File: regexp-macro-assembler-s390.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (1289 lines) | stat: -rw-r--r-- 45,245 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#if V8_TARGET_ARCH_S390

#include "src/base/bits.h"
#include "src/code-stubs.h"
#include "src/cpu-profiler.h"
#include "src/log.h"
#include "src/macro-assembler.h"
#include "src/regexp-macro-assembler.h"
#include "src/regexp-stack.h"
#include "src/s390/regexp-macro-assembler-s390.h"
#include "src/unicode.h"

namespace v8 {
namespace internal {

#ifndef V8_INTERPRETED_REGEXP
/*
 * This assembler uses the following register assignment convention
 * - r6: Temporarily stores the index of capture start after a matching pass
 *        for a global regexp.
 * - r7: Pointer to current code object (Code*) including heap object tag.
 * - r8: Current position in input, as negative offset from end of string.
 *        Please notice that this is the byte offset, not the character offset!
 * - r9: Currently loaded character. Must be loaded using
 *        LoadCurrentCharacter before using any of the dispatch methods.
 * - r13: Points to tip of backtrack stack
 * - r10: End of input (points to byte after last character in input).
 * - r11: Frame pointer. Used to access arguments, local variables and
 *         RegExp registers.
 * - r12_p: IP register, used by assembler. Very volatile.
 * - r15/sp : Points to tip of C stack.
 *
 * The remaining registers are free for computations.
 * Each call to a public method should retain this convention.
 *
 * The stack will have the following structure:
 *  - fp[112] Isolate* isolate   (address of the current isolate)
 *  - fp[108] secondary link/return address used by native call.
 *  - fp[104] direct_call        (if 1, direct call from JavaScript code,
 *                                if 0, call through the runtime system).
 *  - fp[100] stack_area_base    (high end of the memory area to use as
 *                                backtracking stack).
 *  - fp[96]  capture array size (may fit multiple sets of matches)
 *  - fp[0..96] zLinux ABI register saving area
 *  --- sp when called ---
 *  --- frame pointer ----
 *  - fp[-4]  direct_call        (if 1, direct call from JavaScript code,
 *                                if 0, call through the runtime system).
 *  - fp[-8]  stack_area_base    (high end of the memory area to use as
 *                                backtracking stack).
 *  - fp[-12] capture array size (may fit multiple sets of matches)
 *  - fp[-16] int* capture_array (int[num_saved_registers_], for output).
 *  - fp[-20] end of input       (address of end of string).
 *  - fp[-24] start of input     (address of first character in string).
 *  - fp[-28] start index        (character index of start).
 *  - fp[-32] void* input_string (location of a handle containing the string).
 *  - fp[-36] success counter    (only for global regexps to count matches).
 *  - fp[-40] Offset of location before start of input (effectively character
 *            position -1). Used to initialize capture registers to a
 *            non-position.
 *  - fp[-44] At start (if 1, we are starting at the start of the
 *    string, otherwise 0)
 *  - fp[-48] register 0         (Only positions must be stored in the first
 *  -         register 1          num_saved_registers_ registers)
 *  -         ...
 *  -         register num_registers-1
 *  --- sp ---
 *
 * The first num_saved_registers_ registers are initialized to point to
 * "character -1" in the string (i.e., char_size() bytes before the first
 * character of the string). The remaining registers start out as garbage.
 *
 * The data up to the return address must be placed there by the calling
 * code and the remaining arguments are passed in registers, e.g. by calling the
 * code entry as cast to a function with the signature:
 * int (*match)(String* input_string,
 *              int start_index,
 *              Address start,
 *              Address end,
 *              int* capture_output_array,
 *              byte* stack_area_base,
 *              Address secondary_return_address,  // Only used by native call.
 *              bool direct_call = false)
 * The call is performed by NativeRegExpMacroAssembler::Execute()
 * (in regexp-macro-assembler.cc) via the CALL_GENERATED_REGEXP_CODE macro
 * in s390/simulator-s390.h.
 * When calling as a non-direct call (i.e., from C++ code), the return address
 * area is overwritten with the LR register by the RegExp code. When doing a
 * direct call from generated code, the return address is placed there by
 * the calling code, as in a normal exit frame.
 */

#define __ ACCESS_MASM(masm_)

RegExpMacroAssemblerS390::RegExpMacroAssemblerS390(Isolate* isolate, Zone* zone,
                                                 Mode mode,
                                                 int registers_to_save)
    : NativeRegExpMacroAssembler(isolate, zone),
      masm_(new MacroAssembler(isolate, NULL, kRegExpCodeSize)),
      mode_(mode),
      num_registers_(registers_to_save),
      num_saved_registers_(registers_to_save),
      entry_label_(),
      start_label_(),
      success_label_(),
      backtrack_label_(),
      exit_label_(),
      internal_failure_label_() {
  DCHECK_EQ(0, registers_to_save % 2);

  __ b(&entry_label_);   // We'll write the entry code later.
  // If the code gets too big or corrupted, an internal exception will be
  // raised, and we will exit right away.
  __ bind(&internal_failure_label_);
  __ LoadImmP(r2, Operand(FAILURE));
  __ Ret();
  __ bind(&start_label_);  // And then continue from here.
}


RegExpMacroAssemblerS390::~RegExpMacroAssemblerS390() {
  delete masm_;
  // Unuse labels in case we throw away the assembler without calling GetCode.
  entry_label_.Unuse();
  start_label_.Unuse();
  success_label_.Unuse();
  backtrack_label_.Unuse();
  exit_label_.Unuse();
  check_preempt_label_.Unuse();
  stack_overflow_label_.Unuse();
  internal_failure_label_.Unuse();
}


int RegExpMacroAssemblerS390::stack_limit_slack()  {
  return RegExpStack::kStackLimitSlack;
}


void RegExpMacroAssemblerS390::AdvanceCurrentPosition(int by) {
  if (by != 0) {
    __ AddP(current_input_offset(), Operand(by * char_size()));
  }
}


void RegExpMacroAssemblerS390::AdvanceRegister(int reg, int by) {
  DCHECK(reg >= 0);
  DCHECK(reg < num_registers_);
  if (by != 0) {
    if (CpuFeatures::IsSupported(GENERAL_INSTR_EXT) && is_int8(by)) {
      __ AddMI(register_location(reg), Operand(by));
    } else {
      __ LoadP(r2, register_location(reg), r0);
      __ mov(r0, Operand(by));
      __ AddRR(r2, r0);
      __ StoreP(r2, register_location(reg));
    }
  }
}


void RegExpMacroAssemblerS390::Backtrack() {
  CheckPreemption();
  // Pop Code* offset from backtrack stack, add Code* and jump to location.
  Pop(r2);
  __ AddP(r2, code_pointer());
  __ b(r2);
}


void RegExpMacroAssemblerS390::Bind(Label* label) { __ bind(label); }


void RegExpMacroAssemblerS390::CheckCharacter(uint32_t c, Label* on_equal) {
  __ CmpLogicalP(current_character(), Operand(c));
  BranchOrBacktrack(eq, on_equal);
}


void RegExpMacroAssemblerS390::CheckCharacterGT(uc16 limit, Label* on_greater) {
  __ CmpLogicalP(current_character(), Operand(limit));
  BranchOrBacktrack(gt, on_greater);
}


void RegExpMacroAssemblerS390::CheckAtStart(Label* on_at_start) {
  Label not_at_start;
  // Did we start the match at the start of the string at all?
  __ LoadP(r2, MemOperand(frame_pointer(), kStartIndex));
  __ CmpP(r2, Operand::Zero());
  BranchOrBacktrack(ne, &not_at_start);

  // If we did, are we still at the start of the input?
  __ AddP(r2, current_input_offset(), end_of_input_address());
  __ CmpP(r2, MemOperand(frame_pointer(), kInputStart));
  BranchOrBacktrack(eq, on_at_start);
  __ bind(&not_at_start);
}


void RegExpMacroAssemblerS390::CheckNotAtStart(Label* on_not_at_start) {
  // Did we start the match at the start of the string at all?
  __ LoadP(r2, MemOperand(frame_pointer(), kStartIndex));
  __ CmpP(r2, Operand::Zero());
  BranchOrBacktrack(ne, on_not_at_start);
  // If we did, are we still at the start of the input?
  __ AddP(r2, current_input_offset(), end_of_input_address());
  __ CmpP(r2, MemOperand(frame_pointer(), kInputStart));
  BranchOrBacktrack(ne, on_not_at_start);
}


void RegExpMacroAssemblerS390::CheckCharacterLT(uc16 limit, Label* on_less) {
  __ CmpLogicalP(current_character(), Operand(limit));
  BranchOrBacktrack(lt, on_less);
}


void RegExpMacroAssemblerS390::CheckGreedyLoop(Label* on_equal) {
  Label backtrack_non_equal;
  __ CmpP(current_input_offset(), MemOperand(backtrack_stackpointer(), 0));
  __ bne(&backtrack_non_equal);
  __ AddP(backtrack_stackpointer(), Operand(kPointerSize));

  // __ CmpP(current_input_offset(), r2);
  BranchOrBacktrack(al, on_equal);
  __ bind(&backtrack_non_equal);
}


void RegExpMacroAssemblerS390::CheckNotBackReferenceIgnoreCase(
    int start_reg, Label* on_no_match) {
  Label fallthrough;
  __ LoadP(r2, register_location(start_reg));  // Index of start of
                                                       // capture
  __ LoadP(r3, register_location(start_reg + 1));  // Index of end
  __ SubP(r3, r3, r2);

  // The length of a capture should not be negative. This can only happen
  // if the end of the capture is unrecorded, or at a point earlier than
  // the start of the capture.
  BranchOrBacktrack(lt, on_no_match);

  // If length is zero, either the capture is empty or it is not participating.
  // In either case succeed immediately.
  __ beq(&fallthrough);

  // Check that there are enough characters left in the input.
  __ AddP(r0, r3, current_input_offset());
  BranchOrBacktrack(gt, on_no_match);

  if (mode_ == LATIN1) {
    Label success;
    Label fail;
    Label loop_check;

    // r2 - offset of start of capture
    // r3 - length of capture
    __ AddP(r2, end_of_input_address());
    __ AddP(r4, current_input_offset(), end_of_input_address());
    // __ AddP(r3, r2);
    __ mov(r1, Operand::Zero());

    // r1 - Loop index
    // r2 - Address of start of capture.
    // r4 - Address of current input position.

    Label loop;
    __ bind(&loop);
    __ LoadlB(r5, MemOperand(r2, r1));
    __ LoadlB(r6, MemOperand(r4, r1));

    __ CmpP(r6, r5);
    __ beq(&loop_check);

    // Mismatch, try case-insensitive match (converting letters to lower-case).
    __ Or(r5, Operand(0x20));  // Convert capture character to lower-case.
    __ Or(r6, Operand(0x20));  // Also convert input character.
    __ CmpP(r6, r5);
    __ bne(&fail);
    __ SubP(r5, Operand('a'));
    __ CmpLogicalP(r5, Operand('z' - 'a'));  // Is r5 a lowercase letter?
    __ ble(&loop_check);                     // In range 'a'-'z'.
    // Latin-1: Check for values in range [224,254] but not 247.
    __ SubP(r5, Operand(224 - 'a'));
    __ CmpLogicalP(r5, Operand(254 - 224));
    __ bgt(&fail);                           // Weren't Latin-1 letters.
    __ CmpLogicalP(r5, Operand(247 - 224));  // Check for 247.
    __ beq(&fail);

    __ bind(&loop_check);
    __ la(r1, MemOperand(r1, char_size()));
    __ CmpP(r1, r3);
    __ blt(&loop);
    __ b(&success);

    __ bind(&fail);
    BranchOrBacktrack(al, on_no_match);

    __ bind(&success);
    // Compute new value of character position after the matched part.
    __ SubP(current_input_offset(), r4, end_of_input_address());
    __ AddP(current_input_offset(), r1);
  } else {
    DCHECK(mode_ == UC16);
    int argument_count = 4;
    __ PrepareCallCFunction(argument_count, r4);

    // r2 - offset of start of capture
    // r3 - length of capture

    // Put arguments into arguments registers.
    // Parameters are
    //   r2: Address byte_offset1 - Address captured substring's start.
    //   r3: Address byte_offset2 - Address of current character position.
    //   r4: size_t byte_length - length of capture in bytes(!)
    //   r5: Isolate* isolate

    // Address of start of capture.
    __ AddP(r2, end_of_input_address());
    // Length of capture.
    __ LoadRR(r4, r3);
    // Save length in callee-save register for use on return.
    __ LoadRR(r6, r3);
    // Address of current input position.
    __ AddP(r3, current_input_offset(), end_of_input_address());
    // Isolate.
    __ mov(r5, Operand(ExternalReference::isolate_address(isolate())));

    {
      AllowExternalCallThatCantCauseGC scope(masm_);
      ExternalReference function =
          ExternalReference::re_case_insensitive_compare_uc16(isolate());
      __ CallCFunction(function, argument_count);
    }

    // Check if function returned non-zero for success or zero for failure.
    __ CmpP(r2, Operand::Zero());
    BranchOrBacktrack(eq, on_no_match);
    // On success, increment position by length of capture.
    __ AddP(current_input_offset(), r6);
  }

  __ bind(&fallthrough);
}


void RegExpMacroAssemblerS390::CheckNotBackReference(int start_reg,
                                                    Label* on_no_match) {
  Label fallthrough;
  Label success;

  // Find length of back-referenced capture.
  __ LoadP(r2, register_location(start_reg));
  __ LoadP(r3, register_location(start_reg + 1));
  __ SubP(r3, r3, r2);  // Length to check.

  // The length of a capture should not be negative. This can only happen
  // if the end of the capture is unrecorded, or at a point earlier than
  // the start of the capture.
  BranchOrBacktrack(lt, on_no_match);

  // Succeed on empty capture (including no capture).
  __ beq(&fallthrough /*, cr0*/);

  // Check that there are enough characters left in the input.
  __ AddP(r0, r3, current_input_offset());
  BranchOrBacktrack(gt, on_no_match, cr0);

  // Compute pointers to match string and capture string
  __ la(r2, MemOperand(r2, end_of_input_address()));
  __ la(r4, MemOperand(current_input_offset(), end_of_input_address()));
  __ mov(r1, Operand::Zero());
  // __ AddP(r3, r2);

  Label loop;
  __ bind(&loop);
  if (mode_ == LATIN1) {
    __ LoadlB(r5, MemOperand(r2, r1));
    __ LoadlB(r6, MemOperand(r4, r1));
  } else {
    DCHECK(mode_ == UC16);
    __ LoadLogicalHalfWordP(r5, MemOperand(r2, r1));
    __ LoadLogicalHalfWordP(r6, MemOperand(r4, r1));
  }
  __ la(r1, MemOperand(r1, char_size()));
  __ CmpP(r5, r6);
  BranchOrBacktrack(ne, on_no_match);
  __ CmpP(r1, r3);
  __ blt(&loop);

  // Move current character position to position after match.
  __ SubP(current_input_offset(), r4, end_of_input_address());
  __ AddP(current_input_offset(), r1);
  __ bind(&fallthrough);
}


void RegExpMacroAssemblerS390::CheckNotCharacter(unsigned c,
                                                Label* on_not_equal) {
  __ CmpLogicalP(current_character(), Operand(c));
  BranchOrBacktrack(ne, on_not_equal);
}


void RegExpMacroAssemblerS390::CheckCharacterAfterAnd(uint32_t c, uint32_t mask,
                                                     Label* on_equal) {
  __ AndP(r2, current_character(), Operand(mask));
  if (c != 0) {
    __ CmpLogicalP(r2, Operand(c));
  }
  BranchOrBacktrack(eq, on_equal);
}


void RegExpMacroAssemblerS390::CheckNotCharacterAfterAnd(unsigned c,
                                                        unsigned mask,
                                                        Label* on_not_equal) {
  __ AndP(r2, current_character(), Operand(mask));
  if (c != 0) {
    __ CmpLogicalP(r2, Operand(c));
  }
  BranchOrBacktrack(ne, on_not_equal);
}


void RegExpMacroAssemblerS390::CheckNotCharacterAfterMinusAnd(
    uc16 c, uc16 minus, uc16 mask, Label* on_not_equal) {
  DCHECK(minus < String::kMaxUtf16CodeUnit);
  __ lay(r2, MemOperand(current_character(), -minus));
  __ And(r2, Operand(mask));
  if (c != 0) {
    __ CmpLogicalP(r2, Operand(c));
  }
  BranchOrBacktrack(ne, on_not_equal);
}


void RegExpMacroAssemblerS390::CheckCharacterInRange(uc16 from, uc16 to,
                                                    Label* on_in_range) {
  __ lay(r2, MemOperand(current_character(), -from));
  __ CmpLogicalP(r2, Operand(to - from));
  BranchOrBacktrack(le, on_in_range);  // Unsigned lower-or-same condition.
}


void RegExpMacroAssemblerS390::CheckCharacterNotInRange(uc16 from, uc16 to,
                                                       Label* on_not_in_range) {
  __ lay(r2, MemOperand(current_character(), -from));
  __ CmpLogicalP(r2, Operand(to - from));
  BranchOrBacktrack(gt, on_not_in_range);  // Unsigned higher condition.
}


void RegExpMacroAssemblerS390::CheckBitInTable(Handle<ByteArray> table,
                                              Label* on_bit_set) {
  __ mov(r2, Operand(table));
  Register index = current_character();
  if (mode_ != LATIN1 || kTableMask != String::kMaxOneByteCharCode) {
    __ AndP(r3, current_character(), Operand(kTableSize - 1));
    index = r3;
  }
  __ LoadlB(r2, MemOperand(r2, index,
                (ByteArray::kHeaderSize - kHeapObjectTag)));
  __ CmpP(r2, Operand::Zero());
  BranchOrBacktrack(ne, on_bit_set);
}


bool RegExpMacroAssemblerS390::CheckSpecialCharacterClass(uc16 type,
                                                         Label* on_no_match) {
  // Range checks (c in min..max) are generally implemented by an unsigned
  // (c - min) <= (max - min) check
  switch (type) {
  case 's':
    // Match space-characters
    if (mode_ == LATIN1) {
      // One byte space characters are '\t'..'\r', ' ' and \u00a0.
      Label success;
      __ CmpP(current_character(), Operand(' '));
      __ beq(&success);
      // Check range 0x09..0x0d
      __ SubP(r2, current_character(), Operand('\t'));
      __ CmpLogicalP(r2, Operand('\r' - '\t'));
      __ ble(&success);
      // \u00a0 (NBSP).
      __ CmpLogicalP(r2, Operand(0x00a0 - '\t'));
      BranchOrBacktrack(ne, on_no_match);
      __ bind(&success);
      return true;
    }
    return false;
  case 'S':
    // The emitted code for generic character classes is good enough.
    return false;
  case 'd':
    // Match ASCII digits ('0'..'9')
    __ SubP(r2, current_character(), Operand('0'));
    __ CmpLogicalP(r2, Operand('9' - '0'));
    BranchOrBacktrack(gt, on_no_match);
    return true;
  case 'D':
    // Match non ASCII-digits
    __ SubP(r2, current_character(), Operand('0'));
    __ CmpLogicalP(r2, Operand('9' - '0'));
    BranchOrBacktrack(le, on_no_match);
    return true;
  case '.': {
    // Match non-newlines (not 0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    __ XorP(r2, current_character(), Operand(0x01));
    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    __ SubP(r2, Operand(0x0b));
    __ CmpLogicalP(r2, Operand(0x0c - 0x0b));
    BranchOrBacktrack(le, on_no_match);
    if (mode_ == UC16) {
      // Compare original value to 0x2028 and 0x2029, using the already
      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
      // 0x201d (0x2028 - 0x0b) or 0x201e.
      __ SubP(r2, Operand(0x2028 - 0x0b));
      __ CmpLogicalP(r2, Operand(1));
      BranchOrBacktrack(le, on_no_match);
    }
    return true;
  }
  case 'n': {
    // Match newlines (0x0a('\n'), 0x0d('\r'), 0x2028 and 0x2029)
    __ XorP(r2, current_character(), Operand(0x01));
    // See if current character is '\n'^1 or '\r'^1, i.e., 0x0b or 0x0c
    __ SubP(r2, Operand(0x0b));
    __ CmpLogicalP(r2, Operand(0x0c - 0x0b));
    if (mode_ == LATIN1) {
      BranchOrBacktrack(gt, on_no_match);
    } else {
      Label done;
      __ ble(&done);
      // Compare original value to 0x2028 and 0x2029, using the already
      // computed (current_char ^ 0x01 - 0x0b). I.e., check for
      // 0x201d (0x2028 - 0x0b) or 0x201e.
      __ SubP(r2, Operand(0x2028 - 0x0b));
      __ CmpLogicalP(r2, Operand(1));
      BranchOrBacktrack(gt, on_no_match);
      __ bind(&done);
    }
    return true;
  }
  case 'w': {
    if (mode_ != LATIN1) {
      // Table is 1256 entries, so all LATIN1 characters can be tested.
      __ CmpP(current_character(), Operand('z'));
      BranchOrBacktrack(gt, on_no_match);
    }
    ExternalReference map = ExternalReference::re_word_character_map();
    __ mov(r2, Operand(map));
//    __ CmpLogicalByte(MemOperand(r2, current_character()), Operand::Zero());
    __ LoadlB(r2, MemOperand(r2, current_character()));
     __ CmpLogicalP(r2, Operand::Zero());
    BranchOrBacktrack(eq, on_no_match);
    return true;
  }
  case 'W': {
    Label done;
    if (mode_ != LATIN1) {
      // Table is 256 entries, so all LATIN characters can be tested.
      __ CmpLogicalP(current_character(), Operand('z'));
      __ bgt(&done);
    }
    ExternalReference map = ExternalReference::re_word_character_map();
    __ mov(r2, Operand(map));
    __ LoadlB(r2, MemOperand(r2, current_character()));
    __ CmpLogicalP(r2, Operand::Zero());
    BranchOrBacktrack(ne, on_no_match);
    if (mode_ != LATIN1) {
      __ bind(&done);
    }
    return true;
  }
  case '*':
    // Match any character.
    return true;
  // No custom implementation (yet): s(UC16), S(UC16).
  default:
    return false;
  }
}


void RegExpMacroAssemblerS390::Fail() {
  __ LoadImmP(r2, Operand(FAILURE));
  __ b(&exit_label_);
}


Handle<HeapObject> RegExpMacroAssemblerS390::GetCode(Handle<String> source) {
  Label return_r2;

  if (masm_->has_exception()) {
    // If the code gets corrupted due to long regular expressions and lack of
    // space on trampolines, an internal exception flag is set. If this case
    // is detected, we will jump into exit sequence right away.
    __ bind_to(&entry_label_, internal_failure_label_.pos());
  } else {
    // Finalize code - write the entry point code now we know how many
    // registers we need.

    // Entry code:
    __ bind(&entry_label_);

    // Tell the system that we have a stack frame.  Because the type
    // is MANUAL, no is generated.
    FrameScope scope(masm_, StackFrame::MANUAL);

    // Ensure register assigments are consistent with callee save mask
    DCHECK(r6.bit() & kRegExpCalleeSaved);
    DCHECK(code_pointer().bit() & kRegExpCalleeSaved);
    DCHECK(current_input_offset().bit() & kRegExpCalleeSaved);
    DCHECK(current_character().bit() & kRegExpCalleeSaved);
    DCHECK(backtrack_stackpointer().bit() & kRegExpCalleeSaved);
    DCHECK(end_of_input_address().bit() & kRegExpCalleeSaved);
    DCHECK(frame_pointer().bit() & kRegExpCalleeSaved);

    // zLinux ABI
    //    Incoming parameters:
    //          r2: input_string
    //          r3: start_index
    //          r4: start addr
    //          r5: end addr
    //          r6: capture output arrray
    //    Requires us to save the callee-preserved registers r6-r13
    //    General convention is to also save r14 (return addr) and
    //    sp/r15 as well in a single STM/STMG
    __ StoreMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));

    // Load stack parameters from caller stack frame
    __ LoadMultipleP(r7, r9, MemOperand(sp,
          kStackFrameExtraParamSlot * kPointerSize));
    // r7 = capture array size
    // r8 = stack area base
    // r9 = direct call

    // Actually emit code to start a new stack frame.
    // Push arguments
    // Save callee-save registers.
    // Start new stack frame.
    // Store link register in existing stack-cell.
    // Order here should correspond to order of offset constants in header file.
    //
    // Set frame pointer in space for it if this is not a direct call
    // from generated code.
    __ LoadRR(frame_pointer(), sp);
    __ lay(sp, MemOperand(sp, -10 * kPointerSize));
    __ mov(r1, Operand::Zero());        // success counter
    __ LoadRR(r0, r1);        // offset of location
    __ StoreMultipleP(r0, r9, MemOperand(sp, 0));

    // Check if we have space on the stack for registers.
    Label stack_limit_hit;
    Label stack_ok;

    ExternalReference stack_limit =
        ExternalReference::address_of_stack_limit(isolate());
    __ mov(r2, Operand(stack_limit));
    __ LoadP(r2, MemOperand(r2));
    __ SubP(r2, sp, r2);
    // Handle it if the stack pointer is already below the stack limit.
    __ ble(&stack_limit_hit);
    // Check if there is room for the variable number of registers above
    // the stack limit.
    __ CmpLogicalP(r2, Operand(num_registers_ * kPointerSize));
    __ bge(&stack_ok);
    // Exit with OutOfMemory exception. There is not enough space on the stack
    // for our working registers.
    __ mov(r2, Operand(EXCEPTION));
    __ b(&return_r2);

    __ bind(&stack_limit_hit);
    CallCheckStackGuardState(r2);
    __ CmpP(r2, Operand::Zero());
    // If returned value is non-zero, we exit with the returned value as result.
    __ bne(&return_r2);

    __ bind(&stack_ok);

    // Allocate space on stack for registers.
    __ lay(sp, MemOperand(sp, (-num_registers_ * kPointerSize)));
    // Load string end.
    __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
    // Load input start.
    __ LoadP(r4, MemOperand(frame_pointer(), kInputStart));
    // Find negative length (offset of start relative to end).
    __ SubP(current_input_offset(), r4, end_of_input_address());
    __ LoadP(r3, MemOperand(frame_pointer(), kStartIndex));
    // Set r1 to address of char before start of the input string
    // (effectively string position -1).
    __ LoadRR(r1, r4);
    __ SubP(r1, current_input_offset(), Operand(char_size()));
    if (mode_ == UC16) {
      __ ShiftLeftP(r0, r3, Operand(1));
      __ SubP(r1, r1, r0);
    } else {
      __ SubP(r1, r1, r3);
    }
    // Store this value in a local variable, for use when clearing
    // position registers.
    __ StoreP(r1, MemOperand(frame_pointer(), kInputStartMinusOne));

    // Initialize code pointer register
    __ mov(code_pointer(), Operand(masm_->CodeObject()));

    Label load_char_start_regexp, start_regexp;
    // Load newline if index is at start, previous character otherwise.
    __ CmpP(r3, Operand::Zero());
    __ bne(&load_char_start_regexp);
    __ mov(current_character(), Operand('\n'));
    __ b(&start_regexp);

    // Global regexp restarts matching here.
    __ bind(&load_char_start_regexp);
    // Load previous char as initial value of current character register.
    LoadCurrentCharacterUnchecked(-1, 1);
    __ bind(&start_regexp);

    // Initialize on-stack registers.
    if (num_saved_registers_ > 0) {  // Always is, if generated from a regexp.
      // Fill saved registers with initial value = start offset - 1
      if (num_saved_registers_ > 8) {
        // One slot beyond address of register 0.
        __ lay(r3, MemOperand(frame_pointer(), kRegisterZero + kPointerSize));
        __ lay(r4, MemOperand(r3, -num_saved_registers_ * kPointerSize));
        __ InitializeFieldsWithFiller(r4, r3, r1);

        /*
        __ AddP(r3, frame_pointer(), Operand(kRegisterZero + kPointerSize));
        __ LoadImmP(r4, Operand(num_saved_registers_));
        Label init_loop;
        __ bind(&init_loop);
        __ StoreP(r1, MemOperand(r3, -kPointerSize));
        __ lay(r3, MemOperand(r3, -kPointerSize));
        __ BranchOnCount(r4, &init_loop);
        */
      } else {
        for (int i = 0; i < num_saved_registers_; i++) {
          __ StoreP(r1, register_location(i));
        }
      }
    }

    // Initialize backtrack stack pointer.
    __ LoadP(backtrack_stackpointer(),
             MemOperand(frame_pointer(), kStackHighEnd));

    __ b(&start_label_);

    // Exit code:
    if (success_label_.is_linked()) {
      // Save captures when successful.
      __ bind(&success_label_);
      if (num_saved_registers_ > 0) {
        // copy captures to output
        __ LoadP(r0, MemOperand(frame_pointer(), kInputStart));
        __ LoadP(r2, MemOperand(frame_pointer(), kRegisterOutput));
        __ LoadP(r4, MemOperand(frame_pointer(), kStartIndex));
        __ SubP(r0, end_of_input_address(), r0);
        // r0 is length of input in bytes.
        if (mode_ == UC16) {
          __ ShiftRightP(r0, r0, Operand(1));
        }
        // r0 is length of input in characters.
        __ AddP(r0, r4);
        // r0 is length of string in characters.

        DCHECK_EQ(0, num_saved_registers_ % 2);
        // Always an even number of capture registers. This allows us to
        // unroll the loop once to add an operation between a load of a register
        // and the following use of that register.
        __ lay(r2, MemOperand(r2, num_saved_registers_ * kIntSize));
        for (int i = 0; i < num_saved_registers_;) {
          if (false && i < num_saved_registers_ - 4) {
            // TODO(john): Can be optimized by SIMD instructions
            __ LoadMultipleP(r3, r6, register_location(i + 3));
            if (mode_ == UC16) {
              __ ShiftRightArithP(r3, r3, Operand(1));
              __ ShiftRightArithP(r4, r4, Operand(1));
              __ ShiftRightArithP(r5, r5, Operand(1));
              __ ShiftRightArithP(r6, r6, Operand(1));
            }
            __ AddP(r3, r0);
            __ AddP(r4, r0);
            __ AddP(r5, r0);
            __ AddP(r6, r0);
            __ StoreW(r3, MemOperand(r2,
                    -(num_saved_registers_ - i - 3) * kIntSize));
            __ StoreW(r4, MemOperand(r2,
                    -(num_saved_registers_ - i - 2) * kIntSize));
            __ StoreW(r5, MemOperand(r2,
                    -(num_saved_registers_ - i - 1) * kIntSize));
            __ StoreW(r6, MemOperand(r2,
                    -(num_saved_registers_ - i) * kIntSize));
            i += 4;
          } else {
            __ LoadMultipleP(r3, r4, register_location(i + 1));
            if (mode_ == UC16) {
              __ ShiftRightArithP(r3, r3, Operand(1));
              __ ShiftRightArithP(r4, r4, Operand(1));
            }
            __ AddP(r3, r0);
            __ AddP(r4, r0);
            __ StoreW(r3, MemOperand(r2,
                  -(num_saved_registers_ - i - 1) * kIntSize));
            __ StoreW(r4, MemOperand(r2,
                  -(num_saved_registers_ - i) * kIntSize));
            i += 2;
          }
        }
        if (global_with_zero_length_check()) {
          // Keep capture start in r6 for the zero-length check later.
          __ LoadP(r6, register_location(0));
        }
      }

      if (global()) {
        // Restart matching if the regular expression is flagged as global.
        __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
        __ LoadP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
        __ LoadP(r4, MemOperand(frame_pointer(), kRegisterOutput));
        // Increment success counter.
        __ AddP(r2, Operand(1));
        __ StoreP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
        // Capture results have been stored, so the number of remaining global
        // output registers is reduced by the number of stored captures.
        __ SubP(r3, Operand(num_saved_registers_));
        // Check whether we have enough room for another set of capture results.
        __ CmpP(r3, Operand(num_saved_registers_));
        __ blt(&return_r2);

        __ StoreP(r3, MemOperand(frame_pointer(), kNumOutputRegisters));
        // Advance the location for output.
        __ AddP(r4, Operand(num_saved_registers_ * kIntSize));
        __ StoreP(r4, MemOperand(frame_pointer(), kRegisterOutput));

        // Prepare r2 to initialize registers with its value in the next run.
        __ LoadP(r2, MemOperand(frame_pointer(), kInputStartMinusOne));

        if (global_with_zero_length_check()) {
          // Special case for zero-length matches.
          // r6: capture start index
          __ CmpP(current_input_offset(), r6);
          // Not a zero-length match, restart.
          __ bne(&load_char_start_regexp);
          // Offset from the end is zero if we already reached the end.
          __ CmpP(current_input_offset(), Operand::Zero());
          __ beq(&exit_label_);
          // Advance current position after a zero-length match.
          __ AddP(current_input_offset(), Operand((mode_ == UC16) ? 2 : 1));
        }

        __ b(&load_char_start_regexp);
      } else {
        __ LoadImmP(r2, Operand(SUCCESS));
      }
    }

    // Exit and return r2
    __ bind(&exit_label_);
    if (global()) {
      __ LoadP(r2, MemOperand(frame_pointer(), kSuccessfulCaptures));
    }

    __ bind(&return_r2);
    // Skip sp past regexp registers and local variables..
    __ LoadRR(sp, frame_pointer());
    // Restore registers r6..r15.
    __ LoadMultipleP(r6, sp, MemOperand(sp, 6 * kPointerSize));

    __ b(r14);

    // Backtrack code (branch target for conditional backtracks).
    if (backtrack_label_.is_linked()) {
      __ bind(&backtrack_label_);
      Backtrack();
    }

    Label exit_with_exception;

    // Preempt-code
    if (check_preempt_label_.is_linked()) {
      SafeCallTarget(&check_preempt_label_);

      CallCheckStackGuardState(r2);
      __ CmpP(r2, Operand::Zero());
      // If returning non-zero, we should end execution with the given
      // result as return value.
      __ bne(&return_r2);

      // String might have moved: Reload end of string from frame.
      __ LoadP(end_of_input_address(), MemOperand(frame_pointer(), kInputEnd));
      SafeReturn();
    }

    // Backtrack stack overflow code.
    if (stack_overflow_label_.is_linked()) {
      SafeCallTarget(&stack_overflow_label_);
      // Reached if the backtrack-stack limit has been hit.
      Label grow_failed;

      // Call GrowStack(backtrack_stackpointer(), &stack_base)
      static const int num_arguments = 3;
      __ PrepareCallCFunction(num_arguments, r2);
      __ LoadRR(r2, backtrack_stackpointer());
      __ AddP(r3, frame_pointer(), Operand(kStackHighEnd));
      __ mov(r4, Operand(ExternalReference::isolate_address(isolate())));
      ExternalReference grow_stack =
        ExternalReference::re_grow_stack(isolate());
      __ CallCFunction(grow_stack, num_arguments);
      // If return NULL, we have failed to grow the stack, and
      // must exit with a stack-overflow exception.
      __ CmpP(r2, Operand::Zero());
      __ beq(&exit_with_exception);
      // Otherwise use return value as new stack pointer.
      __ LoadRR(backtrack_stackpointer(), r2);
      // Restore saved registers and continue.
      SafeReturn();
    }

    if (exit_with_exception.is_linked()) {
      // If any of the code above needed to exit with an exception.
      __ bind(&exit_with_exception);
      // Exit with Result EXCEPTION(-1) to signal thrown exception.
      __ LoadImmP(r2, Operand(EXCEPTION));
      __ b(&return_r2);
    }
  }

  CodeDesc code_desc;
  masm_->GetCode(&code_desc);
  Handle<Code> code = isolate()->factory()->NewCode(
      code_desc, Code::ComputeFlags(Code::REGEXP), masm_->CodeObject());
  PROFILE(masm_->isolate(), RegExpCodeCreateEvent(*code, *source));
  return Handle<HeapObject>::cast(code);
}


void RegExpMacroAssemblerS390::GoTo(Label* to) { BranchOrBacktrack(al, to); }


void RegExpMacroAssemblerS390::IfRegisterGE(int reg, int comparand,
                                           Label* if_ge) {
  __ LoadP(r2, register_location(reg), r0);
  __ CmpP(r2, Operand(comparand));
  BranchOrBacktrack(ge, if_ge);
}


void RegExpMacroAssemblerS390::IfRegisterLT(int reg, int comparand,
                                           Label* if_lt) {
  __ LoadP(r2, register_location(reg), r0);
  __ CmpP(r2, Operand(comparand));
  BranchOrBacktrack(lt, if_lt);
}


void RegExpMacroAssemblerS390::IfRegisterEqPos(int reg, Label* if_eq) {
  __ LoadP(r2, register_location(reg), r0);
  __ CmpP(r2, current_input_offset());
  BranchOrBacktrack(eq, if_eq);
}


RegExpMacroAssembler::IrregexpImplementation
RegExpMacroAssemblerS390::Implementation() {
  return kS390Implementation;
}


void RegExpMacroAssemblerS390::LoadCurrentCharacter(int cp_offset,
                                                   Label* on_end_of_input,
                                                   bool check_bounds,
                                                   int characters) {
  DCHECK(cp_offset >= -1);        // ^ and \b can look behind one character.
  DCHECK(cp_offset < (1 << 30));  // Be sane! (And ensure negation works)
  if (check_bounds) {
    CheckPosition(cp_offset + characters - 1, on_end_of_input);
  }
  LoadCurrentCharacterUnchecked(cp_offset, characters);
}


void RegExpMacroAssemblerS390::PopCurrentPosition() {
  Pop(current_input_offset());
}


void RegExpMacroAssemblerS390::PopRegister(int register_index) {
  Pop(r2);
  __ StoreP(r2, register_location(register_index));
}


void RegExpMacroAssemblerS390::PushBacktrack(Label* label) {
  if (label->is_bound()) {
    int target = label->pos();
    __ mov(r2, Operand(target + Code::kHeaderSize - kHeapObjectTag));
  } else {
    masm_->load_label_offset(r2, label);
  }
  Push(r2);
  CheckStackLimit();
}


void RegExpMacroAssemblerS390::PushCurrentPosition() {
  Push(current_input_offset());
}


void RegExpMacroAssemblerS390::PushRegister(int register_index,
                                           StackCheckFlag check_stack_limit) {
  __ LoadP(r2, register_location(register_index), r0);
  Push(r2);
  if (check_stack_limit) CheckStackLimit();
}


void RegExpMacroAssemblerS390::ReadCurrentPositionFromRegister(int reg) {
  __ LoadP(current_input_offset(), register_location(reg), r0);
}


void RegExpMacroAssemblerS390::ReadStackPointerFromRegister(int reg) {
  __ LoadP(backtrack_stackpointer(), register_location(reg), r0);
  __ LoadP(r2, MemOperand(frame_pointer(), kStackHighEnd));
  __ AddP(backtrack_stackpointer(), r2);
}


void RegExpMacroAssemblerS390::SetCurrentPositionFromEnd(int by) {
  Label after_position;
  __ CmpP(current_input_offset(), Operand(-by * char_size()));
  __ bge(&after_position);
  __ mov(current_input_offset(), Operand(-by * char_size()));
  // On RegExp code entry (where this operation is used), the character before
  // the current position is expected to be already loaded.
  // We have advanced the position, so it's safe to read backwards.
  LoadCurrentCharacterUnchecked(-1, 1);
  __ bind(&after_position);
}


void RegExpMacroAssemblerS390::SetRegister(int register_index, int to) {
  DCHECK(register_index >= num_saved_registers_);  // Reserved for positions!
  __ mov(r2, Operand(to));
  __ StoreP(r2, register_location(register_index));
}


bool RegExpMacroAssemblerS390::Succeed() {
  __ b(&success_label_);
  return global();
}


void RegExpMacroAssemblerS390::WriteCurrentPositionToRegister(int reg,
                                                             int cp_offset) {
  if (cp_offset == 0) {
    __ StoreP(current_input_offset(), register_location(reg));
  } else {
    __ AddP(r2, current_input_offset(), Operand(cp_offset * char_size()));
    __ StoreP(r2, register_location(reg));
  }
}


void RegExpMacroAssemblerS390::ClearRegisters(int reg_from, int reg_to) {
  DCHECK(reg_from <= reg_to);
  __ LoadP(r2, MemOperand(frame_pointer(), kInputStartMinusOne));
  for (int reg = reg_from; reg <= reg_to; reg++) {
    __ StoreP(r2, register_location(reg));
  }
}


void RegExpMacroAssemblerS390::WriteStackPointerToRegister(int reg) {
  __ LoadP(r3, MemOperand(frame_pointer(), kStackHighEnd));
  __ SubP(r2, backtrack_stackpointer(), r3);
  __ StoreP(r2, register_location(reg));
}


// Private methods:

void RegExpMacroAssemblerS390::CallCheckStackGuardState(Register scratch) {
  static const int num_arguments = 3;
  __ PrepareCallCFunction(num_arguments, scratch);
  // RegExp code frame pointer.
  __ LoadRR(r4, frame_pointer());
  // Code* of self.
  __ mov(r3, Operand(masm_->CodeObject()));
  // r2 becomes return address pointer.
  __ lay(r2, MemOperand(sp, kStackFrameRASlot * kPointerSize));
  ExternalReference stack_guard_check =
      ExternalReference::re_check_stack_guard_state(isolate());
  CallCFunctionUsingStub(stack_guard_check, num_arguments);
}


// Helper function for reading a value out of a stack frame.
template <typename T>
static T& frame_entry(Address re_frame, int frame_offset) {
  DCHECK(sizeof(T) == kPointerSize);
#ifdef V8_TARGET_ARCH_S390X
  return reinterpret_cast<T&>(Memory::uint64_at(re_frame + frame_offset));
#else
  return reinterpret_cast<T&>(Memory::uint32_at(re_frame + frame_offset));
#endif
}


template <typename T>
static T* frame_entry_address(Address re_frame, int frame_offset) {
  return reinterpret_cast<T*>(re_frame + frame_offset);
}


int RegExpMacroAssemblerS390::CheckStackGuardState(Address* return_address,
                                                  Code* re_code,
                                                  Address re_frame) {
  return NativeRegExpMacroAssembler::CheckStackGuardState(
      frame_entry<Isolate*>(re_frame, kIsolate),
      frame_entry<intptr_t>(re_frame, kStartIndex),
      frame_entry<intptr_t>(re_frame, kDirectCall) == 1, return_address,
      re_code, frame_entry_address<String*>(re_frame, kInputString),
      frame_entry_address<const byte*>(re_frame, kInputStart),
      frame_entry_address<const byte*>(re_frame, kInputEnd));
}


MemOperand RegExpMacroAssemblerS390::register_location(int register_index) {
  DCHECK(register_index < (1 << 30));
  if (num_registers_ <= register_index) {
    num_registers_ = register_index + 1;
  }
  return MemOperand(frame_pointer(),
                    kRegisterZero - register_index * kPointerSize);
}


void RegExpMacroAssemblerS390::CheckPosition(int cp_offset,
                                            Label* on_outside_input) {
  __ CmpP(current_input_offset(), Operand(-cp_offset * char_size()));
  BranchOrBacktrack(ge, on_outside_input);
}


void RegExpMacroAssemblerS390::BranchOrBacktrack(Condition condition, Label* to,
                                                CRegister cr) {
  if (condition == al) {  // Unconditional.
    if (to == NULL) {
      Backtrack();
      return;
    }
    __ b(to);
    return;
  }
  if (to == NULL) {
    __ b(condition, &backtrack_label_ /*, cr*/);
    return;
  }
  __ b(condition, to /*, cr*/);
}


void RegExpMacroAssemblerS390::SafeCall(Label* to, Condition cond,
                                       CRegister cr) {
  Label skip;
  __ b(NegateCondition(cond), &skip);
  __ b(r14, to /*, cr*/ /*, SetLK*/);
  __ bind(&skip);
}


void RegExpMacroAssemblerS390::SafeReturn() {
  __ pop(r14);
  __ mov(ip, Operand(masm_->CodeObject()));
  __ AddP(r14, ip);
  __ Ret();
}


void RegExpMacroAssemblerS390::SafeCallTarget(Label* name) {
  __ bind(name);
  __ CleanseP(r14);
  __ LoadRR(r0, r14);
  __ mov(ip, Operand(masm_->CodeObject()));
  __ SubP(r0, r0, ip);
  __ push(r0);
}


void RegExpMacroAssemblerS390::Push(Register source) {
  DCHECK(!source.is(backtrack_stackpointer()));
  __ lay(backtrack_stackpointer(),
         MemOperand(backtrack_stackpointer(), -kPointerSize));
  __ StoreP(source, MemOperand(backtrack_stackpointer()));
}


void RegExpMacroAssemblerS390::Pop(Register target) {
  DCHECK(!target.is(backtrack_stackpointer()));
  __ LoadP(target, MemOperand(backtrack_stackpointer()));
  __ la(backtrack_stackpointer(),
      MemOperand(backtrack_stackpointer(), kPointerSize));
}


void RegExpMacroAssemblerS390::CheckPreemption() {
  // Check for preemption.
  ExternalReference stack_limit =
      ExternalReference::address_of_stack_limit(isolate());
  __ mov(r2, Operand(stack_limit));
  __ CmpLogicalP(sp, MemOperand(r2));
  SafeCall(&check_preempt_label_, le);
}


void RegExpMacroAssemblerS390::CheckStackLimit() {
  ExternalReference stack_limit =
      ExternalReference::address_of_regexp_stack_limit(isolate());
  __ mov(r2, Operand(stack_limit));
  __ CmpLogicalP(backtrack_stackpointer(), MemOperand(r2));
  SafeCall(&stack_overflow_label_, le);
}


void RegExpMacroAssemblerS390::CallCFunctionUsingStub(
    ExternalReference function,
    int num_arguments) {
  // Must pass all arguments in registers. The stub pushes on the stack.
  DCHECK(num_arguments <= 8);
  __ mov(code_pointer(), Operand(function));
  // RegExpCEntryStub stub;
  // __ lay(sp, MemOperand(sp, -kCalleeRegisterSaveAreaSize));
  Label ret;
  __ larl(r14, &ret);
  __ StoreP(r14, MemOperand(sp, kStackFrameRASlot * kPointerSize));
  __ b(code_pointer());
  __ bind(&ret);
  // __ CallStub(&stub);
  // __ Call(code_pointer());
  // __ la(sp, MemOperand(sp, kCalleeRegisterSaveAreaSize));
  if (base::OS::ActivationFrameAlignment() > kPointerSize) {
    __ LoadP(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
  } else {
    __ la(sp, MemOperand(sp, (kNumRequiredStackFrameSlots * kPointerSize)));
  }
  __ mov(code_pointer(), Operand(masm_->CodeObject()));
}


bool RegExpMacroAssemblerS390::CanReadUnaligned() {
  return CpuFeatures::IsSupported(UNALIGNED_ACCESSES) && !slow_safe();
}


void RegExpMacroAssemblerS390::LoadCurrentCharacterUnchecked(int cp_offset,
                                                            int characters) {
  DCHECK(characters == 1);
  if (mode_ == LATIN1) {
    __ LoadlB(current_character(), MemOperand(current_input_offset(),
                  end_of_input_address(), cp_offset * char_size()));
  } else {
    DCHECK(mode_ == UC16);
    __ LoadLogicalHalfWordP(current_character(), MemOperand(
      current_input_offset(), end_of_input_address(), cp_offset * char_size()));
  }
}

#undef __

#endif  // V8_INTERPRETED_REGEXP
}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_S390