1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225
|
// Copyright 2023 The Abseil Authors
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "absl/synchronization/internal/kernel_timeout.h"
#ifndef _WIN32
#include <sys/types.h>
#endif
#include <algorithm>
#include <chrono> // NOLINT(build/c++11)
#include <cstdint>
#include <cstdlib>
#include <cstring>
#include <ctime>
#include <limits>
#include "absl/base/attributes.h"
#include "absl/base/call_once.h"
#include "absl/base/config.h"
#include "absl/time/time.h"
namespace absl {
ABSL_NAMESPACE_BEGIN
namespace synchronization_internal {
#ifdef ABSL_INTERNAL_NEED_REDUNDANT_CONSTEXPR_DECL
constexpr uint64_t KernelTimeout::kNoTimeout;
constexpr int64_t KernelTimeout::kMaxNanos;
#endif
int64_t KernelTimeout::SteadyClockNow() {
if (!SupportsSteadyClock()) {
return absl::GetCurrentTimeNanos();
}
return std::chrono::duration_cast<std::chrono::nanoseconds>(
std::chrono::steady_clock::now().time_since_epoch())
.count();
}
KernelTimeout::KernelTimeout(absl::Time t) {
// `absl::InfiniteFuture()` is a common "no timeout" value and cheaper to
// compare than convert.
if (t == absl::InfiniteFuture()) {
rep_ = kNoTimeout;
return;
}
int64_t unix_nanos = absl::ToUnixNanos(t);
// A timeout that lands before the unix epoch is converted to 0.
// In theory implementations should expire these timeouts immediately.
if (unix_nanos < 0) {
unix_nanos = 0;
}
// Values greater than or equal to kMaxNanos are converted to infinite.
if (unix_nanos >= kMaxNanos) {
rep_ = kNoTimeout;
return;
}
rep_ = static_cast<uint64_t>(unix_nanos) << 1;
}
KernelTimeout::KernelTimeout(absl::Duration d) {
// `absl::InfiniteDuration()` is a common "no timeout" value and cheaper to
// compare than convert.
if (d == absl::InfiniteDuration()) {
rep_ = kNoTimeout;
return;
}
int64_t nanos = absl::ToInt64Nanoseconds(d);
// Negative durations are normalized to 0.
// In theory implementations should expire these timeouts immediately.
if (nanos < 0) {
nanos = 0;
}
int64_t now = SteadyClockNow();
if (nanos > kMaxNanos - now) {
// Durations that would be greater than kMaxNanos are converted to infinite.
rep_ = kNoTimeout;
return;
}
nanos += now;
rep_ = (static_cast<uint64_t>(nanos) << 1) | uint64_t{1};
}
int64_t KernelTimeout::MakeAbsNanos() const {
if (!has_timeout()) {
return kMaxNanos;
}
int64_t nanos = RawAbsNanos();
if (is_relative_timeout()) {
// We need to change epochs, because the relative timeout might be
// represented by an absolute timestamp from another clock.
nanos = std::max<int64_t>(nanos - SteadyClockNow(), 0);
int64_t now = absl::GetCurrentTimeNanos();
if (nanos > kMaxNanos - now) {
// Overflow.
nanos = kMaxNanos;
} else {
nanos += now;
}
} else if (nanos == 0) {
// Some callers have assumed that 0 means no timeout, so instead we return a
// time of 1 nanosecond after the epoch.
nanos = 1;
}
return nanos;
}
int64_t KernelTimeout::InNanosecondsFromNow() const {
if (!has_timeout()) {
return kMaxNanos;
}
int64_t nanos = RawAbsNanos();
if (is_absolute_timeout()) {
return std::max<int64_t>(nanos - absl::GetCurrentTimeNanos(), 0);
}
return std::max<int64_t>(nanos - SteadyClockNow(), 0);
}
struct timespec KernelTimeout::MakeAbsTimespec() const {
return absl::ToTimespec(absl::Nanoseconds(MakeAbsNanos()));
}
struct timespec KernelTimeout::MakeRelativeTimespec() const {
return absl::ToTimespec(absl::Nanoseconds(InNanosecondsFromNow()));
}
#ifndef _WIN32
struct timespec KernelTimeout::MakeClockAbsoluteTimespec(clockid_t c) const {
if (!has_timeout()) {
return absl::ToTimespec(absl::Nanoseconds(kMaxNanos));
}
int64_t nanos = RawAbsNanos();
if (is_absolute_timeout()) {
nanos -= absl::GetCurrentTimeNanos();
} else {
nanos -= SteadyClockNow();
}
struct timespec now;
ABSL_RAW_CHECK(clock_gettime(c, &now) == 0, "clock_gettime() failed");
absl::Duration from_clock_epoch =
absl::DurationFromTimespec(now) + absl::Nanoseconds(nanos);
if (from_clock_epoch <= absl::ZeroDuration()) {
// Some callers have assumed that 0 means no timeout, so instead we return a
// time of 1 nanosecond after the epoch. For safety we also do not return
// negative values.
return absl::ToTimespec(absl::Nanoseconds(1));
}
return absl::ToTimespec(from_clock_epoch);
}
#endif
KernelTimeout::DWord KernelTimeout::InMillisecondsFromNow() const {
constexpr DWord kInfinite = std::numeric_limits<DWord>::max();
if (!has_timeout()) {
return kInfinite;
}
constexpr uint64_t kNanosInMillis = uint64_t{1'000'000};
constexpr uint64_t kMaxValueNanos =
std::numeric_limits<int64_t>::max() - kNanosInMillis + 1;
uint64_t ns_from_now = static_cast<uint64_t>(InNanosecondsFromNow());
if (ns_from_now >= kMaxValueNanos) {
// Rounding up would overflow.
return kInfinite;
}
// Convert to milliseconds, always rounding up.
uint64_t ms_from_now = (ns_from_now + kNanosInMillis - 1) / kNanosInMillis;
if (ms_from_now > kInfinite) {
return kInfinite;
}
return static_cast<DWord>(ms_from_now);
}
std::chrono::time_point<std::chrono::system_clock>
KernelTimeout::ToChronoTimePoint() const {
if (!has_timeout()) {
return std::chrono::time_point<std::chrono::system_clock>::max();
}
// The cast to std::microseconds is because (on some platforms) the
// std::ratio used by std::chrono::steady_clock doesn't convert to
// std::nanoseconds, so it doesn't compile.
auto micros = std::chrono::duration_cast<std::chrono::microseconds>(
std::chrono::nanoseconds(MakeAbsNanos()));
return std::chrono::system_clock::from_time_t(0) + micros;
}
std::chrono::nanoseconds KernelTimeout::ToChronoDuration() const {
if (!has_timeout()) {
return std::chrono::nanoseconds::max();
}
return std::chrono::nanoseconds(InNanosecondsFromNow());
}
} // namespace synchronization_internal
ABSL_NAMESPACE_END
} // namespace absl
|