1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339
|
// Copyright 2017 The Abseil Authors.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// https://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include <cstdint>
#include <mutex> // NOLINT(build/c++11)
#include <vector>
#include "absl/base/config.h"
#include "absl/base/internal/cycleclock.h"
#include "absl/base/internal/spinlock.h"
#include "absl/base/no_destructor.h"
#include "absl/synchronization/blocking_counter.h"
#include "absl/synchronization/internal/thread_pool.h"
#include "absl/synchronization/mutex.h"
#include "benchmark/benchmark.h"
namespace {
void BM_Mutex(benchmark::State& state) {
static absl::NoDestructor<absl::Mutex> mu;
for (auto _ : state) {
absl::MutexLock lock(mu.get());
}
}
BENCHMARK(BM_Mutex)->UseRealTime()->Threads(1)->ThreadPerCpu();
void BM_ReaderLock(benchmark::State& state) {
static absl::NoDestructor<absl::Mutex> mu;
for (auto _ : state) {
absl::ReaderMutexLock lock(mu.get());
}
}
BENCHMARK(BM_ReaderLock)->UseRealTime()->Threads(1)->ThreadPerCpu();
void BM_TryLock(benchmark::State& state) {
absl::Mutex mu;
for (auto _ : state) {
if (mu.TryLock()) {
mu.Unlock();
}
}
}
BENCHMARK(BM_TryLock);
void BM_ReaderTryLock(benchmark::State& state) {
static absl::NoDestructor<absl::Mutex> mu;
for (auto _ : state) {
if (mu->ReaderTryLock()) {
mu->ReaderUnlock();
}
}
}
BENCHMARK(BM_ReaderTryLock)->UseRealTime()->Threads(1)->ThreadPerCpu();
static void DelayNs(int64_t ns, int* data) {
int64_t end = absl::base_internal::CycleClock::Now() +
ns * absl::base_internal::CycleClock::Frequency() / 1e9;
while (absl::base_internal::CycleClock::Now() < end) {
++(*data);
benchmark::DoNotOptimize(*data);
}
}
template <typename MutexType>
class RaiiLocker {
public:
explicit RaiiLocker(MutexType* mu) : mu_(mu) { mu_->Lock(); }
~RaiiLocker() { mu_->Unlock(); }
private:
MutexType* mu_;
};
template <>
class RaiiLocker<std::mutex> {
public:
explicit RaiiLocker(std::mutex* mu) : mu_(mu) { mu_->lock(); }
~RaiiLocker() { mu_->unlock(); }
private:
std::mutex* mu_;
};
// RAII object to change the Mutex priority of the running thread.
class ScopedThreadMutexPriority {
public:
explicit ScopedThreadMutexPriority(int priority) {
absl::base_internal::ThreadIdentity* identity =
absl::synchronization_internal::GetOrCreateCurrentThreadIdentity();
identity->per_thread_synch.priority = priority;
// Bump next_priority_read_cycles to the infinite future so that the
// implementation doesn't re-read the thread's actual scheduler priority
// and replace our temporary scoped priority.
identity->per_thread_synch.next_priority_read_cycles =
std::numeric_limits<int64_t>::max();
}
~ScopedThreadMutexPriority() {
// Reset the "next priority read time" back to the infinite past so that
// the next time the Mutex implementation wants to know this thread's
// priority, it re-reads it from the OS instead of using our overridden
// priority.
absl::synchronization_internal::GetOrCreateCurrentThreadIdentity()
->per_thread_synch.next_priority_read_cycles =
std::numeric_limits<int64_t>::min();
}
};
void BM_MutexEnqueue(benchmark::State& state) {
// In the "multiple priorities" variant of the benchmark, one of the
// threads runs with Mutex priority 0 while the rest run at elevated priority.
// This benchmarks the performance impact of the presence of a low priority
// waiter when a higher priority waiter adds itself of the queue
// (b/175224064).
//
// NOTE: The actual scheduler priority is not modified in this benchmark:
// all of the threads get CPU slices with the same priority. Only the
// Mutex queueing behavior is modified.
const bool multiple_priorities = state.range(0);
ScopedThreadMutexPriority priority_setter(
(multiple_priorities && state.thread_index() != 0) ? 1 : 0);
struct Shared {
absl::Mutex mu;
std::atomic<int> looping_threads{0};
std::atomic<int> blocked_threads{0};
std::atomic<bool> thread_has_mutex{false};
};
static absl::NoDestructor<Shared> shared;
// Set up 'blocked_threads' to count how many threads are currently blocked
// in Abseil synchronization code.
//
// NOTE: Blocking done within the Google Benchmark library itself (e.g.
// the barrier which synchronizes threads entering and exiting the benchmark
// loop) does _not_ get registered in this counter. This is because Google
// Benchmark uses its own synchronization primitives based on std::mutex, not
// Abseil synchronization primitives. If at some point the benchmark library
// merges into Abseil, this code may break.
absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter(
&shared->blocked_threads);
// The benchmark framework may run several iterations in the same process,
// reusing the same static-initialized 'shared' object. Given the semantics
// of the members, here, we expect everything to be reset to zero by the
// end of any iteration. Assert that's the case, just to be sure.
ABSL_RAW_CHECK(
shared->looping_threads.load(std::memory_order_relaxed) == 0 &&
shared->blocked_threads.load(std::memory_order_relaxed) == 0 &&
!shared->thread_has_mutex.load(std::memory_order_relaxed),
"Shared state isn't zeroed at start of benchmark iteration");
static constexpr int kBatchSize = 1000;
while (state.KeepRunningBatch(kBatchSize)) {
shared->looping_threads.fetch_add(1);
for (int i = 0; i < kBatchSize; i++) {
{
absl::MutexLock l(&shared->mu);
shared->thread_has_mutex.store(true, std::memory_order_relaxed);
// Spin until all other threads are either out of the benchmark loop
// or blocked on the mutex. This ensures that the mutex queue is kept
// at its maximal length to benchmark the performance of queueing on
// a highly contended mutex.
while (shared->looping_threads.load(std::memory_order_relaxed) -
shared->blocked_threads.load(std::memory_order_relaxed) !=
1) {
}
shared->thread_has_mutex.store(false);
}
// Spin until some other thread has acquired the mutex before we block
// again. This ensures that we always go through the slow (queueing)
// acquisition path rather than reacquiring the mutex we just released.
while (!shared->thread_has_mutex.load(std::memory_order_relaxed) &&
shared->looping_threads.load(std::memory_order_relaxed) > 1) {
}
}
// The benchmark framework uses a barrier to ensure that all of the threads
// complete their benchmark loop together before any of the threads exit
// the loop. So, we need to remove ourselves from the "looping threads"
// counter here before potentially blocking on that barrier. Otherwise,
// another thread spinning above might wait forever for this thread to
// block on the mutex while we in fact are waiting to exit.
shared->looping_threads.fetch_add(-1);
}
absl::synchronization_internal::PerThreadSem::SetThreadBlockedCounter(
nullptr);
}
BENCHMARK(BM_MutexEnqueue)
->Threads(4)
->Threads(64)
->Threads(128)
->Threads(512)
->ArgName("multiple_priorities")
->Arg(false)
->Arg(true);
template <typename MutexType>
void BM_Contended(benchmark::State& state) {
int priority = state.thread_index() % state.range(1);
ScopedThreadMutexPriority priority_setter(priority);
struct Shared {
MutexType mu;
int data = 0;
};
static absl::NoDestructor<Shared> shared;
int local = 0;
for (auto _ : state) {
// Here we model both local work outside of the critical section as well as
// some work inside of the critical section. The idea is to capture some
// more or less realisitic contention levels.
// If contention is too low, the benchmark won't measure anything useful.
// If contention is unrealistically high, the benchmark will favor
// bad mutex implementations that block and otherwise distract threads
// from the mutex and shared state for as much as possible.
// To achieve this amount of local work is multiplied by number of threads
// to keep ratio between local work and critical section approximately
// equal regardless of number of threads.
DelayNs(100 * state.threads(), &local);
RaiiLocker<MutexType> locker(&shared->mu);
DelayNs(state.range(0), &shared->data);
}
}
void SetupBenchmarkArgs(benchmark::internal::Benchmark* bm,
bool do_test_priorities) {
const int max_num_priorities = do_test_priorities ? 2 : 1;
bm->UseRealTime()
// ThreadPerCpu poorly handles non-power-of-two CPU counts.
->Threads(1)
->Threads(2)
->Threads(4)
->Threads(6)
->Threads(8)
->Threads(12)
->Threads(16)
->Threads(24)
->Threads(32)
->Threads(48)
->Threads(64)
->Threads(96)
->Threads(128)
->Threads(192)
->Threads(256)
->ArgNames({"cs_ns", "num_prios"});
// Some empirically chosen amounts of work in critical section.
// 1 is low contention, 2000 is high contention and few values in between.
for (int critical_section_ns : {1, 20, 50, 200, 2000}) {
for (int num_priorities = 1; num_priorities <= max_num_priorities;
num_priorities++) {
bm->ArgPair(critical_section_ns, num_priorities);
}
}
}
BENCHMARK_TEMPLATE(BM_Contended, absl::Mutex)
->Apply([](benchmark::internal::Benchmark* bm) {
SetupBenchmarkArgs(bm, /*do_test_priorities=*/true);
});
BENCHMARK_TEMPLATE(BM_Contended, absl::base_internal::SpinLock)
->Apply([](benchmark::internal::Benchmark* bm) {
SetupBenchmarkArgs(bm, /*do_test_priorities=*/false);
});
BENCHMARK_TEMPLATE(BM_Contended, std::mutex)
->Apply([](benchmark::internal::Benchmark* bm) {
SetupBenchmarkArgs(bm, /*do_test_priorities=*/false);
});
// Measure the overhead of conditions on mutex release (when they must be
// evaluated). Mutex has (some) support for equivalence classes allowing
// Conditions with the same function/argument to potentially not be multiply
// evaluated.
//
// num_classes==0 is used for the special case of every waiter being distinct.
void BM_ConditionWaiters(benchmark::State& state) {
int num_classes = state.range(0);
int num_waiters = state.range(1);
struct Helper {
static void Waiter(absl::BlockingCounter* init, absl::Mutex* m, int* p) {
init->DecrementCount();
m->LockWhen(absl::Condition(
static_cast<bool (*)(int*)>([](int* v) { return *v == 0; }), p));
m->Unlock();
}
};
if (num_classes == 0) {
// No equivalence classes.
num_classes = num_waiters;
}
absl::BlockingCounter init(num_waiters);
absl::Mutex mu;
std::vector<int> equivalence_classes(num_classes, 1);
// Must be declared last to be destroyed first.
absl::synchronization_internal::ThreadPool pool(num_waiters);
for (int i = 0; i < num_waiters; i++) {
// Mutex considers Conditions with the same function and argument
// to be equivalent.
pool.Schedule([&, i] {
Helper::Waiter(&init, &mu, &equivalence_classes[i % num_classes]);
});
}
init.Wait();
for (auto _ : state) {
mu.Lock();
mu.Unlock(); // Each unlock requires Condition evaluation for our waiters.
}
mu.Lock();
for (int i = 0; i < num_classes; i++) {
equivalence_classes[i] = 0;
}
mu.Unlock();
}
// Some configurations have higher thread limits than others.
#if defined(__linux__) && !defined(ABSL_HAVE_THREAD_SANITIZER)
constexpr int kMaxConditionWaiters = 8192;
#else
constexpr int kMaxConditionWaiters = 1024;
#endif
BENCHMARK(BM_ConditionWaiters)->RangePair(0, 2, 1, kMaxConditionWaiters);
} // namespace
|