1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
//
// -----------------------------------------------------------------------------
// File: numbers.h
// -----------------------------------------------------------------------------
//
// This package contains functions for converting strings to numbers. For
// converting numbers to strings, use `StrCat()` or `StrAppend()` in str_cat.h,
// which automatically detect and convert most number values appropriately.
#ifndef ABSL_STRINGS_NUMBERS_H_
#define ABSL_STRINGS_NUMBERS_H_
#ifdef __SSSE3__
#include <tmmintrin.h>
#endif
#ifdef _MSC_VER
#include <intrin.h>
#endif
#include <cstddef>
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <limits>
#include <string>
#include <type_traits>
#include "absl/base/attributes.h"
#include "absl/base/config.h"
#include "absl/base/internal/endian.h"
#include "absl/base/macros.h"
#include "absl/base/nullability.h"
#include "absl/base/optimization.h"
#include "absl/base/port.h"
#include "absl/numeric/bits.h"
#include "absl/numeric/int128.h"
#include "absl/strings/string_view.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
// SimpleAtoi()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into an integer value, returning `true` if successful. The string
// must reflect a base-10 integer whose value falls within the range of the
// integer type (optionally preceded by a `+` or `-`). If any errors are
// encountered, this function returns `false`, leaving `out` in an unspecified
// state.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
// SimpleAtof()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a float, which may be rounded on overflow or underflow,
// returning `true` if successful.
// See https://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`, except SimpleAtof() is locale-independent and will
// always use the "C" locale. If any errors are encountered, this function
// returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtof(absl::string_view str,
absl::Nonnull<float*> out);
// SimpleAtod()
//
// Converts the given string (optionally followed or preceded by ASCII
// whitespace) into a double, which may be rounded on overflow or underflow,
// returning `true` if successful.
// See https://en.cppreference.com/w/c/string/byte/strtof for details about the
// allowed formats for `str`, except SimpleAtod is locale-independent and will
// always use the "C" locale. If any errors are encountered, this function
// returns `false`, leaving `out` in an unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtod(absl::string_view str,
absl::Nonnull<double*> out);
// SimpleAtob()
//
// Converts the given string into a boolean, returning `true` if successful.
// The following case-insensitive strings are interpreted as boolean `true`:
// "true", "t", "yes", "y", "1". The following case-insensitive strings
// are interpreted as boolean `false`: "false", "f", "no", "n", "0". If any
// errors are encountered, this function returns `false`, leaving `out` in an
// unspecified state.
ABSL_MUST_USE_RESULT bool SimpleAtob(absl::string_view str,
absl::Nonnull<bool*> out);
// SimpleHexAtoi()
//
// Converts a hexadecimal string (optionally followed or preceded by ASCII
// whitespace) to an integer, returning `true` if successful. Only valid base-16
// hexadecimal integers whose value falls within the range of the integer type
// (optionally preceded by a `+` or `-`) can be converted. A valid hexadecimal
// value may include both upper and lowercase character symbols, and may
// optionally include a leading "0x" (or "0X") number prefix, which is ignored
// by this function. If any errors are encountered, this function returns
// `false`, leaving `out` in an unspecified state.
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out);
// Overloads of SimpleHexAtoi() for 128 bit integers.
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out);
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out);
ABSL_NAMESPACE_END
} // namespace absl
// End of public API. Implementation details follow.
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace numbers_internal {
// Digit conversion.
ABSL_DLL extern const char kHexChar[17]; // 0123456789abcdef
ABSL_DLL extern const char
kHexTable[513]; // 000102030405060708090a0b0c0d0e0f1011...
// Writes a two-character representation of 'i' to 'buf'. 'i' must be in the
// range 0 <= i < 100, and buf must have space for two characters. Example:
// char buf[2];
// PutTwoDigits(42, buf);
// // buf[0] == '4'
// // buf[1] == '2'
void PutTwoDigits(uint32_t i, absl::Nonnull<char*> buf);
// safe_strto?() functions for implementing SimpleAtoi()
bool safe_strto32_base(absl::string_view text, absl::Nonnull<int32_t*> value,
int base);
bool safe_strto64_base(absl::string_view text, absl::Nonnull<int64_t*> value,
int base);
bool safe_strto128_base(absl::string_view text,
absl::Nonnull<absl::int128*> value, int base);
bool safe_strtou32_base(absl::string_view text, absl::Nonnull<uint32_t*> value,
int base);
bool safe_strtou64_base(absl::string_view text, absl::Nonnull<uint64_t*> value,
int base);
bool safe_strtou128_base(absl::string_view text,
absl::Nonnull<absl::uint128*> value, int base);
static const int kFastToBufferSize = 32;
static const int kSixDigitsToBufferSize = 16;
template <class T>
std::enable_if_t<!std::is_unsigned<T>::value, bool> IsNegative(const T& v) {
return v < T();
}
template <class T>
std::enable_if_t<std::is_unsigned<T>::value, std::false_type> IsNegative(
const T&) {
// The integer is unsigned, so return a compile-time constant.
// This can help the optimizer avoid having to prove bool to be false later.
return std::false_type();
}
template <class T>
std::enable_if_t<std::is_unsigned<std::decay_t<T>>::value, T&&>
UnsignedAbsoluteValue(T&& v ABSL_ATTRIBUTE_LIFETIME_BOUND) {
// The value is unsigned; just return the original.
return std::forward<T>(v);
}
template <class T>
ABSL_ATTRIBUTE_CONST_FUNCTION
std::enable_if_t<!std::is_unsigned<T>::value, std::make_unsigned_t<T>>
UnsignedAbsoluteValue(T v) {
using U = std::make_unsigned_t<T>;
return IsNegative(v) ? U() - static_cast<U>(v) : static_cast<U>(v);
}
// Returns the number of base-10 digits in the given number.
// Note that this strictly counts digits. It does not count the sign.
// The `initial_digits` parameter is the starting point, which is normally equal
// to 1 because the number of digits in 0 is 1 (a special case).
// However, callers may e.g. wish to change it to 2 to account for the sign.
template <typename T>
std::enable_if_t<std::is_unsigned<T>::value, uint32_t> Base10Digits(
T v, const uint32_t initial_digits = 1) {
uint32_t r = initial_digits;
// If code size becomes an issue, the 'if' stage can be removed for a minor
// performance loss.
for (;;) {
if (ABSL_PREDICT_TRUE(v < 10 * 10)) {
r += (v >= 10);
break;
}
if (ABSL_PREDICT_TRUE(v < 1000 * 10)) {
r += (v >= 1000) + 2;
break;
}
if (ABSL_PREDICT_TRUE(v < 100000 * 10)) {
r += (v >= 100000) + 4;
break;
}
r += 6;
v = static_cast<T>(v / 1000000);
}
return r;
}
template <typename T>
std::enable_if_t<std::is_signed<T>::value, uint32_t> Base10Digits(
T v, uint32_t r = 1) {
// Branchlessly add 1 to account for a minus sign.
r += static_cast<uint32_t>(IsNegative(v));
return Base10Digits(UnsignedAbsoluteValue(v), r);
}
// These functions return the number of base-10 digits, but multiplied by -1 if
// the input itself is negative. This is handy and efficient for later usage,
// since the bitwise complement of the result becomes equal to the number of
// characters required.
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
signed char v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned char v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
short v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned short v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(int v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned int v);
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
long long v); // NOLINT
ABSL_ATTRIBUTE_CONST_FUNCTION int GetNumDigitsOrNegativeIfNegative(
unsigned long long v); // NOLINT
// Helper function for fast formatting of floating-point values.
// The result is the same as printf's "%g", a.k.a. "%.6g"; that is, six
// significant digits are returned, trailing zeros are removed, and numbers
// outside the range 0.0001-999999 are output using scientific notation
// (1.23456e+06). This routine is heavily optimized.
// Required buffer size is `kSixDigitsToBufferSize`.
size_t SixDigitsToBuffer(double d, absl::Nonnull<char*> buffer);
// All of these functions take an output buffer
// as an argument and return a pointer to the last byte they wrote, which is the
// terminating '\0'. At most `kFastToBufferSize` bytes are written.
absl::Nonnull<char*> FastIntToBuffer(int32_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(uint32_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(int64_t i, absl::Nonnull<char*> buffer);
absl::Nonnull<char*> FastIntToBuffer(uint64_t i, absl::Nonnull<char*> buffer);
// For enums and integer types that are not an exact match for the types above,
// use templates to call the appropriate one of the four overloads above.
template <typename int_type>
absl::Nonnull<char*> FastIntToBuffer(int_type i, absl::Nonnull<char*> buffer) {
static_assert(sizeof(i) <= 64 / 8,
"FastIntToBuffer works only with 64-bit-or-less integers.");
// TODO(jorg): This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
if (kIsSigned) {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<int64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<int32_t>(i), buffer);
}
} else {
if (kUse64Bit) {
return FastIntToBuffer(static_cast<uint64_t>(i), buffer);
} else {
return FastIntToBuffer(static_cast<uint32_t>(i), buffer);
}
}
}
// These functions do NOT add any null-terminator.
// They return a pointer to the beginning of the written string.
// The digit counts provided must *exactly* match the number of base-10 digits
// in the number, or the behavior is undefined.
// (i.e. do NOT count the minus sign, or over- or under-count the digits.)
absl::Nonnull<char*> FastIntToBufferBackward(int32_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(uint32_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(int64_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
absl::Nonnull<char*> FastIntToBufferBackward(uint64_t i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count);
// For enums and integer types that are not an exact match for the types above,
// use templates to call the appropriate one of the four overloads above.
template <typename int_type>
absl::Nonnull<char*> FastIntToBufferBackward(int_type i,
absl::Nonnull<char*> buffer_end,
uint32_t exact_digit_count) {
static_assert(
sizeof(i) <= 64 / 8,
"FastIntToBufferBackward works only with 64-bit-or-less integers.");
// This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(i) > 32 / 8;
if (kIsSigned) {
if (kUse64Bit) {
return FastIntToBufferBackward(static_cast<int64_t>(i), buffer_end,
exact_digit_count);
} else {
return FastIntToBufferBackward(static_cast<int32_t>(i), buffer_end,
exact_digit_count);
}
} else {
if (kUse64Bit) {
return FastIntToBufferBackward(static_cast<uint64_t>(i), buffer_end,
exact_digit_count);
} else {
return FastIntToBufferBackward(static_cast<uint32_t>(i), buffer_end,
exact_digit_count);
}
}
}
// Implementation of SimpleAtoi, generalized to support arbitrary base (used
// with base different from 10 elsewhere in Abseil implementation).
template <typename int_type>
ABSL_MUST_USE_RESULT bool safe_strtoi_base(absl::string_view s,
absl::Nonnull<int_type*> out,
int base) {
static_assert(sizeof(*out) == 4 || sizeof(*out) == 8,
"SimpleAtoi works only with 32-bit or 64-bit integers.");
static_assert(!std::is_floating_point<int_type>::value,
"Use SimpleAtof or SimpleAtod instead.");
bool parsed;
// TODO(jorg): This signed-ness check is used because it works correctly
// with enums, and it also serves to check that int_type is not a pointer.
// If one day something like std::is_signed<enum E> works, switch to it.
// These conditions are constexpr bools to suppress MSVC warning C4127.
constexpr bool kIsSigned = static_cast<int_type>(1) - 2 < 0;
constexpr bool kUse64Bit = sizeof(*out) == 64 / 8;
if (kIsSigned) {
if (kUse64Bit) {
int64_t val;
parsed = numbers_internal::safe_strto64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
int32_t val;
parsed = numbers_internal::safe_strto32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
} else {
if (kUse64Bit) {
uint64_t val;
parsed = numbers_internal::safe_strtou64_base(s, &val, base);
*out = static_cast<int_type>(val);
} else {
uint32_t val;
parsed = numbers_internal::safe_strtou32_base(s, &val, base);
*out = static_cast<int_type>(val);
}
}
return parsed;
}
// FastHexToBufferZeroPad16()
//
// Outputs `val` into `out` as if by `snprintf(out, 17, "%016x", val)` but
// without the terminating null character. Thus `out` must be of length >= 16.
// Returns the number of non-pad digits of the output (it can never be zero
// since 0 has one digit).
inline size_t FastHexToBufferZeroPad16(uint64_t val, absl::Nonnull<char*> out) {
#ifdef ABSL_INTERNAL_HAVE_SSSE3
uint64_t be = absl::big_endian::FromHost64(val);
const auto kNibbleMask = _mm_set1_epi8(0xf);
const auto kHexDigits = _mm_setr_epi8('0', '1', '2', '3', '4', '5', '6', '7',
'8', '9', 'a', 'b', 'c', 'd', 'e', 'f');
auto v = _mm_loadl_epi64(reinterpret_cast<__m128i*>(&be)); // load lo dword
auto v4 = _mm_srli_epi64(v, 4); // shift 4 right
auto il = _mm_unpacklo_epi8(v4, v); // interleave bytes
auto m = _mm_and_si128(il, kNibbleMask); // mask out nibbles
auto hexchars = _mm_shuffle_epi8(kHexDigits, m); // hex chars
_mm_storeu_si128(reinterpret_cast<__m128i*>(out), hexchars);
#else
for (int i = 0; i < 8; ++i) {
auto byte = (val >> (56 - 8 * i)) & 0xFF;
auto* hex = &absl::numbers_internal::kHexTable[byte * 2];
std::memcpy(out + 2 * i, hex, 2);
}
#endif
// | 0x1 so that even 0 has 1 digit.
return 16 - static_cast<size_t>(countl_zero(val | 0x1) / 4);
}
} // namespace numbers_internal
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 10);
}
ABSL_MUST_USE_RESULT inline bool SimpleAtoi(absl::string_view str,
absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 10);
}
template <typename int_type>
ABSL_MUST_USE_RESULT bool SimpleHexAtoi(absl::string_view str,
absl::Nonnull<int_type*> out) {
return numbers_internal::safe_strtoi_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::int128*> out) {
return numbers_internal::safe_strto128_base(str, out, 16);
}
ABSL_MUST_USE_RESULT inline bool SimpleHexAtoi(
absl::string_view str, absl::Nonnull<absl::uint128*> out) {
return numbers_internal::safe_strtou128_base(str, out, 16);
}
ABSL_NAMESPACE_END
} // namespace absl
#endif // ABSL_STRINGS_NUMBERS_H_
|