1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/charconv.h"
#include <algorithm>
#include <cassert>
#include <cstddef>
#include <cstdint>
#include <limits>
#include <system_error> // NOLINT(build/c++11)
#include "absl/base/casts.h"
#include "absl/base/config.h"
#include "absl/base/nullability.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/internal/charconv_bigint.h"
#include "absl/strings/internal/charconv_parse.h"
// The macro ABSL_BIT_PACK_FLOATS is defined on x86-64, where IEEE floating
// point numbers have the same endianness in memory as a bitfield struct
// containing the corresponding parts.
//
// When set, we replace calls to ldexp() with manual bit packing, which is
// faster and is unaffected by floating point environment.
#ifdef ABSL_BIT_PACK_FLOATS
#error ABSL_BIT_PACK_FLOATS cannot be directly set
#elif defined(__x86_64__) || defined(_M_X64)
#define ABSL_BIT_PACK_FLOATS 1
#endif
// A note about subnormals:
//
// The code below talks about "normals" and "subnormals". A normal IEEE float
// has a fixed-width mantissa and power of two exponent. For example, a normal
// `double` has a 53-bit mantissa. Because the high bit is always 1, it is not
// stored in the representation. The implicit bit buys an extra bit of
// resolution in the datatype.
//
// The downside of this scheme is that there is a large gap between DBL_MIN and
// zero. (Large, at least, relative to the different between DBL_MIN and the
// next representable number). This gap is softened by the "subnormal" numbers,
// which have the same power-of-two exponent as DBL_MIN, but no implicit 53rd
// bit. An all-bits-zero exponent in the encoding represents subnormals. (Zero
// is represented as a subnormal with an all-bits-zero mantissa.)
//
// The code below, in calculations, represents the mantissa as a uint64_t. The
// end result normally has the 53rd bit set. It represents subnormals by using
// narrower mantissas.
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace {
template <typename FloatType>
struct FloatTraits;
template <>
struct FloatTraits<double> {
using mantissa_t = uint64_t;
// The number of bits in the given float type.
static constexpr int kTargetBits = 64;
// The number of exponent bits in the given float type.
static constexpr int kTargetExponentBits = 11;
// The number of mantissa bits in the given float type. This includes the
// implied high bit.
static constexpr int kTargetMantissaBits = 53;
// The largest supported IEEE exponent, in our integral mantissa
// representation.
//
// If `m` is the largest possible int kTargetMantissaBits bits wide, then
// m * 2**kMaxExponent is exactly equal to DBL_MAX.
static constexpr int kMaxExponent = 971;
// The smallest supported IEEE normal exponent, in our integral mantissa
// representation.
//
// If `m` is the smallest possible int kTargetMantissaBits bits wide, then
// m * 2**kMinNormalExponent is exactly equal to DBL_MIN.
static constexpr int kMinNormalExponent = -1074;
// The IEEE exponent bias. It equals ((1 << (kTargetExponentBits - 1)) - 1).
static constexpr int kExponentBias = 1023;
// The Eisel-Lemire "Shifting to 54/25 Bits" adjustment. It equals (63 - 1 -
// kTargetMantissaBits).
static constexpr int kEiselLemireShift = 9;
// The Eisel-Lemire high64_mask. It equals ((1 << kEiselLemireShift) - 1).
static constexpr uint64_t kEiselLemireMask = uint64_t{0x1FF};
// The smallest negative integer N (smallest negative means furthest from
// zero) such that parsing 9999999999999999999eN, with 19 nines, is still
// positive. Parsing a smaller (more negative) N will produce zero.
//
// Adjusting the decimal point and exponent, without adjusting the value,
// 9999999999999999999eN equals 9.999999999999999999eM where M = N + 18.
//
// 9999999999999999999, with 19 nines but no decimal point, is the largest
// "repeated nines" integer that fits in a uint64_t.
static constexpr int kEiselLemireMinInclusiveExp10 = -324 - 18;
// The smallest positive integer N such that parsing 1eN produces infinity.
// Parsing a smaller N will produce something finite.
static constexpr int kEiselLemireMaxExclusiveExp10 = 309;
static double MakeNan(absl::Nonnull<const char*> tagp) {
#if ABSL_HAVE_BUILTIN(__builtin_nan)
// Use __builtin_nan() if available since it has a fix for
// https://bugs.llvm.org/show_bug.cgi?id=37778
// std::nan may use the glibc implementation.
return __builtin_nan(tagp);
#else
// Support nan no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return nan(tagp);
#endif
}
// Builds a nonzero floating point number out of the provided parts.
//
// This is intended to do the same operation as ldexp(mantissa, exponent),
// but using purely integer math, to avoid -ffastmath and floating
// point environment issues. Using type punning is also faster. We fall back
// to ldexp on a per-platform basis for portability.
//
// `exponent` must be between kMinNormalExponent and kMaxExponent.
//
// `mantissa` must either be exactly kTargetMantissaBits wide, in which case
// a normal value is made, or it must be less narrow than that, in which case
// `exponent` must be exactly kMinNormalExponent, and a subnormal value is
// made.
static double Make(mantissa_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
// Support ldexp no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return sign ? -ldexp(mantissa, exponent) : ldexp(mantissa, exponent);
#else
constexpr uint64_t kMantissaMask =
(uint64_t{1} << (kTargetMantissaBits - 1)) - 1;
uint64_t dbl = static_cast<uint64_t>(sign) << 63;
if (mantissa > kMantissaMask) {
// Normal value.
// Adjust by 1023 for the exponent representation bias, and an additional
// 52 due to the implied decimal point in the IEEE mantissa
// representation.
dbl += static_cast<uint64_t>(exponent + 1023 + kTargetMantissaBits - 1)
<< 52;
mantissa &= kMantissaMask;
} else {
// subnormal value
assert(exponent == kMinNormalExponent);
}
dbl += mantissa;
return absl::bit_cast<double>(dbl);
#endif // ABSL_BIT_PACK_FLOATS
}
};
// Specialization of floating point traits for the `float` type. See the
// FloatTraits<double> specialization above for meaning of each of the following
// members and methods.
template <>
struct FloatTraits<float> {
using mantissa_t = uint32_t;
static constexpr int kTargetBits = 32;
static constexpr int kTargetExponentBits = 8;
static constexpr int kTargetMantissaBits = 24;
static constexpr int kMaxExponent = 104;
static constexpr int kMinNormalExponent = -149;
static constexpr int kExponentBias = 127;
static constexpr int kEiselLemireShift = 38;
static constexpr uint64_t kEiselLemireMask = uint64_t{0x3FFFFFFFFF};
static constexpr int kEiselLemireMinInclusiveExp10 = -46 - 18;
static constexpr int kEiselLemireMaxExclusiveExp10 = 39;
static float MakeNan(absl::Nonnull<const char*> tagp) {
#if ABSL_HAVE_BUILTIN(__builtin_nanf)
// Use __builtin_nanf() if available since it has a fix for
// https://bugs.llvm.org/show_bug.cgi?id=37778
// std::nanf may use the glibc implementation.
return __builtin_nanf(tagp);
#else
// Support nanf no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return std::nanf(tagp);
#endif
}
static float Make(mantissa_t mantissa, int exponent, bool sign) {
#ifndef ABSL_BIT_PACK_FLOATS
// Support ldexpf no matter which namespace it's in. Some platforms
// incorrectly don't put it in namespace std.
using namespace std; // NOLINT
return sign ? -ldexpf(mantissa, exponent) : ldexpf(mantissa, exponent);
#else
constexpr uint32_t kMantissaMask =
(uint32_t{1} << (kTargetMantissaBits - 1)) - 1;
uint32_t flt = static_cast<uint32_t>(sign) << 31;
if (mantissa > kMantissaMask) {
// Normal value.
// Adjust by 127 for the exponent representation bias, and an additional
// 23 due to the implied decimal point in the IEEE mantissa
// representation.
flt += static_cast<uint32_t>(exponent + 127 + kTargetMantissaBits - 1)
<< 23;
mantissa &= kMantissaMask;
} else {
// subnormal value
assert(exponent == kMinNormalExponent);
}
flt += mantissa;
return absl::bit_cast<float>(flt);
#endif // ABSL_BIT_PACK_FLOATS
}
};
// Decimal-to-binary conversions require coercing powers of 10 into a mantissa
// and a power of 2. The two helper functions Power10Mantissa(n) and
// Power10Exponent(n) perform this task. Together, these represent a hand-
// rolled floating point value which is equal to or just less than 10**n.
//
// The return values satisfy two range guarantees:
//
// Power10Mantissa(n) * 2**Power10Exponent(n) <= 10**n
// < (Power10Mantissa(n) + 1) * 2**Power10Exponent(n)
//
// 2**63 <= Power10Mantissa(n) < 2**64.
//
// See the "Table of powers of 10" comment below for a "1e60" example.
//
// Lookups into the power-of-10 table must first check the Power10Overflow() and
// Power10Underflow() functions, to avoid out-of-bounds table access.
//
// Indexes into these tables are biased by -kPower10TableMinInclusive. Valid
// indexes range from kPower10TableMinInclusive to kPower10TableMaxExclusive.
extern const uint64_t kPower10MantissaHighTable[]; // High 64 of 128 bits.
extern const uint64_t kPower10MantissaLowTable[]; // Low 64 of 128 bits.
// The smallest (inclusive) allowed value for use with the Power10Mantissa()
// and Power10Exponent() functions below. (If a smaller exponent is needed in
// calculations, the end result is guaranteed to underflow.)
constexpr int kPower10TableMinInclusive = -342;
// The largest (exclusive) allowed value for use with the Power10Mantissa() and
// Power10Exponent() functions below. (If a larger-or-equal exponent is needed
// in calculations, the end result is guaranteed to overflow.)
constexpr int kPower10TableMaxExclusive = 309;
uint64_t Power10Mantissa(int n) {
return kPower10MantissaHighTable[n - kPower10TableMinInclusive];
}
int Power10Exponent(int n) {
// The 217706 etc magic numbers encode the results as a formula instead of a
// table. Their equivalence (over the kPower10TableMinInclusive ..
// kPower10TableMaxExclusive range) is confirmed by
// https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
return (217706 * n >> 16) - 63;
}
// Returns true if n is large enough that 10**n always results in an IEEE
// overflow.
bool Power10Overflow(int n) { return n >= kPower10TableMaxExclusive; }
// Returns true if n is small enough that 10**n times a ParsedFloat mantissa
// always results in an IEEE underflow.
bool Power10Underflow(int n) { return n < kPower10TableMinInclusive; }
// Returns true if Power10Mantissa(n) * 2**Power10Exponent(n) is exactly equal
// to 10**n numerically. Put another way, this returns true if there is no
// truncation error in Power10Mantissa(n).
bool Power10Exact(int n) { return n >= 0 && n <= 27; }
// Sentinel exponent values for representing numbers too large or too close to
// zero to represent in a double.
constexpr int kOverflow = 99999;
constexpr int kUnderflow = -99999;
// Struct representing the calculated conversion result of a positive (nonzero)
// floating point number.
//
// The calculated number is mantissa * 2**exponent (mantissa is treated as an
// integer.) `mantissa` is chosen to be the correct width for the IEEE float
// representation being calculated. (`mantissa` will always have the same bit
// width for normal values, and narrower bit widths for subnormals.)
//
// If the result of conversion was an underflow or overflow, exponent is set
// to kUnderflow or kOverflow.
struct CalculatedFloat {
uint64_t mantissa = 0;
int exponent = 0;
};
// Returns the bit width of the given uint128. (Equivalently, returns 128
// minus the number of leading zero bits.)
int BitWidth(uint128 value) {
if (Uint128High64(value) == 0) {
// This static_cast is only needed when using a std::bit_width()
// implementation that does not have the fix for LWG 3656 applied.
return static_cast<int>(bit_width(Uint128Low64(value)));
}
return 128 - countl_zero(Uint128High64(value));
}
// Calculates how far to the right a mantissa needs to be shifted to create a
// properly adjusted mantissa for an IEEE floating point number.
//
// `mantissa_width` is the bit width of the mantissa to be shifted, and
// `binary_exponent` is the exponent of the number before the shift.
//
// This accounts for subnormal values, and will return a larger-than-normal
// shift if binary_exponent would otherwise be too low.
template <typename FloatType>
int NormalizedShiftSize(int mantissa_width, int binary_exponent) {
const int normal_shift =
mantissa_width - FloatTraits<FloatType>::kTargetMantissaBits;
const int minimum_shift =
FloatTraits<FloatType>::kMinNormalExponent - binary_exponent;
return std::max(normal_shift, minimum_shift);
}
// Right shifts a uint128 so that it has the requested bit width. (The
// resulting value will have 128 - bit_width leading zeroes.) The initial
// `value` must be wider than the requested bit width.
//
// Returns the number of bits shifted.
int TruncateToBitWidth(int bit_width, absl::Nonnull<uint128*> value) {
const int current_bit_width = BitWidth(*value);
const int shift = current_bit_width - bit_width;
*value >>= shift;
return shift;
}
// Checks if the given ParsedFloat represents one of the edge cases that are
// not dependent on number base: zero, infinity, or NaN. If so, sets *value
// the appropriate double, and returns true.
template <typename FloatType>
bool HandleEdgeCase(const strings_internal::ParsedFloat& input, bool negative,
absl::Nonnull<FloatType*> value) {
if (input.type == strings_internal::FloatType::kNan) {
// A bug in both clang < 7 and gcc would cause the compiler to optimize
// away the buffer we are building below. Declaring the buffer volatile
// avoids the issue, and has no measurable performance impact in
// microbenchmarks.
//
// https://bugs.llvm.org/show_bug.cgi?id=37778
// https://gcc.gnu.org/bugzilla/show_bug.cgi?id=86113
constexpr ptrdiff_t kNanBufferSize = 128;
#if (defined(__GNUC__) && !defined(__clang__)) || \
(defined(__clang__) && __clang_major__ < 7)
volatile char n_char_sequence[kNanBufferSize];
#else
char n_char_sequence[kNanBufferSize];
#endif
if (input.subrange_begin == nullptr) {
n_char_sequence[0] = '\0';
} else {
ptrdiff_t nan_size = input.subrange_end - input.subrange_begin;
nan_size = std::min(nan_size, kNanBufferSize - 1);
std::copy_n(input.subrange_begin, nan_size, n_char_sequence);
n_char_sequence[nan_size] = '\0';
}
char* nan_argument = const_cast<char*>(n_char_sequence);
*value = negative ? -FloatTraits<FloatType>::MakeNan(nan_argument)
: FloatTraits<FloatType>::MakeNan(nan_argument);
return true;
}
if (input.type == strings_internal::FloatType::kInfinity) {
*value = negative ? -std::numeric_limits<FloatType>::infinity()
: std::numeric_limits<FloatType>::infinity();
return true;
}
if (input.mantissa == 0) {
*value = negative ? -0.0 : 0.0;
return true;
}
return false;
}
// Given a CalculatedFloat result of a from_chars conversion, generate the
// correct output values.
//
// CalculatedFloat can represent an underflow or overflow, in which case the
// error code in *result is set. Otherwise, the calculated floating point
// number is stored in *value.
template <typename FloatType>
void EncodeResult(const CalculatedFloat& calculated, bool negative,
absl::Nonnull<absl::from_chars_result*> result,
absl::Nonnull<FloatType*> value) {
if (calculated.exponent == kOverflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -std::numeric_limits<FloatType>::max()
: std::numeric_limits<FloatType>::max();
return;
} else if (calculated.mantissa == 0 || calculated.exponent == kUnderflow) {
result->ec = std::errc::result_out_of_range;
*value = negative ? -0.0 : 0.0;
return;
}
*value = FloatTraits<FloatType>::Make(
static_cast<typename FloatTraits<FloatType>::mantissa_t>(
calculated.mantissa),
calculated.exponent, negative);
}
// Returns the given uint128 shifted to the right by `shift` bits, and rounds
// the remaining bits using round_to_nearest logic. The value is returned as a
// uint64_t, since this is the type used by this library for storing calculated
// floating point mantissas.
//
// It is expected that the width of the input value shifted by `shift` will
// be the correct bit-width for the target mantissa, which is strictly narrower
// than a uint64_t.
//
// If `input_exact` is false, then a nonzero error epsilon is assumed. For
// rounding purposes, the true value being rounded is strictly greater than the
// input value. The error may represent a single lost carry bit.
//
// When input_exact, shifted bits of the form 1000000... represent a tie, which
// is broken by rounding to even -- the rounding direction is chosen so the low
// bit of the returned value is 0.
//
// When !input_exact, shifted bits of the form 10000000... represent a value
// strictly greater than one half (due to the error epsilon), and so ties are
// always broken by rounding up.
//
// When !input_exact, shifted bits of the form 01111111... are uncertain;
// the true value may or may not be greater than 10000000..., due to the
// possible lost carry bit. The correct rounding direction is unknown. In this
// case, the result is rounded down, and `output_exact` is set to false.
//
// Zero and negative values of `shift` are accepted, in which case the word is
// shifted left, as necessary.
uint64_t ShiftRightAndRound(uint128 value, int shift, bool input_exact,
absl::Nonnull<bool*> output_exact) {
if (shift <= 0) {
*output_exact = input_exact;
return static_cast<uint64_t>(value << -shift);
}
if (shift >= 128) {
// Exponent is so small that we are shifting away all significant bits.
// Answer will not be representable, even as a subnormal, so return a zero
// mantissa (which represents underflow).
*output_exact = true;
return 0;
}
*output_exact = true;
const uint128 shift_mask = (uint128(1) << shift) - 1;
const uint128 halfway_point = uint128(1) << (shift - 1);
const uint128 shifted_bits = value & shift_mask;
value >>= shift;
if (shifted_bits > halfway_point) {
// Shifted bits greater than 10000... require rounding up.
return static_cast<uint64_t>(value + 1);
}
if (shifted_bits == halfway_point) {
// In exact mode, shifted bits of 10000... mean we're exactly halfway
// between two numbers, and we must round to even. So only round up if
// the low bit of `value` is set.
//
// In inexact mode, the nonzero error means the actual value is greater
// than the halfway point and we must always round up.
if ((value & 1) == 1 || !input_exact) {
++value;
}
return static_cast<uint64_t>(value);
}
if (!input_exact && shifted_bits == halfway_point - 1) {
// Rounding direction is unclear, due to error.
*output_exact = false;
}
// Otherwise, round down.
return static_cast<uint64_t>(value);
}
// Checks if a floating point guess needs to be rounded up, using high precision
// math.
//
// `guess_mantissa` and `guess_exponent` represent a candidate guess for the
// number represented by `parsed_decimal`.
//
// The exact number represented by `parsed_decimal` must lie between the two
// numbers:
// A = `guess_mantissa * 2**guess_exponent`
// B = `(guess_mantissa + 1) * 2**guess_exponent`
//
// This function returns false if `A` is the better guess, and true if `B` is
// the better guess, with rounding ties broken by rounding to even.
bool MustRoundUp(uint64_t guess_mantissa, int guess_exponent,
const strings_internal::ParsedFloat& parsed_decimal) {
// 768 is the number of digits needed in the worst case. We could determine a
// better limit dynamically based on the value of parsed_decimal.exponent.
// This would optimize pathological input cases only. (Sane inputs won't have
// hundreds of digits of mantissa.)
absl::strings_internal::BigUnsigned<84> exact_mantissa;
int exact_exponent = exact_mantissa.ReadFloatMantissa(parsed_decimal, 768);
// Adjust the `guess` arguments to be halfway between A and B.
guess_mantissa = guess_mantissa * 2 + 1;
guess_exponent -= 1;
// In our comparison:
// lhs = exact = exact_mantissa * 10**exact_exponent
// = exact_mantissa * 5**exact_exponent * 2**exact_exponent
// rhs = guess = guess_mantissa * 2**guess_exponent
//
// Because we are doing integer math, we can't directly deal with negative
// exponents. We instead move these to the other side of the inequality.
absl::strings_internal::BigUnsigned<84>& lhs = exact_mantissa;
int comparison;
if (exact_exponent >= 0) {
lhs.MultiplyByFiveToTheNth(exact_exponent);
absl::strings_internal::BigUnsigned<84> rhs(guess_mantissa);
// There are powers of 2 on both sides of the inequality; reduce this to
// a single bit-shift.
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
} else {
// Move the power of 5 to the other side of the equation, giving us:
// lhs = exact_mantissa * 2**exact_exponent
// rhs = guess_mantissa * 5**(-exact_exponent) * 2**guess_exponent
absl::strings_internal::BigUnsigned<84> rhs =
absl::strings_internal::BigUnsigned<84>::FiveToTheNth(-exact_exponent);
rhs.MultiplyBy(guess_mantissa);
if (exact_exponent > guess_exponent) {
lhs.ShiftLeft(exact_exponent - guess_exponent);
} else {
rhs.ShiftLeft(guess_exponent - exact_exponent);
}
comparison = Compare(lhs, rhs);
}
if (comparison < 0) {
return false;
} else if (comparison > 0) {
return true;
} else {
// When lhs == rhs, the decimal input is exactly between A and B.
// Round towards even -- round up only if the low bit of the initial
// `guess_mantissa` was a 1. We shifted guess_mantissa left 1 bit at
// the beginning of this function, so test the 2nd bit here.
return (guess_mantissa & 2) == 2;
}
}
// Constructs a CalculatedFloat from a given mantissa and exponent, but
// with the following normalizations applied:
//
// If rounding has caused mantissa to increase just past the allowed bit
// width, shift and adjust exponent.
//
// If exponent is too high, sets kOverflow.
//
// If mantissa is zero (representing a non-zero value not representable, even
// as a subnormal), sets kUnderflow.
template <typename FloatType>
CalculatedFloat CalculatedFloatFromRawValues(uint64_t mantissa, int exponent) {
CalculatedFloat result;
if (mantissa == uint64_t{1} << FloatTraits<FloatType>::kTargetMantissaBits) {
mantissa >>= 1;
exponent += 1;
}
if (exponent > FloatTraits<FloatType>::kMaxExponent) {
result.exponent = kOverflow;
} else if (mantissa == 0) {
result.exponent = kUnderflow;
} else {
result.exponent = exponent;
result.mantissa = mantissa;
}
return result;
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedHexadecimal(
const strings_internal::ParsedFloat& parsed_hex) {
uint64_t mantissa = parsed_hex.mantissa;
int exponent = parsed_hex.exponent;
// This static_cast is only needed when using a std::bit_width()
// implementation that does not have the fix for LWG 3656 applied.
int mantissa_width = static_cast<int>(bit_width(mantissa));
const int shift = NormalizedShiftSize<FloatType>(mantissa_width, exponent);
bool result_exact;
exponent += shift;
mantissa = ShiftRightAndRound(mantissa, shift,
/* input exact= */ true, &result_exact);
// ParseFloat handles rounding in the hexadecimal case, so we don't have to
// check `result_exact` here.
return CalculatedFloatFromRawValues<FloatType>(mantissa, exponent);
}
template <typename FloatType>
CalculatedFloat CalculateFromParsedDecimal(
const strings_internal::ParsedFloat& parsed_decimal) {
CalculatedFloat result;
// Large or small enough decimal exponents will always result in overflow
// or underflow.
if (Power10Underflow(parsed_decimal.exponent)) {
result.exponent = kUnderflow;
return result;
} else if (Power10Overflow(parsed_decimal.exponent)) {
result.exponent = kOverflow;
return result;
}
// Otherwise convert our power of 10 into a power of 2 times an integer
// mantissa, and multiply this by our parsed decimal mantissa.
uint128 wide_binary_mantissa = parsed_decimal.mantissa;
wide_binary_mantissa *= Power10Mantissa(parsed_decimal.exponent);
int binary_exponent = Power10Exponent(parsed_decimal.exponent);
// Discard bits that are inaccurate due to truncation error. The magic
// `mantissa_width` constants below are justified in
// https://abseil.io/about/design/charconv. They represent the number of bits
// in `wide_binary_mantissa` that are guaranteed to be unaffected by error
// propagation.
bool mantissa_exact;
int mantissa_width;
if (parsed_decimal.subrange_begin) {
// Truncated mantissa
mantissa_width = 58;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else if (!Power10Exact(parsed_decimal.exponent)) {
// Exact mantissa, truncated power of ten
mantissa_width = 63;
mantissa_exact = false;
binary_exponent +=
TruncateToBitWidth(mantissa_width, &wide_binary_mantissa);
} else {
// Product is exact
mantissa_width = BitWidth(wide_binary_mantissa);
mantissa_exact = true;
}
// Shift into an FloatType-sized mantissa, and round to nearest.
const int shift =
NormalizedShiftSize<FloatType>(mantissa_width, binary_exponent);
bool result_exact;
binary_exponent += shift;
uint64_t binary_mantissa = ShiftRightAndRound(wide_binary_mantissa, shift,
mantissa_exact, &result_exact);
if (!result_exact) {
// We could not determine the rounding direction using int128 math. Use
// full resolution math instead.
if (MustRoundUp(binary_mantissa, binary_exponent, parsed_decimal)) {
binary_mantissa += 1;
}
}
return CalculatedFloatFromRawValues<FloatType>(binary_mantissa,
binary_exponent);
}
// As discussed in https://nigeltao.github.io/blog/2020/eisel-lemire.html the
// primary goal of the Eisel-Lemire algorithm is speed, for 99+% of the cases,
// not 100% coverage. As long as Eisel-Lemire doesn’t claim false positives,
// the combined approach (falling back to an alternative implementation when
// this function returns false) is both fast and correct.
template <typename FloatType>
bool EiselLemire(const strings_internal::ParsedFloat& input, bool negative,
absl::Nonnull<FloatType*> value,
absl::Nonnull<std::errc*> ec) {
uint64_t man = input.mantissa;
int exp10 = input.exponent;
if (exp10 < FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10) {
*value = negative ? -0.0 : 0.0;
*ec = std::errc::result_out_of_range;
return true;
} else if (exp10 >= FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10) {
// Return max (a finite value) consistent with from_chars and DR 3081. For
// SimpleAtod and SimpleAtof, post-processing will return infinity.
*value = negative ? -std::numeric_limits<FloatType>::max()
: std::numeric_limits<FloatType>::max();
*ec = std::errc::result_out_of_range;
return true;
}
// Assert kPower10TableMinInclusive <= exp10 < kPower10TableMaxExclusive.
// Equivalently, !Power10Underflow(exp10) and !Power10Overflow(exp10).
static_assert(
FloatTraits<FloatType>::kEiselLemireMinInclusiveExp10 >=
kPower10TableMinInclusive,
"(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
static_assert(
FloatTraits<FloatType>::kEiselLemireMaxExclusiveExp10 <=
kPower10TableMaxExclusive,
"(exp10-kPower10TableMinInclusive) in kPower10MantissaHighTable bounds");
// The terse (+) comments in this function body refer to sections of the
// https://nigeltao.github.io/blog/2020/eisel-lemire.html blog post.
//
// That blog post discusses double precision (11 exponent bits with a -1023
// bias, 52 mantissa bits), but the same approach applies to single precision
// (8 exponent bits with a -127 bias, 23 mantissa bits). Either way, the
// computation here happens with 64-bit values (e.g. man) or 128-bit values
// (e.g. x) before finally converting to 64- or 32-bit floating point.
//
// See also "Number Parsing at a Gigabyte per Second, Software: Practice and
// Experience 51 (8), 2021" (https://arxiv.org/abs/2101.11408) for detail.
// (+) Normalization.
int clz = countl_zero(man);
man <<= static_cast<unsigned int>(clz);
// The 217706 etc magic numbers are from the Power10Exponent function.
uint64_t ret_exp2 =
static_cast<uint64_t>((217706 * exp10 >> 16) + 64 +
FloatTraits<FloatType>::kExponentBias - clz);
// (+) Multiplication.
uint128 x = static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaHighTable[exp10 - kPower10TableMinInclusive]);
// (+) Wider Approximation.
static constexpr uint64_t high64_mask =
FloatTraits<FloatType>::kEiselLemireMask;
if (((Uint128High64(x) & high64_mask) == high64_mask) &&
(man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(x)))) {
uint128 y =
static_cast<uint128>(man) *
static_cast<uint128>(
kPower10MantissaLowTable[exp10 - kPower10TableMinInclusive]);
x += Uint128High64(y);
// For example, parsing "4503599627370497.5" will take the if-true
// branch here (for double precision), since:
// - x = 0x8000000000000BFF_FFFFFFFFFFFFFFFF
// - y = 0x8000000000000BFF_7FFFFFFFFFFFF400
// - man = 0xA000000000000F00
// Likewise, when parsing "0.0625" for single precision:
// - x = 0x7FFFFFFFFFFFFFFF_FFFFFFFFFFFFFFFF
// - y = 0x813FFFFFFFFFFFFF_8A00000000000000
// - man = 0x9C40000000000000
if (((Uint128High64(x) & high64_mask) == high64_mask) &&
((Uint128Low64(x) + 1) == 0) &&
(man > (std::numeric_limits<uint64_t>::max() - Uint128Low64(y)))) {
return false;
}
}
// (+) Shifting to 54 Bits (or for single precision, to 25 bits).
uint64_t msb = Uint128High64(x) >> 63;
uint64_t ret_man =
Uint128High64(x) >> (msb + FloatTraits<FloatType>::kEiselLemireShift);
ret_exp2 -= 1 ^ msb;
// (+) Half-way Ambiguity.
//
// For example, parsing "1e+23" will take the if-true branch here (for double
// precision), since:
// - x = 0x54B40B1F852BDA00_0000000000000000
// - ret_man = 0x002A5A058FC295ED
// Likewise, when parsing "20040229.0" for single precision:
// - x = 0x4C72894000000000_0000000000000000
// - ret_man = 0x000000000131CA25
if ((Uint128Low64(x) == 0) && ((Uint128High64(x) & high64_mask) == 0) &&
((ret_man & 3) == 1)) {
return false;
}
// (+) From 54 to 53 Bits (or for single precision, from 25 to 24 bits).
ret_man += ret_man & 1; // Line From54a.
ret_man >>= 1; // Line From54b.
// Incrementing ret_man (at line From54a) may have overflowed 54 bits (53
// bits after the right shift by 1 at line From54b), so adjust for that.
//
// For example, parsing "9223372036854775807" will take the if-true branch
// here (for double precision), since:
// - ret_man = 0x0020000000000000 = (1 << 53)
// Likewise, when parsing "2147483647.0" for single precision:
// - ret_man = 0x0000000001000000 = (1 << 24)
if ((ret_man >> FloatTraits<FloatType>::kTargetMantissaBits) > 0) {
ret_exp2 += 1;
// Conceptually, we need a "ret_man >>= 1" in this if-block to balance
// incrementing ret_exp2 in the line immediately above. However, we only
// get here when line From54a overflowed (after adding a 1), so ret_man
// here is (1 << 53). Its low 53 bits are therefore all zeroes. The only
// remaining use of ret_man is to mask it with ((1 << 52) - 1), so only its
// low 52 bits matter. A "ret_man >>= 1" would have no effect in practice.
//
// We omit the "ret_man >>= 1", even if it is cheap (and this if-branch is
// rarely taken) and technically 'more correct', so that mutation tests
// that would otherwise modify or omit that "ret_man >>= 1" don't complain
// that such code mutations have no observable effect.
}
// ret_exp2 is a uint64_t. Zero or underflow means that we're in subnormal
// space. max_exp2 (0x7FF for double precision, 0xFF for single precision) or
// above means that we're in Inf/NaN space.
//
// The if block is equivalent to (but has fewer branches than):
// if ((ret_exp2 <= 0) || (ret_exp2 >= max_exp2)) { etc }
//
// For example, parsing "4.9406564584124654e-324" will take the if-true
// branch here, since ret_exp2 = -51.
static constexpr uint64_t max_exp2 =
(1 << FloatTraits<FloatType>::kTargetExponentBits) - 1;
if ((ret_exp2 - 1) >= (max_exp2 - 1)) {
return false;
}
#ifndef ABSL_BIT_PACK_FLOATS
if (FloatTraits<FloatType>::kTargetBits == 64) {
*value = FloatTraits<FloatType>::Make(
(ret_man & 0x000FFFFFFFFFFFFFu) | 0x0010000000000000u,
static_cast<int>(ret_exp2) - 1023 - 52, negative);
return true;
} else if (FloatTraits<FloatType>::kTargetBits == 32) {
*value = FloatTraits<FloatType>::Make(
(static_cast<uint32_t>(ret_man) & 0x007FFFFFu) | 0x00800000u,
static_cast<int>(ret_exp2) - 127 - 23, negative);
return true;
}
#else
if (FloatTraits<FloatType>::kTargetBits == 64) {
uint64_t ret_bits = (ret_exp2 << 52) | (ret_man & 0x000FFFFFFFFFFFFFu);
if (negative) {
ret_bits |= 0x8000000000000000u;
}
*value = absl::bit_cast<double>(ret_bits);
return true;
} else if (FloatTraits<FloatType>::kTargetBits == 32) {
uint32_t ret_bits = (static_cast<uint32_t>(ret_exp2) << 23) |
(static_cast<uint32_t>(ret_man) & 0x007FFFFFu);
if (negative) {
ret_bits |= 0x80000000u;
}
*value = absl::bit_cast<float>(ret_bits);
return true;
}
#endif // ABSL_BIT_PACK_FLOATS
return false;
}
template <typename FloatType>
from_chars_result FromCharsImpl(absl::Nonnull<const char*> first,
absl::Nonnull<const char*> last,
FloatType& value, chars_format fmt_flags) {
from_chars_result result;
result.ptr = first; // overwritten on successful parse
result.ec = std::errc();
bool negative = false;
if (first != last && *first == '-') {
++first;
negative = true;
}
// If the `hex` flag is *not* set, then we will accept a 0x prefix and try
// to parse a hexadecimal float.
if ((fmt_flags & chars_format::hex) == chars_format{} && last - first >= 2 &&
*first == '0' && (first[1] == 'x' || first[1] == 'X')) {
const char* hex_first = first + 2;
strings_internal::ParsedFloat hex_parse =
strings_internal::ParseFloat<16>(hex_first, last, fmt_flags);
if (hex_parse.end == nullptr ||
hex_parse.type != strings_internal::FloatType::kNumber) {
// Either we failed to parse a hex float after the "0x", or we read
// "0xinf" or "0xnan" which we don't want to match.
//
// However, a string that begins with "0x" also begins with "0", which
// is normally a valid match for the number zero. So we want these
// strings to match zero unless fmt_flags is `scientific`. (This flag
// means an exponent is required, which the string "0" does not have.)
if (fmt_flags == chars_format::scientific) {
result.ec = std::errc::invalid_argument;
} else {
result.ptr = first + 1;
value = negative ? -0.0 : 0.0;
}
return result;
}
// We matched a value.
result.ptr = hex_parse.end;
if (HandleEdgeCase(hex_parse, negative, &value)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedHexadecimal<FloatType>(hex_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
}
// Otherwise, we choose the number base based on the flags.
if ((fmt_flags & chars_format::hex) == chars_format::hex) {
strings_internal::ParsedFloat hex_parse =
strings_internal::ParseFloat<16>(first, last, fmt_flags);
if (hex_parse.end == nullptr) {
result.ec = std::errc::invalid_argument;
return result;
}
result.ptr = hex_parse.end;
if (HandleEdgeCase(hex_parse, negative, &value)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedHexadecimal<FloatType>(hex_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
} else {
strings_internal::ParsedFloat decimal_parse =
strings_internal::ParseFloat<10>(first, last, fmt_flags);
if (decimal_parse.end == nullptr) {
result.ec = std::errc::invalid_argument;
return result;
}
result.ptr = decimal_parse.end;
if (HandleEdgeCase(decimal_parse, negative, &value)) {
return result;
}
// A nullptr subrange_begin means that the decimal_parse.mantissa is exact
// (not truncated), a precondition of the Eisel-Lemire algorithm.
if ((decimal_parse.subrange_begin == nullptr) &&
EiselLemire<FloatType>(decimal_parse, negative, &value, &result.ec)) {
return result;
}
CalculatedFloat calculated =
CalculateFromParsedDecimal<FloatType>(decimal_parse);
EncodeResult(calculated, negative, &result, &value);
return result;
}
}
} // namespace
from_chars_result from_chars(absl::Nonnull<const char*> first,
absl::Nonnull<const char*> last, double& value,
chars_format fmt) {
return FromCharsImpl(first, last, value, fmt);
}
from_chars_result from_chars(absl::Nonnull<const char*> first,
absl::Nonnull<const char*> last, float& value,
chars_format fmt) {
return FromCharsImpl(first, last, value, fmt);
}
namespace {
// Table of powers of 10, from kPower10TableMinInclusive to
// kPower10TableMaxExclusive.
//
// kPower10MantissaHighTable[i - kPower10TableMinInclusive] stores the 64-bit
// mantissa. The high bit is always on.
//
// kPower10MantissaLowTable extends that 64-bit mantissa to 128 bits.
//
// Power10Exponent(i) calculates the power-of-two exponent.
//
// For a number i, this gives the unique mantissaHigh and exponent such that
// (mantissaHigh * 2**exponent) <= 10**i < ((mantissaHigh + 1) * 2**exponent).
//
// For example, Python can confirm that the exact hexadecimal value of 1e60 is:
// >>> a = 1000000000000000000000000000000000000000000000000000000000000
// >>> hex(a)
// '0x9f4f2726179a224501d762422c946590d91000000000000000'
// Adding underscores at every 8th hex digit shows 50 hex digits:
// '0x9f4f2726_179a2245_01d76242_2c946590_d9100000_00000000_00'.
// In this case, the high bit of the first hex digit, 9, is coincidentally set,
// so we do not have to do further shifting to deduce the 128-bit mantissa:
// - kPower10MantissaHighTable[60 - kP10TMI] = 0x9f4f2726179a2245U
// - kPower10MantissaLowTable[ 60 - kP10TMI] = 0x01d762422c946590U
// where kP10TMI is kPower10TableMinInclusive. The low 18 of those 50 hex
// digits are truncated.
//
// 50 hex digits (with the high bit set) is 200 bits and mantissaHigh holds 64
// bits, so Power10Exponent(60) = 200 - 64 = 136. Again, Python can confirm:
// >>> b = 0x9f4f2726179a2245
// >>> ((b+0)<<136) <= a
// True
// >>> ((b+1)<<136) <= a
// False
//
// The tables were generated by
// https://github.com/google/wuffs/blob/315b2e52625ebd7b02d8fac13e3cd85ea374fb80/script/print-mpb-powers-of-10.go
// after re-formatting its output into two arrays of N uint64_t values (instead
// of an N element array of uint64_t pairs).
const uint64_t kPower10MantissaHighTable[] = {
0xeef453d6923bd65aU, 0x9558b4661b6565f8U, 0xbaaee17fa23ebf76U,
0xe95a99df8ace6f53U, 0x91d8a02bb6c10594U, 0xb64ec836a47146f9U,
0xe3e27a444d8d98b7U, 0x8e6d8c6ab0787f72U, 0xb208ef855c969f4fU,
0xde8b2b66b3bc4723U, 0x8b16fb203055ac76U, 0xaddcb9e83c6b1793U,
0xd953e8624b85dd78U, 0x87d4713d6f33aa6bU, 0xa9c98d8ccb009506U,
0xd43bf0effdc0ba48U, 0x84a57695fe98746dU, 0xa5ced43b7e3e9188U,
0xcf42894a5dce35eaU, 0x818995ce7aa0e1b2U, 0xa1ebfb4219491a1fU,
0xca66fa129f9b60a6U, 0xfd00b897478238d0U, 0x9e20735e8cb16382U,
0xc5a890362fddbc62U, 0xf712b443bbd52b7bU, 0x9a6bb0aa55653b2dU,
0xc1069cd4eabe89f8U, 0xf148440a256e2c76U, 0x96cd2a865764dbcaU,
0xbc807527ed3e12bcU, 0xeba09271e88d976bU, 0x93445b8731587ea3U,
0xb8157268fdae9e4cU, 0xe61acf033d1a45dfU, 0x8fd0c16206306babU,
0xb3c4f1ba87bc8696U, 0xe0b62e2929aba83cU, 0x8c71dcd9ba0b4925U,
0xaf8e5410288e1b6fU, 0xdb71e91432b1a24aU, 0x892731ac9faf056eU,
0xab70fe17c79ac6caU, 0xd64d3d9db981787dU, 0x85f0468293f0eb4eU,
0xa76c582338ed2621U, 0xd1476e2c07286faaU, 0x82cca4db847945caU,
0xa37fce126597973cU, 0xcc5fc196fefd7d0cU, 0xff77b1fcbebcdc4fU,
0x9faacf3df73609b1U, 0xc795830d75038c1dU, 0xf97ae3d0d2446f25U,
0x9becce62836ac577U, 0xc2e801fb244576d5U, 0xf3a20279ed56d48aU,
0x9845418c345644d6U, 0xbe5691ef416bd60cU, 0xedec366b11c6cb8fU,
0x94b3a202eb1c3f39U, 0xb9e08a83a5e34f07U, 0xe858ad248f5c22c9U,
0x91376c36d99995beU, 0xb58547448ffffb2dU, 0xe2e69915b3fff9f9U,
0x8dd01fad907ffc3bU, 0xb1442798f49ffb4aU, 0xdd95317f31c7fa1dU,
0x8a7d3eef7f1cfc52U, 0xad1c8eab5ee43b66U, 0xd863b256369d4a40U,
0x873e4f75e2224e68U, 0xa90de3535aaae202U, 0xd3515c2831559a83U,
0x8412d9991ed58091U, 0xa5178fff668ae0b6U, 0xce5d73ff402d98e3U,
0x80fa687f881c7f8eU, 0xa139029f6a239f72U, 0xc987434744ac874eU,
0xfbe9141915d7a922U, 0x9d71ac8fada6c9b5U, 0xc4ce17b399107c22U,
0xf6019da07f549b2bU, 0x99c102844f94e0fbU, 0xc0314325637a1939U,
0xf03d93eebc589f88U, 0x96267c7535b763b5U, 0xbbb01b9283253ca2U,
0xea9c227723ee8bcbU, 0x92a1958a7675175fU, 0xb749faed14125d36U,
0xe51c79a85916f484U, 0x8f31cc0937ae58d2U, 0xb2fe3f0b8599ef07U,
0xdfbdcece67006ac9U, 0x8bd6a141006042bdU, 0xaecc49914078536dU,
0xda7f5bf590966848U, 0x888f99797a5e012dU, 0xaab37fd7d8f58178U,
0xd5605fcdcf32e1d6U, 0x855c3be0a17fcd26U, 0xa6b34ad8c9dfc06fU,
0xd0601d8efc57b08bU, 0x823c12795db6ce57U, 0xa2cb1717b52481edU,
0xcb7ddcdda26da268U, 0xfe5d54150b090b02U, 0x9efa548d26e5a6e1U,
0xc6b8e9b0709f109aU, 0xf867241c8cc6d4c0U, 0x9b407691d7fc44f8U,
0xc21094364dfb5636U, 0xf294b943e17a2bc4U, 0x979cf3ca6cec5b5aU,
0xbd8430bd08277231U, 0xece53cec4a314ebdU, 0x940f4613ae5ed136U,
0xb913179899f68584U, 0xe757dd7ec07426e5U, 0x9096ea6f3848984fU,
0xb4bca50b065abe63U, 0xe1ebce4dc7f16dfbU, 0x8d3360f09cf6e4bdU,
0xb080392cc4349decU, 0xdca04777f541c567U, 0x89e42caaf9491b60U,
0xac5d37d5b79b6239U, 0xd77485cb25823ac7U, 0x86a8d39ef77164bcU,
0xa8530886b54dbdebU, 0xd267caa862a12d66U, 0x8380dea93da4bc60U,
0xa46116538d0deb78U, 0xcd795be870516656U, 0x806bd9714632dff6U,
0xa086cfcd97bf97f3U, 0xc8a883c0fdaf7df0U, 0xfad2a4b13d1b5d6cU,
0x9cc3a6eec6311a63U, 0xc3f490aa77bd60fcU, 0xf4f1b4d515acb93bU,
0x991711052d8bf3c5U, 0xbf5cd54678eef0b6U, 0xef340a98172aace4U,
0x9580869f0e7aac0eU, 0xbae0a846d2195712U, 0xe998d258869facd7U,
0x91ff83775423cc06U, 0xb67f6455292cbf08U, 0xe41f3d6a7377eecaU,
0x8e938662882af53eU, 0xb23867fb2a35b28dU, 0xdec681f9f4c31f31U,
0x8b3c113c38f9f37eU, 0xae0b158b4738705eU, 0xd98ddaee19068c76U,
0x87f8a8d4cfa417c9U, 0xa9f6d30a038d1dbcU, 0xd47487cc8470652bU,
0x84c8d4dfd2c63f3bU, 0xa5fb0a17c777cf09U, 0xcf79cc9db955c2ccU,
0x81ac1fe293d599bfU, 0xa21727db38cb002fU, 0xca9cf1d206fdc03bU,
0xfd442e4688bd304aU, 0x9e4a9cec15763e2eU, 0xc5dd44271ad3cdbaU,
0xf7549530e188c128U, 0x9a94dd3e8cf578b9U, 0xc13a148e3032d6e7U,
0xf18899b1bc3f8ca1U, 0x96f5600f15a7b7e5U, 0xbcb2b812db11a5deU,
0xebdf661791d60f56U, 0x936b9fcebb25c995U, 0xb84687c269ef3bfbU,
0xe65829b3046b0afaU, 0x8ff71a0fe2c2e6dcU, 0xb3f4e093db73a093U,
0xe0f218b8d25088b8U, 0x8c974f7383725573U, 0xafbd2350644eeacfU,
0xdbac6c247d62a583U, 0x894bc396ce5da772U, 0xab9eb47c81f5114fU,
0xd686619ba27255a2U, 0x8613fd0145877585U, 0xa798fc4196e952e7U,
0xd17f3b51fca3a7a0U, 0x82ef85133de648c4U, 0xa3ab66580d5fdaf5U,
0xcc963fee10b7d1b3U, 0xffbbcfe994e5c61fU, 0x9fd561f1fd0f9bd3U,
0xc7caba6e7c5382c8U, 0xf9bd690a1b68637bU, 0x9c1661a651213e2dU,
0xc31bfa0fe5698db8U, 0xf3e2f893dec3f126U, 0x986ddb5c6b3a76b7U,
0xbe89523386091465U, 0xee2ba6c0678b597fU, 0x94db483840b717efU,
0xba121a4650e4ddebU, 0xe896a0d7e51e1566U, 0x915e2486ef32cd60U,
0xb5b5ada8aaff80b8U, 0xe3231912d5bf60e6U, 0x8df5efabc5979c8fU,
0xb1736b96b6fd83b3U, 0xddd0467c64bce4a0U, 0x8aa22c0dbef60ee4U,
0xad4ab7112eb3929dU, 0xd89d64d57a607744U, 0x87625f056c7c4a8bU,
0xa93af6c6c79b5d2dU, 0xd389b47879823479U, 0x843610cb4bf160cbU,
0xa54394fe1eedb8feU, 0xce947a3da6a9273eU, 0x811ccc668829b887U,
0xa163ff802a3426a8U, 0xc9bcff6034c13052U, 0xfc2c3f3841f17c67U,
0x9d9ba7832936edc0U, 0xc5029163f384a931U, 0xf64335bcf065d37dU,
0x99ea0196163fa42eU, 0xc06481fb9bcf8d39U, 0xf07da27a82c37088U,
0x964e858c91ba2655U, 0xbbe226efb628afeaU, 0xeadab0aba3b2dbe5U,
0x92c8ae6b464fc96fU, 0xb77ada0617e3bbcbU, 0xe55990879ddcaabdU,
0x8f57fa54c2a9eab6U, 0xb32df8e9f3546564U, 0xdff9772470297ebdU,
0x8bfbea76c619ef36U, 0xaefae51477a06b03U, 0xdab99e59958885c4U,
0x88b402f7fd75539bU, 0xaae103b5fcd2a881U, 0xd59944a37c0752a2U,
0x857fcae62d8493a5U, 0xa6dfbd9fb8e5b88eU, 0xd097ad07a71f26b2U,
0x825ecc24c873782fU, 0xa2f67f2dfa90563bU, 0xcbb41ef979346bcaU,
0xfea126b7d78186bcU, 0x9f24b832e6b0f436U, 0xc6ede63fa05d3143U,
0xf8a95fcf88747d94U, 0x9b69dbe1b548ce7cU, 0xc24452da229b021bU,
0xf2d56790ab41c2a2U, 0x97c560ba6b0919a5U, 0xbdb6b8e905cb600fU,
0xed246723473e3813U, 0x9436c0760c86e30bU, 0xb94470938fa89bceU,
0xe7958cb87392c2c2U, 0x90bd77f3483bb9b9U, 0xb4ecd5f01a4aa828U,
0xe2280b6c20dd5232U, 0x8d590723948a535fU, 0xb0af48ec79ace837U,
0xdcdb1b2798182244U, 0x8a08f0f8bf0f156bU, 0xac8b2d36eed2dac5U,
0xd7adf884aa879177U, 0x86ccbb52ea94baeaU, 0xa87fea27a539e9a5U,
0xd29fe4b18e88640eU, 0x83a3eeeef9153e89U, 0xa48ceaaab75a8e2bU,
0xcdb02555653131b6U, 0x808e17555f3ebf11U, 0xa0b19d2ab70e6ed6U,
0xc8de047564d20a8bU, 0xfb158592be068d2eU, 0x9ced737bb6c4183dU,
0xc428d05aa4751e4cU, 0xf53304714d9265dfU, 0x993fe2c6d07b7fabU,
0xbf8fdb78849a5f96U, 0xef73d256a5c0f77cU, 0x95a8637627989aadU,
0xbb127c53b17ec159U, 0xe9d71b689dde71afU, 0x9226712162ab070dU,
0xb6b00d69bb55c8d1U, 0xe45c10c42a2b3b05U, 0x8eb98a7a9a5b04e3U,
0xb267ed1940f1c61cU, 0xdf01e85f912e37a3U, 0x8b61313bbabce2c6U,
0xae397d8aa96c1b77U, 0xd9c7dced53c72255U, 0x881cea14545c7575U,
0xaa242499697392d2U, 0xd4ad2dbfc3d07787U, 0x84ec3c97da624ab4U,
0xa6274bbdd0fadd61U, 0xcfb11ead453994baU, 0x81ceb32c4b43fcf4U,
0xa2425ff75e14fc31U, 0xcad2f7f5359a3b3eU, 0xfd87b5f28300ca0dU,
0x9e74d1b791e07e48U, 0xc612062576589ddaU, 0xf79687aed3eec551U,
0x9abe14cd44753b52U, 0xc16d9a0095928a27U, 0xf1c90080baf72cb1U,
0x971da05074da7beeU, 0xbce5086492111aeaU, 0xec1e4a7db69561a5U,
0x9392ee8e921d5d07U, 0xb877aa3236a4b449U, 0xe69594bec44de15bU,
0x901d7cf73ab0acd9U, 0xb424dc35095cd80fU, 0xe12e13424bb40e13U,
0x8cbccc096f5088cbU, 0xafebff0bcb24aafeU, 0xdbe6fecebdedd5beU,
0x89705f4136b4a597U, 0xabcc77118461cefcU, 0xd6bf94d5e57a42bcU,
0x8637bd05af6c69b5U, 0xa7c5ac471b478423U, 0xd1b71758e219652bU,
0x83126e978d4fdf3bU, 0xa3d70a3d70a3d70aU, 0xccccccccccccccccU,
0x8000000000000000U, 0xa000000000000000U, 0xc800000000000000U,
0xfa00000000000000U, 0x9c40000000000000U, 0xc350000000000000U,
0xf424000000000000U, 0x9896800000000000U, 0xbebc200000000000U,
0xee6b280000000000U, 0x9502f90000000000U, 0xba43b74000000000U,
0xe8d4a51000000000U, 0x9184e72a00000000U, 0xb5e620f480000000U,
0xe35fa931a0000000U, 0x8e1bc9bf04000000U, 0xb1a2bc2ec5000000U,
0xde0b6b3a76400000U, 0x8ac7230489e80000U, 0xad78ebc5ac620000U,
0xd8d726b7177a8000U, 0x878678326eac9000U, 0xa968163f0a57b400U,
0xd3c21bcecceda100U, 0x84595161401484a0U, 0xa56fa5b99019a5c8U,
0xcecb8f27f4200f3aU, 0x813f3978f8940984U, 0xa18f07d736b90be5U,
0xc9f2c9cd04674edeU, 0xfc6f7c4045812296U, 0x9dc5ada82b70b59dU,
0xc5371912364ce305U, 0xf684df56c3e01bc6U, 0x9a130b963a6c115cU,
0xc097ce7bc90715b3U, 0xf0bdc21abb48db20U, 0x96769950b50d88f4U,
0xbc143fa4e250eb31U, 0xeb194f8e1ae525fdU, 0x92efd1b8d0cf37beU,
0xb7abc627050305adU, 0xe596b7b0c643c719U, 0x8f7e32ce7bea5c6fU,
0xb35dbf821ae4f38bU, 0xe0352f62a19e306eU, 0x8c213d9da502de45U,
0xaf298d050e4395d6U, 0xdaf3f04651d47b4cU, 0x88d8762bf324cd0fU,
0xab0e93b6efee0053U, 0xd5d238a4abe98068U, 0x85a36366eb71f041U,
0xa70c3c40a64e6c51U, 0xd0cf4b50cfe20765U, 0x82818f1281ed449fU,
0xa321f2d7226895c7U, 0xcbea6f8ceb02bb39U, 0xfee50b7025c36a08U,
0x9f4f2726179a2245U, 0xc722f0ef9d80aad6U, 0xf8ebad2b84e0d58bU,
0x9b934c3b330c8577U, 0xc2781f49ffcfa6d5U, 0xf316271c7fc3908aU,
0x97edd871cfda3a56U, 0xbde94e8e43d0c8ecU, 0xed63a231d4c4fb27U,
0x945e455f24fb1cf8U, 0xb975d6b6ee39e436U, 0xe7d34c64a9c85d44U,
0x90e40fbeea1d3a4aU, 0xb51d13aea4a488ddU, 0xe264589a4dcdab14U,
0x8d7eb76070a08aecU, 0xb0de65388cc8ada8U, 0xdd15fe86affad912U,
0x8a2dbf142dfcc7abU, 0xacb92ed9397bf996U, 0xd7e77a8f87daf7fbU,
0x86f0ac99b4e8dafdU, 0xa8acd7c0222311bcU, 0xd2d80db02aabd62bU,
0x83c7088e1aab65dbU, 0xa4b8cab1a1563f52U, 0xcde6fd5e09abcf26U,
0x80b05e5ac60b6178U, 0xa0dc75f1778e39d6U, 0xc913936dd571c84cU,
0xfb5878494ace3a5fU, 0x9d174b2dcec0e47bU, 0xc45d1df942711d9aU,
0xf5746577930d6500U, 0x9968bf6abbe85f20U, 0xbfc2ef456ae276e8U,
0xefb3ab16c59b14a2U, 0x95d04aee3b80ece5U, 0xbb445da9ca61281fU,
0xea1575143cf97226U, 0x924d692ca61be758U, 0xb6e0c377cfa2e12eU,
0xe498f455c38b997aU, 0x8edf98b59a373fecU, 0xb2977ee300c50fe7U,
0xdf3d5e9bc0f653e1U, 0x8b865b215899f46cU, 0xae67f1e9aec07187U,
0xda01ee641a708de9U, 0x884134fe908658b2U, 0xaa51823e34a7eedeU,
0xd4e5e2cdc1d1ea96U, 0x850fadc09923329eU, 0xa6539930bf6bff45U,
0xcfe87f7cef46ff16U, 0x81f14fae158c5f6eU, 0xa26da3999aef7749U,
0xcb090c8001ab551cU, 0xfdcb4fa002162a63U, 0x9e9f11c4014dda7eU,
0xc646d63501a1511dU, 0xf7d88bc24209a565U, 0x9ae757596946075fU,
0xc1a12d2fc3978937U, 0xf209787bb47d6b84U, 0x9745eb4d50ce6332U,
0xbd176620a501fbffU, 0xec5d3fa8ce427affU, 0x93ba47c980e98cdfU,
0xb8a8d9bbe123f017U, 0xe6d3102ad96cec1dU, 0x9043ea1ac7e41392U,
0xb454e4a179dd1877U, 0xe16a1dc9d8545e94U, 0x8ce2529e2734bb1dU,
0xb01ae745b101e9e4U, 0xdc21a1171d42645dU, 0x899504ae72497ebaU,
0xabfa45da0edbde69U, 0xd6f8d7509292d603U, 0x865b86925b9bc5c2U,
0xa7f26836f282b732U, 0xd1ef0244af2364ffU, 0x8335616aed761f1fU,
0xa402b9c5a8d3a6e7U, 0xcd036837130890a1U, 0x802221226be55a64U,
0xa02aa96b06deb0fdU, 0xc83553c5c8965d3dU, 0xfa42a8b73abbf48cU,
0x9c69a97284b578d7U, 0xc38413cf25e2d70dU, 0xf46518c2ef5b8cd1U,
0x98bf2f79d5993802U, 0xbeeefb584aff8603U, 0xeeaaba2e5dbf6784U,
0x952ab45cfa97a0b2U, 0xba756174393d88dfU, 0xe912b9d1478ceb17U,
0x91abb422ccb812eeU, 0xb616a12b7fe617aaU, 0xe39c49765fdf9d94U,
0x8e41ade9fbebc27dU, 0xb1d219647ae6b31cU, 0xde469fbd99a05fe3U,
0x8aec23d680043beeU, 0xada72ccc20054ae9U, 0xd910f7ff28069da4U,
0x87aa9aff79042286U, 0xa99541bf57452b28U, 0xd3fa922f2d1675f2U,
0x847c9b5d7c2e09b7U, 0xa59bc234db398c25U, 0xcf02b2c21207ef2eU,
0x8161afb94b44f57dU, 0xa1ba1ba79e1632dcU, 0xca28a291859bbf93U,
0xfcb2cb35e702af78U, 0x9defbf01b061adabU, 0xc56baec21c7a1916U,
0xf6c69a72a3989f5bU, 0x9a3c2087a63f6399U, 0xc0cb28a98fcf3c7fU,
0xf0fdf2d3f3c30b9fU, 0x969eb7c47859e743U, 0xbc4665b596706114U,
0xeb57ff22fc0c7959U, 0x9316ff75dd87cbd8U, 0xb7dcbf5354e9beceU,
0xe5d3ef282a242e81U, 0x8fa475791a569d10U, 0xb38d92d760ec4455U,
0xe070f78d3927556aU, 0x8c469ab843b89562U, 0xaf58416654a6babbU,
0xdb2e51bfe9d0696aU, 0x88fcf317f22241e2U, 0xab3c2fddeeaad25aU,
0xd60b3bd56a5586f1U, 0x85c7056562757456U, 0xa738c6bebb12d16cU,
0xd106f86e69d785c7U, 0x82a45b450226b39cU, 0xa34d721642b06084U,
0xcc20ce9bd35c78a5U, 0xff290242c83396ceU, 0x9f79a169bd203e41U,
0xc75809c42c684dd1U, 0xf92e0c3537826145U, 0x9bbcc7a142b17ccbU,
0xc2abf989935ddbfeU, 0xf356f7ebf83552feU, 0x98165af37b2153deU,
0xbe1bf1b059e9a8d6U, 0xeda2ee1c7064130cU, 0x9485d4d1c63e8be7U,
0xb9a74a0637ce2ee1U, 0xe8111c87c5c1ba99U, 0x910ab1d4db9914a0U,
0xb54d5e4a127f59c8U, 0xe2a0b5dc971f303aU, 0x8da471a9de737e24U,
0xb10d8e1456105dadU, 0xdd50f1996b947518U, 0x8a5296ffe33cc92fU,
0xace73cbfdc0bfb7bU, 0xd8210befd30efa5aU, 0x8714a775e3e95c78U,
0xa8d9d1535ce3b396U, 0xd31045a8341ca07cU, 0x83ea2b892091e44dU,
0xa4e4b66b68b65d60U, 0xce1de40642e3f4b9U, 0x80d2ae83e9ce78f3U,
0xa1075a24e4421730U, 0xc94930ae1d529cfcU, 0xfb9b7cd9a4a7443cU,
0x9d412e0806e88aa5U, 0xc491798a08a2ad4eU, 0xf5b5d7ec8acb58a2U,
0x9991a6f3d6bf1765U, 0xbff610b0cc6edd3fU, 0xeff394dcff8a948eU,
0x95f83d0a1fb69cd9U, 0xbb764c4ca7a4440fU, 0xea53df5fd18d5513U,
0x92746b9be2f8552cU, 0xb7118682dbb66a77U, 0xe4d5e82392a40515U,
0x8f05b1163ba6832dU, 0xb2c71d5bca9023f8U, 0xdf78e4b2bd342cf6U,
0x8bab8eefb6409c1aU, 0xae9672aba3d0c320U, 0xda3c0f568cc4f3e8U,
0x8865899617fb1871U, 0xaa7eebfb9df9de8dU, 0xd51ea6fa85785631U,
0x8533285c936b35deU, 0xa67ff273b8460356U, 0xd01fef10a657842cU,
0x8213f56a67f6b29bU, 0xa298f2c501f45f42U, 0xcb3f2f7642717713U,
0xfe0efb53d30dd4d7U, 0x9ec95d1463e8a506U, 0xc67bb4597ce2ce48U,
0xf81aa16fdc1b81daU, 0x9b10a4e5e9913128U, 0xc1d4ce1f63f57d72U,
0xf24a01a73cf2dccfU, 0x976e41088617ca01U, 0xbd49d14aa79dbc82U,
0xec9c459d51852ba2U, 0x93e1ab8252f33b45U, 0xb8da1662e7b00a17U,
0xe7109bfba19c0c9dU, 0x906a617d450187e2U, 0xb484f9dc9641e9daU,
0xe1a63853bbd26451U, 0x8d07e33455637eb2U, 0xb049dc016abc5e5fU,
0xdc5c5301c56b75f7U, 0x89b9b3e11b6329baU, 0xac2820d9623bf429U,
0xd732290fbacaf133U, 0x867f59a9d4bed6c0U, 0xa81f301449ee8c70U,
0xd226fc195c6a2f8cU, 0x83585d8fd9c25db7U, 0xa42e74f3d032f525U,
0xcd3a1230c43fb26fU, 0x80444b5e7aa7cf85U, 0xa0555e361951c366U,
0xc86ab5c39fa63440U, 0xfa856334878fc150U, 0x9c935e00d4b9d8d2U,
0xc3b8358109e84f07U, 0xf4a642e14c6262c8U, 0x98e7e9cccfbd7dbdU,
0xbf21e44003acdd2cU, 0xeeea5d5004981478U, 0x95527a5202df0ccbU,
0xbaa718e68396cffdU, 0xe950df20247c83fdU, 0x91d28b7416cdd27eU,
0xb6472e511c81471dU, 0xe3d8f9e563a198e5U, 0x8e679c2f5e44ff8fU,
};
const uint64_t kPower10MantissaLowTable[] = {
0x113faa2906a13b3fU, 0x4ac7ca59a424c507U, 0x5d79bcf00d2df649U,
0xf4d82c2c107973dcU, 0x79071b9b8a4be869U, 0x9748e2826cdee284U,
0xfd1b1b2308169b25U, 0xfe30f0f5e50e20f7U, 0xbdbd2d335e51a935U,
0xad2c788035e61382U, 0x4c3bcb5021afcc31U, 0xdf4abe242a1bbf3dU,
0xd71d6dad34a2af0dU, 0x8672648c40e5ad68U, 0x680efdaf511f18c2U,
0x0212bd1b2566def2U, 0x014bb630f7604b57U, 0x419ea3bd35385e2dU,
0x52064cac828675b9U, 0x7343efebd1940993U, 0x1014ebe6c5f90bf8U,
0xd41a26e077774ef6U, 0x8920b098955522b4U, 0x55b46e5f5d5535b0U,
0xeb2189f734aa831dU, 0xa5e9ec7501d523e4U, 0x47b233c92125366eU,
0x999ec0bb696e840aU, 0xc00670ea43ca250dU, 0x380406926a5e5728U,
0xc605083704f5ecf2U, 0xf7864a44c633682eU, 0x7ab3ee6afbe0211dU,
0x5960ea05bad82964U, 0x6fb92487298e33bdU, 0xa5d3b6d479f8e056U,
0x8f48a4899877186cU, 0x331acdabfe94de87U, 0x9ff0c08b7f1d0b14U,
0x07ecf0ae5ee44dd9U, 0xc9e82cd9f69d6150U, 0xbe311c083a225cd2U,
0x6dbd630a48aaf406U, 0x092cbbccdad5b108U, 0x25bbf56008c58ea5U,
0xaf2af2b80af6f24eU, 0x1af5af660db4aee1U, 0x50d98d9fc890ed4dU,
0xe50ff107bab528a0U, 0x1e53ed49a96272c8U, 0x25e8e89c13bb0f7aU,
0x77b191618c54e9acU, 0xd59df5b9ef6a2417U, 0x4b0573286b44ad1dU,
0x4ee367f9430aec32U, 0x229c41f793cda73fU, 0x6b43527578c1110fU,
0x830a13896b78aaa9U, 0x23cc986bc656d553U, 0x2cbfbe86b7ec8aa8U,
0x7bf7d71432f3d6a9U, 0xdaf5ccd93fb0cc53U, 0xd1b3400f8f9cff68U,
0x23100809b9c21fa1U, 0xabd40a0c2832a78aU, 0x16c90c8f323f516cU,
0xae3da7d97f6792e3U, 0x99cd11cfdf41779cU, 0x40405643d711d583U,
0x482835ea666b2572U, 0xda3243650005eecfU, 0x90bed43e40076a82U,
0x5a7744a6e804a291U, 0x711515d0a205cb36U, 0x0d5a5b44ca873e03U,
0xe858790afe9486c2U, 0x626e974dbe39a872U, 0xfb0a3d212dc8128fU,
0x7ce66634bc9d0b99U, 0x1c1fffc1ebc44e80U, 0xa327ffb266b56220U,
0x4bf1ff9f0062baa8U, 0x6f773fc3603db4a9U, 0xcb550fb4384d21d3U,
0x7e2a53a146606a48U, 0x2eda7444cbfc426dU, 0xfa911155fefb5308U,
0x793555ab7eba27caU, 0x4bc1558b2f3458deU, 0x9eb1aaedfb016f16U,
0x465e15a979c1cadcU, 0x0bfacd89ec191ec9U, 0xcef980ec671f667bU,
0x82b7e12780e7401aU, 0xd1b2ecb8b0908810U, 0x861fa7e6dcb4aa15U,
0x67a791e093e1d49aU, 0xe0c8bb2c5c6d24e0U, 0x58fae9f773886e18U,
0xaf39a475506a899eU, 0x6d8406c952429603U, 0xc8e5087ba6d33b83U,
0xfb1e4a9a90880a64U, 0x5cf2eea09a55067fU, 0xf42faa48c0ea481eU,
0xf13b94daf124da26U, 0x76c53d08d6b70858U, 0x54768c4b0c64ca6eU,
0xa9942f5dcf7dfd09U, 0xd3f93b35435d7c4cU, 0xc47bc5014a1a6dafU,
0x359ab6419ca1091bU, 0xc30163d203c94b62U, 0x79e0de63425dcf1dU,
0x985915fc12f542e4U, 0x3e6f5b7b17b2939dU, 0xa705992ceecf9c42U,
0x50c6ff782a838353U, 0xa4f8bf5635246428U, 0x871b7795e136be99U,
0x28e2557b59846e3fU, 0x331aeada2fe589cfU, 0x3ff0d2c85def7621U,
0x0fed077a756b53a9U, 0xd3e8495912c62894U, 0x64712dd7abbbd95cU,
0xbd8d794d96aacfb3U, 0xecf0d7a0fc5583a0U, 0xf41686c49db57244U,
0x311c2875c522ced5U, 0x7d633293366b828bU, 0xae5dff9c02033197U,
0xd9f57f830283fdfcU, 0xd072df63c324fd7bU, 0x4247cb9e59f71e6dU,
0x52d9be85f074e608U, 0x67902e276c921f8bU, 0x00ba1cd8a3db53b6U,
0x80e8a40eccd228a4U, 0x6122cd128006b2cdU, 0x796b805720085f81U,
0xcbe3303674053bb0U, 0xbedbfc4411068a9cU, 0xee92fb5515482d44U,
0x751bdd152d4d1c4aU, 0xd262d45a78a0635dU, 0x86fb897116c87c34U,
0xd45d35e6ae3d4da0U, 0x8974836059cca109U, 0x2bd1a438703fc94bU,
0x7b6306a34627ddcfU, 0x1a3bc84c17b1d542U, 0x20caba5f1d9e4a93U,
0x547eb47b7282ee9cU, 0xe99e619a4f23aa43U, 0x6405fa00e2ec94d4U,
0xde83bc408dd3dd04U, 0x9624ab50b148d445U, 0x3badd624dd9b0957U,
0xe54ca5d70a80e5d6U, 0x5e9fcf4ccd211f4cU, 0x7647c3200069671fU,
0x29ecd9f40041e073U, 0xf468107100525890U, 0x7182148d4066eeb4U,
0xc6f14cd848405530U, 0xb8ada00e5a506a7cU, 0xa6d90811f0e4851cU,
0x908f4a166d1da663U, 0x9a598e4e043287feU, 0x40eff1e1853f29fdU,
0xd12bee59e68ef47cU, 0x82bb74f8301958ceU, 0xe36a52363c1faf01U,
0xdc44e6c3cb279ac1U, 0x29ab103a5ef8c0b9U, 0x7415d448f6b6f0e7U,
0x111b495b3464ad21U, 0xcab10dd900beec34U, 0x3d5d514f40eea742U,
0x0cb4a5a3112a5112U, 0x47f0e785eaba72abU, 0x59ed216765690f56U,
0x306869c13ec3532cU, 0x1e414218c73a13fbU, 0xe5d1929ef90898faU,
0xdf45f746b74abf39U, 0x6b8bba8c328eb783U, 0x066ea92f3f326564U,
0xc80a537b0efefebdU, 0xbd06742ce95f5f36U, 0x2c48113823b73704U,
0xf75a15862ca504c5U, 0x9a984d73dbe722fbU, 0xc13e60d0d2e0ebbaU,
0x318df905079926a8U, 0xfdf17746497f7052U, 0xfeb6ea8bedefa633U,
0xfe64a52ee96b8fc0U, 0x3dfdce7aa3c673b0U, 0x06bea10ca65c084eU,
0x486e494fcff30a62U, 0x5a89dba3c3efccfaU, 0xf89629465a75e01cU,
0xf6bbb397f1135823U, 0x746aa07ded582e2cU, 0xa8c2a44eb4571cdcU,
0x92f34d62616ce413U, 0x77b020baf9c81d17U, 0x0ace1474dc1d122eU,
0x0d819992132456baU, 0x10e1fff697ed6c69U, 0xca8d3ffa1ef463c1U,
0xbd308ff8a6b17cb2U, 0xac7cb3f6d05ddbdeU, 0x6bcdf07a423aa96bU,
0x86c16c98d2c953c6U, 0xe871c7bf077ba8b7U, 0x11471cd764ad4972U,
0xd598e40d3dd89bcfU, 0x4aff1d108d4ec2c3U, 0xcedf722a585139baU,
0xc2974eb4ee658828U, 0x733d226229feea32U, 0x0806357d5a3f525fU,
0xca07c2dcb0cf26f7U, 0xfc89b393dd02f0b5U, 0xbbac2078d443ace2U,
0xd54b944b84aa4c0dU, 0x0a9e795e65d4df11U, 0x4d4617b5ff4a16d5U,
0x504bced1bf8e4e45U, 0xe45ec2862f71e1d6U, 0x5d767327bb4e5a4cU,
0x3a6a07f8d510f86fU, 0x890489f70a55368bU, 0x2b45ac74ccea842eU,
0x3b0b8bc90012929dU, 0x09ce6ebb40173744U, 0xcc420a6a101d0515U,
0x9fa946824a12232dU, 0x47939822dc96abf9U, 0x59787e2b93bc56f7U,
0x57eb4edb3c55b65aU, 0xede622920b6b23f1U, 0xe95fab368e45ecedU,
0x11dbcb0218ebb414U, 0xd652bdc29f26a119U, 0x4be76d3346f0495fU,
0x6f70a4400c562ddbU, 0xcb4ccd500f6bb952U, 0x7e2000a41346a7a7U,
0x8ed400668c0c28c8U, 0x728900802f0f32faU, 0x4f2b40a03ad2ffb9U,
0xe2f610c84987bfa8U, 0x0dd9ca7d2df4d7c9U, 0x91503d1c79720dbbU,
0x75a44c6397ce912aU, 0xc986afbe3ee11abaU, 0xfbe85badce996168U,
0xfae27299423fb9c3U, 0xdccd879fc967d41aU, 0x5400e987bbc1c920U,
0x290123e9aab23b68U, 0xf9a0b6720aaf6521U, 0xf808e40e8d5b3e69U,
0xb60b1d1230b20e04U, 0xb1c6f22b5e6f48c2U, 0x1e38aeb6360b1af3U,
0x25c6da63c38de1b0U, 0x579c487e5a38ad0eU, 0x2d835a9df0c6d851U,
0xf8e431456cf88e65U, 0x1b8e9ecb641b58ffU, 0xe272467e3d222f3fU,
0x5b0ed81dcc6abb0fU, 0x98e947129fc2b4e9U, 0x3f2398d747b36224U,
0x8eec7f0d19a03aadU, 0x1953cf68300424acU, 0x5fa8c3423c052dd7U,
0x3792f412cb06794dU, 0xe2bbd88bbee40bd0U, 0x5b6aceaeae9d0ec4U,
0xf245825a5a445275U, 0xeed6e2f0f0d56712U, 0x55464dd69685606bU,
0xaa97e14c3c26b886U, 0xd53dd99f4b3066a8U, 0xe546a8038efe4029U,
0xde98520472bdd033U, 0x963e66858f6d4440U, 0xdde7001379a44aa8U,
0x5560c018580d5d52U, 0xaab8f01e6e10b4a6U, 0xcab3961304ca70e8U,
0x3d607b97c5fd0d22U, 0x8cb89a7db77c506aU, 0x77f3608e92adb242U,
0x55f038b237591ed3U, 0x6b6c46dec52f6688U, 0x2323ac4b3b3da015U,
0xabec975e0a0d081aU, 0x96e7bd358c904a21U, 0x7e50d64177da2e54U,
0xdde50bd1d5d0b9e9U, 0x955e4ec64b44e864U, 0xbd5af13bef0b113eU,
0xecb1ad8aeacdd58eU, 0x67de18eda5814af2U, 0x80eacf948770ced7U,
0xa1258379a94d028dU, 0x096ee45813a04330U, 0x8bca9d6e188853fcU,
0x775ea264cf55347dU, 0x95364afe032a819dU, 0x3a83ddbd83f52204U,
0xc4926a9672793542U, 0x75b7053c0f178293U, 0x5324c68b12dd6338U,
0xd3f6fc16ebca5e03U, 0x88f4bb1ca6bcf584U, 0x2b31e9e3d06c32e5U,
0x3aff322e62439fcfU, 0x09befeb9fad487c2U, 0x4c2ebe687989a9b3U,
0x0f9d37014bf60a10U, 0x538484c19ef38c94U, 0x2865a5f206b06fb9U,
0xf93f87b7442e45d3U, 0xf78f69a51539d748U, 0xb573440e5a884d1bU,
0x31680a88f8953030U, 0xfdc20d2b36ba7c3dU, 0x3d32907604691b4cU,
0xa63f9a49c2c1b10fU, 0x0fcf80dc33721d53U, 0xd3c36113404ea4a8U,
0x645a1cac083126e9U, 0x3d70a3d70a3d70a3U, 0xccccccccccccccccU,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x0000000000000000U, 0x0000000000000000U,
0x0000000000000000U, 0x4000000000000000U, 0x5000000000000000U,
0xa400000000000000U, 0x4d00000000000000U, 0xf020000000000000U,
0x6c28000000000000U, 0xc732000000000000U, 0x3c7f400000000000U,
0x4b9f100000000000U, 0x1e86d40000000000U, 0x1314448000000000U,
0x17d955a000000000U, 0x5dcfab0800000000U, 0x5aa1cae500000000U,
0xf14a3d9e40000000U, 0x6d9ccd05d0000000U, 0xe4820023a2000000U,
0xdda2802c8a800000U, 0xd50b2037ad200000U, 0x4526f422cc340000U,
0x9670b12b7f410000U, 0x3c0cdd765f114000U, 0xa5880a69fb6ac800U,
0x8eea0d047a457a00U, 0x72a4904598d6d880U, 0x47a6da2b7f864750U,
0x999090b65f67d924U, 0xfff4b4e3f741cf6dU, 0xbff8f10e7a8921a4U,
0xaff72d52192b6a0dU, 0x9bf4f8a69f764490U, 0x02f236d04753d5b4U,
0x01d762422c946590U, 0x424d3ad2b7b97ef5U, 0xd2e0898765a7deb2U,
0x63cc55f49f88eb2fU, 0x3cbf6b71c76b25fbU, 0x8bef464e3945ef7aU,
0x97758bf0e3cbb5acU, 0x3d52eeed1cbea317U, 0x4ca7aaa863ee4bddU,
0x8fe8caa93e74ef6aU, 0xb3e2fd538e122b44U, 0x60dbbca87196b616U,
0xbc8955e946fe31cdU, 0x6babab6398bdbe41U, 0xc696963c7eed2dd1U,
0xfc1e1de5cf543ca2U, 0x3b25a55f43294bcbU, 0x49ef0eb713f39ebeU,
0x6e3569326c784337U, 0x49c2c37f07965404U, 0xdc33745ec97be906U,
0x69a028bb3ded71a3U, 0xc40832ea0d68ce0cU, 0xf50a3fa490c30190U,
0x792667c6da79e0faU, 0x577001b891185938U, 0xed4c0226b55e6f86U,
0x544f8158315b05b4U, 0x696361ae3db1c721U, 0x03bc3a19cd1e38e9U,
0x04ab48a04065c723U, 0x62eb0d64283f9c76U, 0x3ba5d0bd324f8394U,
0xca8f44ec7ee36479U, 0x7e998b13cf4e1ecbU, 0x9e3fedd8c321a67eU,
0xc5cfe94ef3ea101eU, 0xbba1f1d158724a12U, 0x2a8a6e45ae8edc97U,
0xf52d09d71a3293bdU, 0x593c2626705f9c56U, 0x6f8b2fb00c77836cU,
0x0b6dfb9c0f956447U, 0x4724bd4189bd5eacU, 0x58edec91ec2cb657U,
0x2f2967b66737e3edU, 0xbd79e0d20082ee74U, 0xecd8590680a3aa11U,
0xe80e6f4820cc9495U, 0x3109058d147fdcddU, 0xbd4b46f0599fd415U,
0x6c9e18ac7007c91aU, 0x03e2cf6bc604ddb0U, 0x84db8346b786151cU,
0xe612641865679a63U, 0x4fcb7e8f3f60c07eU, 0xe3be5e330f38f09dU,
0x5cadf5bfd3072cc5U, 0x73d9732fc7c8f7f6U, 0x2867e7fddcdd9afaU,
0xb281e1fd541501b8U, 0x1f225a7ca91a4226U, 0x3375788de9b06958U,
0x0052d6b1641c83aeU, 0xc0678c5dbd23a49aU, 0xf840b7ba963646e0U,
0xb650e5a93bc3d898U, 0xa3e51f138ab4cebeU, 0xc66f336c36b10137U,
0xb80b0047445d4184U, 0xa60dc059157491e5U, 0x87c89837ad68db2fU,
0x29babe4598c311fbU, 0xf4296dd6fef3d67aU, 0x1899e4a65f58660cU,
0x5ec05dcff72e7f8fU, 0x76707543f4fa1f73U, 0x6a06494a791c53a8U,
0x0487db9d17636892U, 0x45a9d2845d3c42b6U, 0x0b8a2392ba45a9b2U,
0x8e6cac7768d7141eU, 0x3207d795430cd926U, 0x7f44e6bd49e807b8U,
0x5f16206c9c6209a6U, 0x36dba887c37a8c0fU, 0xc2494954da2c9789U,
0xf2db9baa10b7bd6cU, 0x6f92829494e5acc7U, 0xcb772339ba1f17f9U,
0xff2a760414536efbU, 0xfef5138519684abaU, 0x7eb258665fc25d69U,
0xef2f773ffbd97a61U, 0xaafb550ffacfd8faU, 0x95ba2a53f983cf38U,
0xdd945a747bf26183U, 0x94f971119aeef9e4U, 0x7a37cd5601aab85dU,
0xac62e055c10ab33aU, 0x577b986b314d6009U, 0xed5a7e85fda0b80bU,
0x14588f13be847307U, 0x596eb2d8ae258fc8U, 0x6fca5f8ed9aef3bbU,
0x25de7bb9480d5854U, 0xaf561aa79a10ae6aU, 0x1b2ba1518094da04U,
0x90fb44d2f05d0842U, 0x353a1607ac744a53U, 0x42889b8997915ce8U,
0x69956135febada11U, 0x43fab9837e699095U, 0x94f967e45e03f4bbU,
0x1d1be0eebac278f5U, 0x6462d92a69731732U, 0x7d7b8f7503cfdcfeU,
0x5cda735244c3d43eU, 0x3a0888136afa64a7U, 0x088aaa1845b8fdd0U,
0x8aad549e57273d45U, 0x36ac54e2f678864bU, 0x84576a1bb416a7ddU,
0x656d44a2a11c51d5U, 0x9f644ae5a4b1b325U, 0x873d5d9f0dde1feeU,
0xa90cb506d155a7eaU, 0x09a7f12442d588f2U, 0x0c11ed6d538aeb2fU,
0x8f1668c8a86da5faU, 0xf96e017d694487bcU, 0x37c981dcc395a9acU,
0x85bbe253f47b1417U, 0x93956d7478ccec8eU, 0x387ac8d1970027b2U,
0x06997b05fcc0319eU, 0x441fece3bdf81f03U, 0xd527e81cad7626c3U,
0x8a71e223d8d3b074U, 0xf6872d5667844e49U, 0xb428f8ac016561dbU,
0xe13336d701beba52U, 0xecc0024661173473U, 0x27f002d7f95d0190U,
0x31ec038df7b441f4U, 0x7e67047175a15271U, 0x0f0062c6e984d386U,
0x52c07b78a3e60868U, 0xa7709a56ccdf8a82U, 0x88a66076400bb691U,
0x6acff893d00ea435U, 0x0583f6b8c4124d43U, 0xc3727a337a8b704aU,
0x744f18c0592e4c5cU, 0x1162def06f79df73U, 0x8addcb5645ac2ba8U,
0x6d953e2bd7173692U, 0xc8fa8db6ccdd0437U, 0x1d9c9892400a22a2U,
0x2503beb6d00cab4bU, 0x2e44ae64840fd61dU, 0x5ceaecfed289e5d2U,
0x7425a83e872c5f47U, 0xd12f124e28f77719U, 0x82bd6b70d99aaa6fU,
0x636cc64d1001550bU, 0x3c47f7e05401aa4eU, 0x65acfaec34810a71U,
0x7f1839a741a14d0dU, 0x1ede48111209a050U, 0x934aed0aab460432U,
0xf81da84d5617853fU, 0x36251260ab9d668eU, 0xc1d72b7c6b426019U,
0xb24cf65b8612f81fU, 0xdee033f26797b627U, 0x169840ef017da3b1U,
0x8e1f289560ee864eU, 0xf1a6f2bab92a27e2U, 0xae10af696774b1dbU,
0xacca6da1e0a8ef29U, 0x17fd090a58d32af3U, 0xddfc4b4cef07f5b0U,
0x4abdaf101564f98eU, 0x9d6d1ad41abe37f1U, 0x84c86189216dc5edU,
0x32fd3cf5b4e49bb4U, 0x3fbc8c33221dc2a1U, 0x0fabaf3feaa5334aU,
0x29cb4d87f2a7400eU, 0x743e20e9ef511012U, 0x914da9246b255416U,
0x1ad089b6c2f7548eU, 0xa184ac2473b529b1U, 0xc9e5d72d90a2741eU,
0x7e2fa67c7a658892U, 0xddbb901b98feeab7U, 0x552a74227f3ea565U,
0xd53a88958f87275fU, 0x8a892abaf368f137U, 0x2d2b7569b0432d85U,
0x9c3b29620e29fc73U, 0x8349f3ba91b47b8fU, 0x241c70a936219a73U,
0xed238cd383aa0110U, 0xf4363804324a40aaU, 0xb143c6053edcd0d5U,
0xdd94b7868e94050aU, 0xca7cf2b4191c8326U, 0xfd1c2f611f63a3f0U,
0xbc633b39673c8cecU, 0xd5be0503e085d813U, 0x4b2d8644d8a74e18U,
0xddf8e7d60ed1219eU, 0xcabb90e5c942b503U, 0x3d6a751f3b936243U,
0x0cc512670a783ad4U, 0x27fb2b80668b24c5U, 0xb1f9f660802dedf6U,
0x5e7873f8a0396973U, 0xdb0b487b6423e1e8U, 0x91ce1a9a3d2cda62U,
0x7641a140cc7810fbU, 0xa9e904c87fcb0a9dU, 0x546345fa9fbdcd44U,
0xa97c177947ad4095U, 0x49ed8eabcccc485dU, 0x5c68f256bfff5a74U,
0x73832eec6fff3111U, 0xc831fd53c5ff7eabU, 0xba3e7ca8b77f5e55U,
0x28ce1bd2e55f35ebU, 0x7980d163cf5b81b3U, 0xd7e105bcc332621fU,
0x8dd9472bf3fefaa7U, 0xb14f98f6f0feb951U, 0x6ed1bf9a569f33d3U,
0x0a862f80ec4700c8U, 0xcd27bb612758c0faU, 0x8038d51cb897789cU,
0xe0470a63e6bd56c3U, 0x1858ccfce06cac74U, 0x0f37801e0c43ebc8U,
0xd30560258f54e6baU, 0x47c6b82ef32a2069U, 0x4cdc331d57fa5441U,
0xe0133fe4adf8e952U, 0x58180fddd97723a6U, 0x570f09eaa7ea7648U,
};
} // namespace
ABSL_NAMESPACE_END
} // namespace absl
|