File: simulator-s390.h

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (463 lines) | stat: -rw-r--r-- 15,364 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
// Copyright 2012 the V8 project authors. All rights reserved.
//
// Copyright IBM Corp. 2012, 2015. All rights reserved.
//
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.


// Declares a Simulator for S390 instructions if we are not generating a native
// S390 binary. This Simulator allows us to run and debug S390 code generation
// on regular desktop machines.
// V8 calls into generated code by "calling" the CALL_GENERATED_CODE macro,
// which will start execution in the Simulator or forwards to the real entry
// on a S390 hardware platform.

#ifndef V8_S390_SIMULATOR_S390_H_
#define V8_S390_SIMULATOR_S390_H_

#include "src/allocation.h"

#if !defined(USE_SIMULATOR)
// Running without a simulator on a native s390 platform.

namespace v8 {
namespace internal {

// When running without a simulator we call the entry directly.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4) \
  (entry(p0, p1, p2, p3, p4))

typedef int (*ppc_regexp_matcher)(String*, int, const byte*, const byte*, int*,
                                  int, Address, int, void*, Isolate*);


// Call the generated regexp code directly. The code at the entry address
// should act as a function matching the type ppc_regexp_matcher.
// The ninth argument is a dummy that reserves the space used for
// the return address added by the ExitFrame in native calls.
#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
  (FUNCTION_CAST<ppc_regexp_matcher>(entry)(p0, p1, p2, p3, p4, p5, p6, p7,   \
                                            NULL, p8))

// The stack limit beyond which we will throw stack overflow errors in
// generated code. Because generated code on s390 uses the C stack, we
// just use the C stack limit.
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
                                            uintptr_t c_limit) {
    USE(isolate);
    return c_limit;
  }

  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
    return try_catch_address;
  }

  static inline void UnregisterCTryCatch() {}
};

}
}  // namespace v8::internal

#else  // !defined(USE_SIMULATOR)
// Running with a simulator.

#include "src/assembler.h"
#include "src/hashmap.h"
#include "src/s390/constants-s390.h"

namespace v8 {
namespace internal {

class CachePage {
 public:
  static const int LINE_VALID = 0;
  static const int LINE_INVALID = 1;

  static const int kPageShift = 12;
  static const int kPageSize = 1 << kPageShift;
  static const int kPageMask = kPageSize - 1;
  static const int kLineShift = 2;  // The cache line is only 4 bytes right now.
  static const int kLineLength = 1 << kLineShift;
  static const int kLineMask = kLineLength - 1;

  CachePage() { memset(&validity_map_, LINE_INVALID, sizeof(validity_map_)); }

  char* ValidityByte(int offset) {
    return &validity_map_[offset >> kLineShift];
  }

  char* CachedData(int offset) {
    return &data_[offset];
  }

 private:
  char data_[kPageSize];   // The cached data.
  static const int kValidityMapSize = kPageSize >> kLineShift;
  char validity_map_[kValidityMapSize];  // One byte per line.
};


class Simulator {
 public:
  friend class S390Debugger;
  enum Register {
    no_reg = -1,
    r0 = 0,
    r1 = 1,
    r2 = 2,
    r3 = 3,
    r4 = 4,
    r5 = 5,
    r6 = 6,
    r7 = 7,
    r8 = 8,
    r9 = 9,
    r10 = 10,
    r11 = 11,
    r12 = 12,
    r13 = 13,
    r14 = 14,
    r15 = 15,
    fp = r11,
    ip = r12,
    cp = r13,
    ra = r14,
    sp = r15,  // name aliases
    kNumGPRs = 16,
    d0 = 0, d1, d2, d3, d4, d5, d6, d7,
    d8, d9, d10, d11, d12, d13, d14, d15,
    kNumFPRs = 16
  };

  explicit Simulator(Isolate* isolate);
  ~Simulator();

  // The currently executing Simulator instance. Potentially there can be one
  // for each native thread.
  static Simulator* current(v8::internal::Isolate* isolate);

  // Accessors for register state.
  void set_register(int reg, uint64_t value);
  uint64_t get_register(int reg) const;
  template<typename T> T get_low_register(int reg) const;
  template<typename T> T get_high_register(int reg) const;
  void set_low_register(int reg, uint32_t value);
  void set_high_register(int reg, uint32_t value);

  double get_double_from_register_pair(int reg);
  void set_d_register_from_double(int dreg, const double dbl) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    *bit_cast<double*>(&fp_registers_[dreg]) = dbl;
  }

  double get_double_from_d_register(int dreg) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    return *bit_cast<double*>(&fp_registers_[dreg]);
  }
  void set_d_register(int dreg, int64_t value) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    fp_registers_[dreg] = value;
  }
  int64_t get_d_register(int dreg) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    return fp_registers_[dreg];
  }

  void set_d_register_from_float(int dreg, const float f) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    double df = static_cast<double>(f);
    set_d_register_from_double(dreg, df);
    // float* f_addr = reinterpret_cast<float*>(&fp_registers_[dreg]);
    // *f_addr = f;
  }

  double get_float_from_d_register(int dreg) {
    DCHECK(dreg >= 0 && dreg < kNumFPRs);
    // float* f_addr = reinterpret_cast<float*>(&fp_registers_[dreg]);
    // return *f_addr;
    return static_cast<double>(get_double_from_d_register(dreg));
  }

  // Special case of set_register and get_register to access the raw PC value.
  void set_pc(intptr_t value);
  intptr_t get_pc() const;

  Address get_sp() {
    return reinterpret_cast<Address>(static_cast<intptr_t>(get_register(sp)));
  }

  // Accessor to the internal simulator stack area.
  uintptr_t StackLimit() const;

  // Executes S390 instructions until the PC reaches end_sim_pc.
  void Execute();

  // Call on program start.
  static void Initialize(Isolate* isolate);

  static void TearDown(HashMap* i_cache, Redirection* first);

  // V8 generally calls into generated JS code with 5 parameters and into
  // generated RegExp code with 7 parameters. This is a convenience function,
  // which sets up the simulator state and grabs the result on return.
  intptr_t Call(byte* entry, int argument_count, ...);
  // Alternative: call a 2-argument double function.
  void CallFP(byte* entry, double d0, double d1);
  int32_t CallFPReturnsInt(byte* entry, double d0, double d1);
  double CallFPReturnsDouble(byte* entry, double d0, double d1);

  // Push an address onto the JS stack.
  uintptr_t PushAddress(uintptr_t address);

  // Pop an address from the JS stack.
  uintptr_t PopAddress();

  // Debugger input.
  void set_last_debugger_input(char* input);
  char* last_debugger_input() { return last_debugger_input_; }

  // ICache checking.
  static void FlushICache(v8::internal::HashMap* i_cache, void* start,
                          size_t size);

  // Returns true if pc register contains one of the 'special_values' defined
  // below (bad_lr, end_sim_pc).
  bool has_bad_pc() const;

 private:
  enum special_values {
    // Known bad pc value to ensure that the simulator does not execute
    // without being properly setup.
    bad_lr = -1,
    // A pc value used to signal the simulator to stop execution.  Generally
    // the lr is set to this value on transition from native C code to
    // simulated execution, so that the simulator can "return" to the native
    // C code.
    end_sim_pc = -2
  };

  // Unsupported instructions use Format to print an error and stop execution.
  void Format(Instruction* instr, const char* format);

  // Helper functions to set the conditional flags in the architecture state.
  bool CarryFrom(int32_t left, int32_t right, int32_t carry = 0);
  bool BorrowFrom(int32_t left, int32_t right);
  bool OverflowFrom(int32_t alu_out, int32_t left, int32_t right,
                    bool addition);

  // Helper functions to decode common "addressing" modes
  int32_t GetShiftRm(Instruction* instr, bool* carry_out);
  int32_t GetImm(Instruction* instr, bool* carry_out);
  void ProcessPUW(Instruction* instr, int num_regs, int operand_size,
                  intptr_t* start_address, intptr_t* end_address);
  void HandleRList(Instruction* instr, bool load);
  void HandleVList(Instruction* inst);
  void SoftwareInterrupt(Instruction* instr);

  // Stop helper functions.
  inline bool isStopInstruction(Instruction* instr);
  inline bool isWatchedStop(uint32_t bkpt_code);
  inline bool isEnabledStop(uint32_t bkpt_code);
  inline void EnableStop(uint32_t bkpt_code);
  inline void DisableStop(uint32_t bkpt_code);
  inline void IncreaseStopCounter(uint32_t bkpt_code);
  void PrintStopInfo(uint32_t code);

  // Byte Reverse
  inline int16_t ByteReverse(int16_t hword);
  inline int32_t ByteReverse(int32_t word);

  // Read and write memory.
  inline uint8_t ReadBU(intptr_t addr);
  inline int8_t ReadB(intptr_t addr);
  inline void WriteB(intptr_t addr, uint8_t value);
  inline void WriteB(intptr_t addr, int8_t value);

  inline uint16_t ReadHU(intptr_t addr, Instruction* instr);
  inline int16_t ReadH(intptr_t addr, Instruction* instr);
  // Note: Overloaded on the sign of the value.
  inline void WriteH(intptr_t addr, uint16_t value, Instruction* instr);
  inline void WriteH(intptr_t addr, int16_t value, Instruction* instr);

  inline uint32_t ReadWU(intptr_t addr, Instruction* instr);
  inline int32_t ReadW(intptr_t addr, Instruction* instr);
  inline void WriteW(intptr_t addr, uint32_t value, Instruction* instr);
  inline void WriteW(intptr_t addr, int32_t value, Instruction* instr);

  inline int64_t ReadDW(intptr_t addr);
  inline double ReadDouble(intptr_t addr);
  inline void WriteDW(intptr_t addr, int64_t value);

  // S390
  void Trace(Instruction* instr);
  bool DecodeTwoByte(Instruction* instr);
  bool DecodeFourByte(Instruction* instr);
  bool DecodeFourByteArithmetic(Instruction *instr);
  bool DecodeFourByteFloatingPoint(Instruction* instr);
  bool DecodeSixByte(Instruction* instr);
  bool DecodeSixByteArithmetic(Instruction *instr);
  bool S390InstructionDecode(Instruction *instr);

  template <typename T>
  void SetS390ConditionCode(T lhs, T rhs) {
    condition_reg_ = 0;
    if (lhs == rhs) {
      condition_reg_ |= CC_EQ;
    } else if (lhs <  rhs) {
      condition_reg_ |= CC_LT;
    } else if (lhs >  rhs) {
      condition_reg_ |= CC_GT;
    }

    // We get down here only for floating point
    // comparisons and the values are unordered
    // i.e. NaN
    if (condition_reg_ == 0)
      condition_reg_ = unordered;
  }

  bool isNaN(double value) {
    return (value != value);
  }

  // Set the condition code for bitwise operations
  // CC0 is set if value == 0.
  // CC1 is set if value != 0.
  // CC2/CC3 are not set.
  template <typename T>
  void SetS390BitWiseConditionCode(T value) {
    condition_reg_ = 0;

    if (value == 0)
      condition_reg_ |= CC_EQ;
    else
      condition_reg_ |= CC_LT;
  }

  void SetS390OverflowCode(bool isOF) {
    if (isOF) condition_reg_ = CC_OF;
  }

  bool TestConditionCode(Condition mask) {
    // Check for unconditional branch
    if (mask == 0xf)
      return true;

    return (condition_reg_ & mask) != 0;
  }

  // Executes one instruction.
  void ExecuteInstruction(Instruction* instr, bool auto_incr_pc = true);

  // ICache.
  static void CheckICache(v8::internal::HashMap* i_cache, Instruction* instr);
  static void FlushOnePage(v8::internal::HashMap* i_cache, intptr_t start,
                           int size);
  static CachePage* GetCachePage(v8::internal::HashMap* i_cache, void* page);

  // Runtime call support.
  static void* RedirectExternalReference(
      void* external_function, v8::internal::ExternalReference::Type type);

  // Handle arguments and return value for runtime FP functions.
  void GetFpArgs(double* x, double* y, intptr_t* z);
  void SetFpResult(const double& result);
  void TrashCallerSaveRegisters();

  void CallInternal(byte* entry, int reg_arg_count = 3);

  // Architecture state.
  // On z9 and higher, and supported Linux on System z platforms, all registers
  // are 64-bit, even in 31-bit mode.
  uint64_t registers_[kNumGPRs];
  // condition register. In s390, the last 4 bits are used.
  int32_t condition_reg_;
  int32_t fp_condition_reg_;  // PowerPC
  intptr_t special_reg_lr_;  // PowerPC
  intptr_t special_reg_pc_;  // PowerPC
  intptr_t special_reg_ctr_;  // PowerPC
  int32_t special_reg_xer_;  // PowerPC

  int64_t fp_registers_[kNumFPRs];

  // Simulator support.
  char* stack_;
  static const size_t stack_protection_size_ = 256 * kPointerSize;
  bool pc_modified_;
  int64_t icount_;

  // Debugger input.
  char* last_debugger_input_;

  // Icache simulation
  v8::internal::HashMap* i_cache_;

  // Registered breakpoints.
  Instruction* break_pc_;
  Instr break_instr_;

  v8::internal::Isolate* isolate_;

  // A stop is watched if its code is less than kNumOfWatchedStops.
  // Only watched stops support enabling/disabling and the counter feature.
  static const uint32_t kNumOfWatchedStops = 256;

  // Breakpoint is disabled if bit 31 is set.
  static const uint32_t kStopDisabledBit = 1 << 31;

  // A stop is enabled, meaning the simulator will stop when meeting the
  // instruction, if bit 31 of watched_stops_[code].count is unset.
  // The value watched_stops_[code].count & ~(1 << 31) indicates how many times
  // the breakpoint was hit or gone through.
  struct StopCountAndDesc {
    uint32_t count;
    char* desc;
  };
  StopCountAndDesc watched_stops_[kNumOfWatchedStops];
  void DebugStart();
};


// When running with the simulator transition into simulated execution at this
// point.
#define CALL_GENERATED_CODE(entry, p0, p1, p2, p3, p4)                    \
  reinterpret_cast<Object*>(Simulator::current(Isolate::Current())->Call( \
      FUNCTION_ADDR(entry), 5, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2,  \
      (intptr_t)p3, (intptr_t)p4))

#define CALL_GENERATED_REGEXP_CODE(entry, p0, p1, p2, p3, p4, p5, p6, p7, p8) \
  Simulator::current(Isolate::Current())                                      \
      ->Call(entry, 10, (intptr_t)p0, (intptr_t)p1, (intptr_t)p2,             \
             (intptr_t)p3, (intptr_t)p4, (intptr_t)p5, (intptr_t)p6,          \
             (intptr_t)p7, (intptr_t)NULL, (intptr_t)p8)


// The simulator has its own stack. Thus it has a different stack limit from
// the C-based native code.  Setting the c_limit to indicate a very small
// stack cause stack overflow errors, since the simulator ignores the input.
// This is unlikely to be an issue in practice, though it might cause testing
// trouble down the line.
class SimulatorStack : public v8::internal::AllStatic {
 public:
  static inline uintptr_t JsLimitFromCLimit(v8::internal::Isolate* isolate,
                                            uintptr_t c_limit) {
    return Simulator::current(isolate)->StackLimit();
  }

  static inline uintptr_t RegisterCTryCatch(uintptr_t try_catch_address) {
    Simulator* sim = Simulator::current(Isolate::Current());
    return sim->PushAddress(try_catch_address);
  }

  static inline void UnregisterCTryCatch() {
    Simulator::current(Isolate::Current())->PopAddress();
  }
};
}
}  // namespace v8::internal

#endif  // !defined(USE_SIMULATOR)
#endif  // V8_S390_SIMULATOR_S390_H_