1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260
|
// Copyright 2018 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/strings/internal/charconv_bigint.h"
#include <string>
#include "gtest/gtest.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace strings_internal {
TEST(BigUnsigned, ShiftLeft) {
{
// Check that 3 * 2**100 is calculated correctly
BigUnsigned<4> num(3u);
num.ShiftLeft(100);
EXPECT_EQ(num, BigUnsigned<4>("3802951800684688204490109616128"));
}
{
// Test that overflow is truncated properly.
// 15 is 4 bits long, and BigUnsigned<4> is a 128-bit bigint.
// Shifting left by 125 bits should truncate off the high bit, so that
// 15 << 125 == 7 << 125
// after truncation.
BigUnsigned<4> a(15u);
BigUnsigned<4> b(7u);
BigUnsigned<4> c(3u);
a.ShiftLeft(125);
b.ShiftLeft(125);
c.ShiftLeft(125);
EXPECT_EQ(a, b);
EXPECT_NE(a, c);
}
{
// Same test, larger bigint:
BigUnsigned<84> a(15u);
BigUnsigned<84> b(7u);
BigUnsigned<84> c(3u);
a.ShiftLeft(84 * 32 - 3);
b.ShiftLeft(84 * 32 - 3);
c.ShiftLeft(84 * 32 - 3);
EXPECT_EQ(a, b);
EXPECT_NE(a, c);
}
{
// Check that incrementally shifting has the same result as doing it all at
// once (attempting to capture corner cases.)
const std::string seed = "1234567890123456789012345678901234567890";
BigUnsigned<84> a(seed);
for (int i = 1; i <= 84 * 32; ++i) {
a.ShiftLeft(1);
BigUnsigned<84> b(seed);
b.ShiftLeft(i);
EXPECT_EQ(a, b);
}
// And we should have fully rotated all bits off by now:
EXPECT_EQ(a, BigUnsigned<84>(0u));
}
{
// Bit shifting large and small numbers by large and small offsets.
// Intended to exercise bounds-checking corner on ShiftLeft() (directly
// and under asan).
// 2**(32*84)-1
const BigUnsigned<84> all_bits_one(
"1474444211396924248063325089479706787923460402125687709454567433186613"
"6228083464060749874845919674257665016359189106695900028098437021384227"
"3285029708032466536084583113729486015826557532750465299832071590813090"
"2011853039837649252477307070509704043541368002938784757296893793903797"
"8180292336310543540677175225040919704702800559606097685920595947397024"
"8303316808753252115729411497720357971050627997031988036134171378490368"
"6008000778741115399296162550786288457245180872759047016734959330367829"
"5235612397427686310674725251378116268607113017720538636924549612987647"
"5767411074510311386444547332882472126067840027882117834454260409440463"
"9345147252664893456053258463203120637089916304618696601333953616715125"
"2115882482473279040772264257431663818610405673876655957323083702713344"
"4201105427930770976052393421467136557055");
const BigUnsigned<84> zero(0u);
const BigUnsigned<84> one(1u);
// in bounds shifts
for (int i = 1; i < 84*32; ++i) {
// shifting all_bits_one to the left should result in a smaller number,
// since the high bits rotate off and the low bits are replaced with
// zeroes.
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(i);
EXPECT_GT(all_bits_one, big_shifted);
// Shifting 1 to the left should instead result in a larger number.
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(i);
EXPECT_LT(one, small_shifted);
}
// Shifting by zero or a negative number has no effect
for (int no_op_shift : {0, -1, -84 * 32, std::numeric_limits<int>::min()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(all_bits_one, big_shifted);
BigUnsigned<84> small_shifted = one;
big_shifted.ShiftLeft(no_op_shift);
EXPECT_EQ(one, small_shifted);
}
// Shifting by an amount greater than the number of bits should result in
// zero.
for (int out_of_bounds_shift :
{84 * 32, 84 * 32 + 1, std::numeric_limits<int>::max()}) {
BigUnsigned<84> big_shifted = all_bits_one;
big_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, big_shifted);
BigUnsigned<84> small_shifted = one;
small_shifted.ShiftLeft(out_of_bounds_shift);
EXPECT_EQ(zero, small_shifted);
}
}
}
TEST(BigUnsigned, MultiplyByUint32) {
const BigUnsigned<84> factorial_100(
"933262154439441526816992388562667004907159682643816214685929638952175999"
"932299156089414639761565182862536979208272237582511852109168640000000000"
"00000000000000");
BigUnsigned<84> a(1u);
for (uint32_t i = 1; i <= 100; ++i) {
a.MultiplyBy(i);
}
EXPECT_EQ(a, BigUnsigned<84>(factorial_100));
}
TEST(BigUnsigned, MultiplyByBigUnsigned) {
{
// Put the terms of factorial_200 into two bigints, and multiply them
// together.
const BigUnsigned<84> factorial_200(
"7886578673647905035523632139321850622951359776871732632947425332443594"
"4996340334292030428401198462390417721213891963883025764279024263710506"
"1926624952829931113462857270763317237396988943922445621451664240254033"
"2918641312274282948532775242424075739032403212574055795686602260319041"
"7032406235170085879617892222278962370389737472000000000000000000000000"
"0000000000000000000000000");
BigUnsigned<84> evens(1u);
BigUnsigned<84> odds(1u);
for (uint32_t i = 1; i < 200; i += 2) {
odds.MultiplyBy(i);
evens.MultiplyBy(i + 1);
}
evens.MultiplyBy(odds);
EXPECT_EQ(evens, factorial_200);
}
{
// Multiply various powers of 10 together.
for (int a = 0 ; a < 700; a += 25) {
SCOPED_TRACE(a);
BigUnsigned<84> a_value("3" + std::string(a, '0'));
for (int b = 0; b < (700 - a); b += 25) {
SCOPED_TRACE(b);
BigUnsigned<84> b_value("2" + std::string(b, '0'));
BigUnsigned<84> expected_product("6" + std::string(a + b, '0'));
b_value.MultiplyBy(a_value);
EXPECT_EQ(b_value, expected_product);
}
}
}
}
TEST(BigUnsigned, MultiplyByOverflow) {
{
// Check that multiplcation overflow predictably truncates.
// A big int with all bits on.
BigUnsigned<4> all_bits_on("340282366920938463463374607431768211455");
// Modulo 2**128, this is equal to -1. Therefore the square of this,
// modulo 2**128, should be 1.
all_bits_on.MultiplyBy(all_bits_on);
EXPECT_EQ(all_bits_on, BigUnsigned<4>(1u));
}
{
// Try multiplying a large bigint by 2**50, and compare the result to
// shifting.
BigUnsigned<4> value_1("12345678901234567890123456789012345678");
BigUnsigned<4> value_2("12345678901234567890123456789012345678");
BigUnsigned<4> two_to_fiftieth(1u);
two_to_fiftieth.ShiftLeft(50);
value_1.ShiftLeft(50);
value_2.MultiplyBy(two_to_fiftieth);
EXPECT_EQ(value_1, value_2);
}
}
TEST(BigUnsigned, FiveToTheNth) {
{
// Sanity check that MultiplyByFiveToTheNth gives consistent answers, up to
// and including overflow.
for (int i = 0; i < 1160; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(123u);
BigUnsigned<84> value_2(123u);
value_1.MultiplyByFiveToTheNth(i);
for (int j = 0; j < i; j++) {
value_2.MultiplyBy(5u);
}
EXPECT_EQ(value_1, value_2);
}
}
{
// Check that the faster, table-lookup-based static method returns the same
// result that multiplying in-place would return, up to and including
// overflow.
for (int i = 0; i < 1160; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(1u);
value_1.MultiplyByFiveToTheNth(i);
BigUnsigned<84> value_2 = BigUnsigned<84>::FiveToTheNth(i);
EXPECT_EQ(value_1, value_2);
}
}
}
TEST(BigUnsigned, TenToTheNth) {
{
// Sanity check MultiplyByTenToTheNth.
for (int i = 0; i < 800; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(123u);
BigUnsigned<84> value_2(123u);
value_1.MultiplyByTenToTheNth(i);
for (int j = 0; j < i; j++) {
value_2.MultiplyBy(10u);
}
EXPECT_EQ(value_1, value_2);
}
}
{
// Alternate testing approach, taking advantage of the decimal parser.
for (int i = 0; i < 200; ++i) {
SCOPED_TRACE(i);
BigUnsigned<84> value_1(135u);
value_1.MultiplyByTenToTheNth(i);
BigUnsigned<84> value_2("135" + std::string(i, '0'));
EXPECT_EQ(value_1, value_2);
}
}
}
} // namespace strings_internal
ABSL_NAMESPACE_END
} // namespace absl
|