1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831
|
# Usage of primordials in core
The file `lib/internal/per_context/primordials.js` subclasses and stores the JS
built-ins that come from the VM so that Node.js built-in modules do not need to
later look these up from the global proxy, which can be mutated by users.
For some area of the codebase, performance and code readability are deemed more
important than reliability against prototype pollution:
* `node:http`
* `node:http2`
* `node:tls`
* `node:zlib`
Usage of primordials should be preferred for new code in other areas, but
replacing current code with primordials should be
[done with care](#primordials-with-known-performance-issues). It is highly
recommended to ping the relevant team when reviewing a pull request that touches
one of the subsystems they "own".
## Accessing primordials
The primordials are meant for internal use only, and are only accessible for
internal core modules. User code cannot use or rely on primordials. It is
usually fine to rely on ECMAScript built-ins and assume that it will behave as
specified.
If you would like to access the `primordials` object to help you with Node.js
core development or for tinkering, you can expose it on the global scope using
this combination of CLI flags:
```bash
node --expose-internals -r internal/test/binding
```
## Contents of primordials
### Properties of the global object
Objects and functions on the global object can be deleted or replaced. Using
them from primordials makes the code more reliable:
```js
globalThis.Array === primordials.Array; // true
globalThis.Array = function() {
return [1, 2, 3];
};
globalThis.Array === primordials.Array; // false
primordials.Array(0); // []
globalThis.Array(0); // [1,2,3]
```
### Prototype methods
ECMAScript provides a group of methods available on built-in objects that are
used to interact with JavaScript objects.
```js
const array = [1, 2, 3];
array.push(4); // Here `push` refers to %Array.prototype.push%.
console.log(JSON.stringify(array)); // [1,2,3,4]
// %Array.prototype%.push is modified in userland.
Array.prototype.push = function push(val) {
return this.unshift(val);
};
array.push(5); // Now `push` refers to the modified method.
console.log(JSON.stringify(array)); // [5,1,2,3,4]
```
Primordials wrap the original prototype functions with new functions that take
the `this` value as the first argument:
```js
const {
ArrayPrototypePush,
} = primordials;
const array = [1, 2, 3];
ArrayPrototypePush(array, 4);
console.log(JSON.stringify(array)); // [1,2,3,4]
Array.prototype.push = function push(val) {
return this.unshift(val);
};
ArrayPrototypePush(array, 5);
console.log(JSON.stringify(array)); // [1,2,3,4,5]
```
### Safe classes
Safe classes are classes that provide the same API as their equivalent class,
but whose implementation aims to avoid any reliance on user-mutable code.
Safe classes should not be exposed to user-land; use unsafe equivalent when
dealing with objects that are accessible from user-land.
### Variadic functions
There are some built-in functions that accept a variable number of arguments
(e.g.: `Math.max`, `%Array.prototype.push%`). It is sometimes useful to provide
the list of arguments as an array. You can use primordial function with the
suffix `Apply` (e.g.: `MathMaxApply`, `ArrayPrototypePushApply`) to do that.
## Primordials with known performance issues
One of the reasons why the current Node.js API is not completely tamper-proof is
performance: sometimes the use of primordials can cause performance regressions
with V8, which when in a hot code path, could significantly decrease the
performance of code in Node.js.
* Methods that mutate the internal state of arrays:
* `ArrayPrototypePush`
* `ArrayPrototypePop`
* `ArrayPrototypeShift`
* `ArrayPrototypeUnshift`
* Methods of the function prototype:
* `FunctionPrototypeBind`
* `FunctionPrototypeCall`: creates performance issues when used to invoke
super constructors.
* `FunctionPrototype`: use `() => {}` instead when referencing a no-op
function.
* `SafeArrayIterator`
* `SafeStringIterator`
* `SafePromiseAll`
* `SafePromiseAllSettled`
* `SafePromiseAny`
* `SafePromiseRace`
* `SafePromisePrototypeFinally`: use `try {} finally {}` block instead.
* `ReflectConstruct`: Also affects `Reflect.construct`.
`ReflectConstruct` creates new types of classes inside functions.
Instead consider creating a shared class. See [nodejs/performance#109](https://github.com/nodejs/performance/issues/109).
In general, when sending or reviewing a PR that makes changes in a hot code
path, use extra caution and run extensive benchmarks.
## Implicit use of user-mutable methods
### Unsafe array iteration
There are many usual practices in JavaScript that rely on iteration. It's useful
to be aware of them when dealing with arrays (or `TypedArray`s) in core as array
iteration typically calls several user-mutable methods. This sections lists the
most common patterns in which ECMAScript code relies non-explicitly on array
iteration and how to avoid it.
<details>
<summary>Avoid for-of loops on arrays</summary>
```js
for (const item of array) {
console.log(item);
}
```
This code is internally expanded into something that looks like:
```js
{
// 1. Lookup @@iterator property on `array` (user-mutable if user-provided).
// 2. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 3. Call that function.
const iterator = array[Symbol.iterator]();
// 1. Lookup `next` property on `iterator` (doesn't exist).
// 2. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
// 3. Call that function.
let { done, value: item } = iterator.next();
while (!done) {
console.log(item);
// Repeat.
({ done, value: item } = iterator.next());
}
}
```
Instead of utilizing iterators, you can use the more traditional but still very
performant `for` loop:
```js
for (let i = 0; i < array.length; i++) {
console.log(array[i]);
}
```
The following code snippet illustrates how user-land code could impact the
behavior of internal modules:
```js
// User-land
Array.prototype[Symbol.iterator] = () => ({
next: () => ({ done: true }),
});
// Core
let forOfLoopBlockExecuted = false;
let forLoopBlockExecuted = false;
const array = [1, 2, 3];
for (const item of array) {
forOfLoopBlockExecuted = true;
}
for (let i = 0; i < array.length; i++) {
forLoopBlockExecuted = true;
}
console.log(forOfLoopBlockExecuted); // false
console.log(forLoopBlockExecuted); // true
```
This only applies if you are working with a genuine array (or array-like
object). If you are instead expecting an iterator, a for-of loop may be a better
choice.
</details>
<details>
<summary>Avoid array destructuring assignment on arrays</summary>
```js
const [first, second] = array;
```
This is roughly equivalent to:
```js
// 1. Lookup @@iterator property on `array` (user-mutable if user-provided).
// 2. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 3. Call that function.
const iterator = array[Symbol.iterator]();
// 1. Lookup `next` property on `iterator` (doesn't exist).
// 2. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
// 3. Call that function.
const first = iterator.next().value;
// Repeat.
const second = iterator.next().value;
```
Instead you can use object destructuring:
```js
const { 0: first, 1: second } = array;
```
or
```js
const first = array[0];
const second = array[1];
```
This only applies if you are working with a genuine array (or array-like
object). If you are instead expecting an iterator, array destructuring is the
best choice.
</details>
<details>
<summary>Avoid spread operator on arrays</summary>
```js
// 1. Lookup @@iterator property on `array` (user-mutable if user-provided).
// 2. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 3. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
const arrayCopy = [...array];
func(...array);
```
Instead you can use other ECMAScript features to achieve the same result:
```js
const arrayCopy = ArrayPrototypeSlice(array);
ReflectApply(func, null, array);
```
</details>
<details>
<summary><code>%Array.prototype.concat%</code> looks up
<code>@@isConcatSpreadable</code> property of the passed
arguments and the <code>this</code> value.</summary>
```js
{
// Unsafe code example:
// 1. Lookup @@isConcatSpreadable property on `array` (user-mutable if
// user-provided).
// 2. Lookup @@isConcatSpreadable property on `%Array.prototype%
// (user-mutable).
// 2. Lookup @@isConcatSpreadable property on `%Object.prototype%
// (user-mutable).
const array = [];
ArrayPrototypeConcat(array);
}
```
```js
// User-land
Object.defineProperty(Object.prototype, Symbol.isConcatSpreadable, {
get() {
this.push(5);
return true;
},
});
// Core
{
// Using ArrayPrototypeConcat does not produce the expected result:
const a = [1, 2];
const b = [3, 4];
console.log(ArrayPrototypeConcat(a, b)); // [1, 2, 5, 3, 4, 5]
}
{
// Concatenating two arrays can be achieved safely, e.g.:
const a = [1, 2];
const b = [3, 4];
// Using %Array.prototype.push% and `SafeArrayIterator` to get the expected
// outcome:
const concatArray = [];
ArrayPrototypePush(concatArray, ...new SafeArrayIterator(a),
...new SafeArrayIterator(b));
console.log(concatArray); // [1, 2, 3, 4]
// Or using `ArrayPrototypePushApply` if it's OK to mutate the first array:
ArrayPrototypePushApply(a, b);
console.log(a); // [1, 2, 3, 4]
}
```
</details>
<details>
<summary><code>%Object.fromEntries%</code> iterate over an array</summary>
```js
{
// Unsafe code example:
// 1. Lookup @@iterator property on `array` (user-mutable if user-provided).
// 2. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 3. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
const obj = ObjectFromEntries(array);
}
{
// Safe example using `SafeArrayIterator`:
const obj = ObjectFromEntries(new SafeArrayIterator(array));
}
{
// Safe example without using `SafeArrayIterator`:
const obj = {};
for (let i = 0; i < array.length; i++) {
obj[array[i][0]] = array[i][1];
}
// In a hot code path, this would be the preferred method.
}
```
</details>
<details>
<summary><code>%Promise.all%</code>,
<code>%Promise.allSettled%</code>,
<code>%Promise.any%</code>, and
<code>%Promise.race%</code> iterate over an array</summary>
```js
// 1. Lookup @@iterator property on `array` (user-mutable if user-provided).
// 2. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 3. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
// 4. Lookup `then` property on %Array.Prototype% (user-mutable).
// 5. Lookup `then` property on %Object.Prototype% (user-mutable).
PromiseAll([]); // unsafe
// 1. Lookup `then` property on %Array.Prototype% (user-mutable).
// 2. Lookup `then` property on %Object.Prototype% (user-mutable).
PromiseAll(new SafeArrayIterator([])); // still unsafe
SafePromiseAll([]); // still unsafe
SafePromiseAllReturnVoid([]); // safe
SafePromiseAllReturnArrayLike([]); // safe
const array = [promise];
const set = new SafeSet().add(promise);
// When running one of these functions on a non-empty iterable, it will also:
// 1. Lookup `then` property on `promise` (user-mutable if user-provided).
// 2. Lookup `then` property on `%Promise.prototype%` (user-mutable).
// 3. Lookup `then` property on %Array.Prototype% (user-mutable).
// 4. Lookup `then` property on %Object.Prototype% (user-mutable).
PromiseAll(new SafeArrayIterator(array)); // unsafe
PromiseAll(set); // unsafe
SafePromiseAllReturnVoid(array); // safe
SafePromiseAllReturnArrayLike(array); // safe
// Some key differences between `SafePromise[...]` and `Promise[...]` methods:
// 1. SafePromiseAll, SafePromiseAllSettled, SafePromiseAny, SafePromiseRace,
// SafePromiseAllReturnArrayLike, SafePromiseAllReturnVoid, and
// SafePromiseAllSettledReturnVoid support passing a mapperFunction as second
// argument.
SafePromiseAll(ArrayPrototypeMap(array, someFunction));
SafePromiseAll(array, someFunction); // Same as the above, but more efficient.
// 2. SafePromiseAll, SafePromiseAllSettled, SafePromiseAny, SafePromiseRace,
// SafePromiseAllReturnArrayLike, SafePromiseAllReturnVoid, and
// SafePromiseAllSettledReturnVoid only support arrays and array-like
// objects, not iterables. Use ArrayFrom to convert an iterable to an array.
SafePromiseAllReturnVoid(set); // ignores set content.
SafePromiseAllReturnVoid(ArrayFrom(set)); // works
// 3. SafePromiseAllReturnArrayLike is safer than SafePromiseAll, however you
// should not use them when its return value is passed to the user as it can
// be surprising for them not to receive a genuine array.
SafePromiseAllReturnArrayLike(array).then((val) => val instanceof Array); // false
SafePromiseAll(array).then((val) => val instanceof Array); // true
```
</details>
<details>
<summary><code>%Map%</code>, <code>%Set%</code>, <code>%WeakMap%</code>, and
<code>%WeakSet%</code> constructors iterate over an array</summary>
```js
// User-land
Array.prototype[Symbol.iterator] = () => ({
next: () => ({ done: true }),
});
// Core
// 1. Lookup @@iterator property on %Array.prototype% (user-mutable).
// 2. Lookup `next` property on %ArrayIteratorPrototype% (user-mutable).
const set = new SafeSet([1, 2, 3]);
console.log(set.size); // 0
```
```js
// User-land
Array.prototype[Symbol.iterator] = () => ({
next: () => ({ done: true }),
});
// Core
const set = new SafeSet();
set.add(1).add(2).add(3);
console.log(set.size); // 3
```
</details>
### Promise objects
<details>
<summary><code>%Promise.prototype.finally%</code> looks up <code>then</code>
property of the Promise instance</summary>
```js
// User-land
Promise.prototype.then = function then(a, b) {
return Promise.resolve();
};
// Core
let finallyBlockExecuted = false;
PromisePrototypeFinally(somePromiseThatEventuallySettles,
() => { finallyBlockExecuted = true; });
process.on('exit', () => console.log(finallyBlockExecuted)); // false
```
```js
// User-land
Promise.prototype.then = function then(a, b) {
return Promise.resolve();
};
// Core
let finallyBlockExecuted = false;
(async () => {
try {
return await somePromiseThatEventuallySettles;
} finally {
finallyBlockExecuted = true;
}
})();
process.on('exit', () => console.log(finallyBlockExecuted)); // true
```
</details>
<details>
<summary><code>%Promise.all%</code>,
<code>%Promise.allSettled%</code>,
<code>%Promise.any%</code>, and
<code>%Promise.race%</code> look up <code>then</code>
property of the Promise instances</summary>
You can use safe alternatives from primordials that differ slightly from the
original methods:
* It expects an array (or array-like object) instead of an iterable.
* It wraps each promise in `SafePromise` objects and wraps the result in a new
`Promise` instance – which may come with a performance penalty.
* It accepts a `mapperFunction` as second argument.
* Because it doesn't look up `then` property, it may not be the right tool to
handle user-provided promises (which may be instances of a subclass of
`Promise`).
```js
// User-land
Promise.prototype.then = function then(a, b) {
return Promise.resolve();
};
// Core
let thenBlockExecuted = false;
PromisePrototypeThen(
PromiseAll(new SafeArrayIterator([PromiseResolve()])),
() => { thenBlockExecuted = true; },
);
process.on('exit', () => console.log(thenBlockExecuted)); // false
```
```js
// User-land
Promise.prototype.then = function then(a, b) {
return Promise.resolve();
};
// Core
let thenBlockExecuted = false;
PromisePrototypeThen(
SafePromiseAll([PromiseResolve()]),
() => { thenBlockExecuted = true; },
);
process.on('exit', () => console.log(thenBlockExecuted)); // true
```
A common pattern is to map on the array of `Promise`s to apply some
transformations, in that case it can be more efficient to pass a second argument
rather than invoking `%Array.prototype.map%`.
```js
SafePromiseAll(ArrayPrototypeMap(array, someFunction));
SafePromiseAll(array, someFunction); // Same as the above, but more efficient.
```
</details>
### (Async) Generator functions
Generators and async generators returned by generator functions and async
generator functions are relying on user-mutable methods; their use in core
should be avoided.
<details>
<summary><code>%GeneratorFunction.prototype.prototype%.next</code> is
user-mutable</summary>
```js
// User-land
Object.getPrototypeOf(function* () {}).prototype.next = function next() {
return { done: true };
};
// Core
function* someGenerator() {
yield 1;
yield 2;
yield 3;
}
let loopCodeExecuted = false;
for (const nb of someGenerator()) {
loopCodeExecuted = true;
}
console.log(loopCodeExecuted); // false
```
</details>
<details>
<summary><code>%AsyncGeneratorFunction.prototype.prototype%.next</code> is
user-mutable</summary>
```js
// User-land
Object.getPrototypeOf(async function* () {}).prototype.next = function next() {
return new Promise(() => {});
};
// Core
async function* someGenerator() {
yield 1;
yield 2;
yield 3;
}
let finallyBlockExecuted = false;
async () => {
try {
for await (const nb of someGenerator()) {
// some code;
}
} finally {
finallyBlockExecuted = true;
}
};
process.on('exit', () => console.log(finallyBlockExecuted)); // false
```
</details>
### Text processing
#### Unsafe string methods
| The string method | looks up the property |
| ----------------------------- | --------------------- |
| `String.prototype.match` | `Symbol.match` |
| `String.prototype.matchAll` | `Symbol.matchAll` |
| `String.prototype.replace` | `Symbol.replace` |
| `String.prototype.replaceAll` | `Symbol.replace` |
| `String.prototype.search` | `Symbol.search` |
| `String.prototype.split` | `Symbol.split` |
```js
// User-land
RegExp.prototype[Symbol.replace] = () => 'foo';
String.prototype[Symbol.replace] = () => 'baz';
// Core
console.log(StringPrototypeReplace('ber', /e/, 'a')); // 'foo'
console.log(StringPrototypeReplace('ber', 'e', 'a')); // 'baz'
console.log(RegExpPrototypeSymbolReplace(/e/, 'ber', 'a')); // 'bar'
```
#### Unsafe string iteration
As with arrays, iterating over strings calls several user-mutable methods. Avoid
iterating over strings when possible, or use `SafeStringIterator`.
#### Unsafe `RegExp` methods
Functions that lookup the `exec` property on the prototype chain:
* `RegExp.prototype[Symbol.match]`
* `RegExp.prototype[Symbol.matchAll]`
* `RegExp.prototype[Symbol.replace]`
* `RegExp.prototype[Symbol.search]`
* `RegExp.prototype[Symbol.split]`
* `RegExp.prototype.test`
```js
// User-land
RegExp.prototype.exec = () => null;
// Core
console.log(RegExpPrototypeTest(/o/, 'foo')); // false
console.log(RegExpPrototypeExec(/o/, 'foo') !== null); // true
console.log(RegExpPrototypeSymbolSearch(/o/, 'foo')); // -1
console.log(SafeStringPrototypeSearch('foo', /o/)); // 1
```
#### Don't trust `RegExp` flags
RegExp flags are not own properties of the regex instances, which means flags
can be reset from user-land.
<details>
<summary>List of <code>RegExp</code> methods that look up properties from
mutable getters</summary>
| `RegExp` method | looks up the following flag-related properties |
| ------------------------------ | ------------------------------------------------------------------ |
| `get RegExp.prototype.flags` | `global`, `ignoreCase`, `multiline`, `dotAll`, `unicode`, `sticky` |
| `RegExp.prototype[@@match]` | `global`, `unicode` |
| `RegExp.prototype[@@matchAll]` | `flags` |
| `RegExp.prototype[@@replace]` | `global`, `unicode` |
| `RegExp.prototype[@@split]` | `flags` |
| `RegExp.prototype.toString` | `flags` |
</details>
```js
// User-land
Object.defineProperty(RegExp.prototype, 'global', { value: false });
// Core
console.log(RegExpPrototypeSymbolReplace(/o/g, 'foo', 'a')); // 'fao'
console.log(RegExpPrototypeSymbolReplace(hardenRegExp(/o/g), 'foo', 'a')); // 'faa'
```
### Defining object own properties
When defining property descriptor (to add or update an own property to a
JavaScript object), be sure to always use a null-prototype object to avoid
prototype pollution.
```js
// User-land
Object.prototype.get = function get() {};
// Core
try {
ObjectDefineProperty({}, 'someProperty', { value: 0 });
} catch (err) {
console.log(err); // TypeError: Invalid property descriptor.
}
```
```js
// User-land
Object.prototype.get = function get() {};
// Core
ObjectDefineProperty({}, 'someProperty', { __proto__: null, value: 0 });
console.log('no errors'); // no errors.
```
Same applies when trying to modify an existing property, e.g. trying to make a
read-only property enumerable:
```js
// User-land
Object.prototype.value = 'Unrelated user-provided data';
// Core
class SomeClass {
get readOnlyProperty() { return 'genuine data'; }
}
ObjectDefineProperty(SomeClass.prototype, 'readOnlyProperty', { enumerable: true });
console.log(new SomeClass().readOnlyProperty); // Unrelated user-provided data
```
```js
// User-land
Object.prototype.value = 'Unrelated user-provided data';
// Core
const kEnumerableProperty = { __proto__: null, enumerable: true };
// In core, use const {kEnumerableProperty} = require('internal/util');
class SomeClass {
get readOnlyProperty() { return 'genuine data'; }
}
ObjectDefineProperty(SomeClass.prototype, 'readOnlyProperty', kEnumerableProperty);
console.log(new SomeClass().readOnlyProperty); // genuine data
```
### Defining a `Proxy` handler
When defining a `Proxy`, the handler object could be at risk of prototype
pollution when using a plain object literal:
```js
// User-land
Object.prototype.get = () => 'Unrelated user-provided data';
// Core
const objectToProxy = { someProperty: 'genuine value' };
const proxyWithPlainObjectLiteral = new Proxy(objectToProxy, {
has() { return false; },
});
console.log(proxyWithPlainObjectLiteral.someProperty); // Unrelated user-provided data
const proxyWithNullPrototypeObject = new Proxy(objectToProxy, {
__proto__: null,
has() { return false; },
});
console.log(proxyWithNullPrototypeObject.someProperty); // genuine value
```
### Checking if an object is an instance of a class
#### Using `instanceof` looks up the `@@hasInstance` property of the class
```js
// User-land
Object.defineProperty(Array, Symbol.hasInstance, {
__proto__: null,
value: () => true,
});
Object.defineProperty(Date, Symbol.hasInstance, {
__proto__: null,
value: () => false,
});
// Core
const {
FunctionPrototypeSymbolHasInstance,
} = primordials;
console.log(new Date() instanceof Array); // true
console.log(new Date() instanceof Date); // false
console.log(FunctionPrototypeSymbolHasInstance(Array, new Date())); // false
console.log(FunctionPrototypeSymbolHasInstance(Date, new Date())); // true
```
Even without user mutations, the result of `instanceof` can be deceiving when
dealing with values from different realms:
```js
const vm = require('node:vm');
console.log(vm.runInNewContext('[]') instanceof Array); // false
console.log(vm.runInNewContext('[]') instanceof vm.runInNewContext('Array')); // false
console.log([] instanceof vm.runInNewContext('Array')); // false
console.log(Array.isArray(vm.runInNewContext('[]'))); // true
console.log(vm.runInNewContext('Array').isArray(vm.runInNewContext('[]'))); // true
console.log(vm.runInNewContext('Array').isArray([])); // true
```
In general, using `instanceof` (or `FunctionPrototypeSymbolHasInstance`) checks
is not recommended, consider checking for the presence of properties or methods
for more reliable results.
|