=%u num_skip=%zu\n",
timer_resolution, max_skip, min_duration, num_skip);
}
return num_skip;
}
// Replicates inputs until we can omit "num_skip" occurrences of an input.
InputVec ReplicateInputs(const FuncInput* inputs, const size_t num_inputs,
const size_t num_unique, const size_t num_skip,
const Params& p) {
InputVec full;
if (num_unique == 1) {
full.assign(p.subset_ratio * num_skip, inputs[0]);
return full;
}
full.reserve(p.subset_ratio * num_skip * num_inputs);
for (size_t i = 0; i < p.subset_ratio * num_skip; ++i) {
full.insert(full.end(), inputs, inputs + num_inputs);
}
absl::random_internal::randen_engine<uint32_t> rng;
std::shuffle(full.begin(), full.end(), rng);
return full;
}
// Copies the "full" to "subset" in the same order, but with "num_skip"
// randomly selected occurrences of "input_to_skip" removed.
void FillSubset(const InputVec& full, const FuncInput input_to_skip,
const size_t num_skip, InputVec* subset) {
const size_t count = std::count(full.begin(), full.end(), input_to_skip);
// Generate num_skip random indices: which occurrence to skip.
std::vector<uint32_t> omit;
// Replacement for std::iota, not yet available in MSVC builds.
omit.reserve(count);
for (size_t i = 0; i < count; ++i) {
omit.push_back(i);
}
// omit[] is the same on every call, but that's OK because they identify the
// Nth instance of input_to_skip, so the position within full[] differs.
absl::random_internal::randen_engine<uint32_t> rng;
std::shuffle(omit.begin(), omit.end(), rng);
omit.resize(num_skip);
std::sort(omit.begin(), omit.end());
uint32_t occurrence = ~0u; // 0 after preincrement
size_t idx_omit = 0; // cursor within omit[]
size_t idx_subset = 0; // cursor within *subset
for (const FuncInput next : full) {
if (next == input_to_skip) {
++occurrence;
// Haven't removed enough already
if (idx_omit < num_skip) {
// This one is up for removal
if (occurrence == omit[idx_omit]) {
++idx_omit;
continue;
}
}
}
if (idx_subset < subset->size()) {
(*subset)[idx_subset++] = next;
}
}
ABSL_RAW_CHECK(idx_subset == subset->size(), "idx_subset not at end");
ABSL_RAW_CHECK(idx_omit == omit.size(), "idx_omit not at end");
ABSL_RAW_CHECK(occurrence == count - 1, "occurrence not at end");
}
// Returns total ticks elapsed for all inputs.
Ticks TotalDuration(const Func func, const void* arg, const InputVec* inputs,
const Params& p, double* max_rel_mad) {
double rel_mad;
const Ticks duration =
SampleUntilStable(p.target_rel_mad, &rel_mad, p, [func, arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(func(arg, input));
}
});
*max_rel_mad = (std::max)(*max_rel_mad, rel_mad);
return duration;
}
// (Nearly) empty Func for measuring timer overhead/resolution.
ABSL_RANDOM_INTERNAL_ATTRIBUTE_NEVER_INLINE FuncOutput
EmptyFunc(const void* arg, const FuncInput input) {
return input;
}
// Returns overhead of accessing inputs[] and calling a function; this will
// be deducted from future TotalDuration return values.
Ticks Overhead(const void* arg, const InputVec* inputs, const Params& p) {
double rel_mad;
// Zero tolerance because repeatability is crucial and EmptyFunc is fast.
return SampleUntilStable(0.0, &rel_mad, p, [arg, inputs]() {
for (const FuncInput input : *inputs) {
PreventElision(EmptyFunc(arg, input));
}
});
}
} // namespace
void PinThreadToCPU(int cpu) {
// We might migrate to another CPU before pinning below, but at least cpu
// will be one of the CPUs on which this thread ran.
#if defined(ABSL_OS_WIN)
if (cpu < 0) {
cpu = static_cast<int>(GetCurrentProcessorNumber());
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
if (cpu >= 64) {
// NOTE: On wine, at least, GetCurrentProcessorNumber() sometimes returns
// a value > 64, which is out of range. When this happens, log a message
// and don't set a cpu affinity.
ABSL_RAW_LOG(ERROR, "Invalid CPU number: %d", cpu);
return;
}
} else if (cpu >= 64) {
// User specified an explicit CPU affinity > the valid range.
ABSL_RAW_LOG(FATAL, "Invalid CPU number: %d", cpu);
}
const DWORD_PTR prev = SetThreadAffinityMask(GetCurrentThread(), 1ULL << cpu);
ABSL_RAW_CHECK(prev != 0, "SetAffinity failed");
#elif defined(ABSL_OS_LINUX) && !defined(ABSL_OS_ANDROID)
if (cpu < 0) {
cpu = sched_getcpu();
ABSL_RAW_CHECK(cpu >= 0, "PinThreadToCPU detect failed");
}
const pid_t pid = 0; // current thread
cpu_set_t set;
CPU_ZERO(&set);
CPU_SET(cpu, &set);
const int err = sched_setaffinity(pid, sizeof(set), &set);
ABSL_RAW_CHECK(err == 0, "SetAffinity failed");
#endif
}
// Returns tick rate. Invariant means the tick counter frequency is independent
// of CPU throttling or sleep. May be expensive, caller should cache the result.
double InvariantTicksPerSecond() {
#if defined(ABSL_ARCH_PPC)
return __ppc_get_timebase_freq();
#elif defined(ABSL_ARCH_X86_64)
// We assume the TSC is invariant; it is on all recent Intel/AMD CPUs.
return platform::NominalClockRate();
#else
// Fall back to clock_gettime nanoseconds.
return 1E9;
#endif
}
size_t MeasureImpl(const Func func, const void* arg, const size_t num_skip,
const InputVec& unique, const InputVec& full,
const Params& p, Result* results) {
const float mul = 1.0f / static_cast<int>(num_skip);
InputVec subset(full.size() - num_skip);
const Ticks overhead = Overhead(arg, &full, p);
const Ticks overhead_skip = Overhead(arg, &subset, p);
if (overhead < overhead_skip) {
ABSL_RAW_LOG(WARNING, "Measurement failed: overhead %u < %u\n", overhead,
overhead_skip);
return 0;
}
if (p.verbose) {
ABSL_RAW_LOG(INFO, "#inputs=%5zu,%5zu overhead=%5u,%5u\n", full.size(),
subset.size(), overhead, overhead_skip);
}
double max_rel_mad = 0.0;
const Ticks total = TotalDuration(func, arg, &full, p, &max_rel_mad);
for (size_t i = 0; i < unique.size(); ++i) {
FillSubset(full, unique[i], num_skip, &subset);
const Ticks total_skip = TotalDuration(func, arg, &subset, p, &max_rel_mad);
if (total < total_skip) {
ABSL_RAW_LOG(WARNING, "Measurement failed: total %u < %u\n", total,
total_skip);
return 0;
}
const Ticks duration = (total - overhead) - (total_skip - overhead_skip);
results[i].input = unique[i];
results[i].ticks = duration * mul;
results[i].variability = max_rel_mad;
}
return unique.size();
}
size_t Measure(const Func func, const void* arg, const FuncInput* inputs,
const size_t num_inputs, Result* results, const Params& p) {
ABSL_RAW_CHECK(num_inputs != 0, "No inputs");
const InputVec unique = UniqueInputs(inputs, num_inputs);
const size_t num_skip = NumSkip(func, arg, unique, p); // never 0
if (num_skip == 0) return 0; // NumSkip already printed error message
const InputVec full =
ReplicateInputs(inputs, num_inputs, unique.size(), num_skip, p);
// MeasureImpl may fail up to p.max_measure_retries times.
for (size_t i = 0; i < p.max_measure_retries; i++) {
auto result = MeasureImpl(func, arg, num_skip, unique, full, p, results);
if (result != 0) {
return result;
}
}
// All retries failed. (Unusual)
return 0;
}
} // namespace random_internal_nanobenchmark
ABSL_NAMESPACE_END
} // namespace absl
|