File: sampler.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (796 lines) | stat: -rw-r--r-- 24,910 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/sampler.h"

#if V8_OS_POSIX && !V8_OS_CYGWIN

#define USE_SIGNALS

#include <errno.h>
#include <pthread.h>
#include <signal.h>
#include <sys/time.h>

#if !V8_OS_QNX && !V8_OS_NACL && !V8_OS_AIX
#include <sys/syscall.h>  // NOLINT
#endif

#if V8_OS_MACOSX
#include <mach/mach.h>
// OpenBSD doesn't have <ucontext.h>. ucontext_t lives in <signal.h>
// and is a typedef for struct sigcontext. There is no uc_mcontext.
#elif(!V8_OS_ANDROID || defined(__BIONIC_HAVE_UCONTEXT_T)) && \
    !V8_OS_OPENBSD && !V8_OS_NACL
#include <ucontext.h>
#endif

#include <unistd.h>

// GLibc on ARM defines mcontext_t has a typedef for 'struct sigcontext'.
// Old versions of the C library <signal.h> didn't define the type.
#if V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T) && \
    (defined(__arm__) || defined(__aarch64__)) && \
    !defined(__BIONIC_HAVE_STRUCT_SIGCONTEXT)
#include <asm/sigcontext.h>  // NOLINT
#endif

#elif V8_OS_WIN || V8_OS_CYGWIN

#include "src/base/win32-headers.h"

#endif

#include "src/v8.h"

#include "src/base/platform/platform.h"
#include "src/cpu-profiler-inl.h"
#include "src/flags.h"
#include "src/frames-inl.h"
#include "src/log.h"
#include "src/simulator.h"
#include "src/v8threads.h"
#include "src/vm-state-inl.h"


#if V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T)

// Not all versions of Android's C library provide ucontext_t.
// Detect this and provide custom but compatible definitions. Note that these
// follow the GLibc naming convention to access register values from
// mcontext_t.
//
// See http://code.google.com/p/android/issues/detail?id=34784

#if defined(__arm__)

typedef struct sigcontext mcontext_t;

typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;

#elif defined(__aarch64__)

typedef struct sigcontext mcontext_t;

typedef struct ucontext {
  uint64_t uc_flags;
  struct ucontext *uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;

#elif defined(__mips__)
// MIPS version of sigcontext, for Android bionic.
typedef struct {
  uint32_t regmask;
  uint32_t status;
  uint64_t pc;
  uint64_t gregs[32];
  uint64_t fpregs[32];
  uint32_t acx;
  uint32_t fpc_csr;
  uint32_t fpc_eir;
  uint32_t used_math;
  uint32_t dsp;
  uint64_t mdhi;
  uint64_t mdlo;
  uint32_t hi1;
  uint32_t lo1;
  uint32_t hi2;
  uint32_t lo2;
  uint32_t hi3;
  uint32_t lo3;
} mcontext_t;

typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;

#elif defined(__i386__)
// x86 version for Android.
typedef struct {
  uint32_t gregs[19];
  void* fpregs;
  uint32_t oldmask;
  uint32_t cr2;
} mcontext_t;

typedef uint32_t kernel_sigset_t[2];  // x86 kernel uses 64-bit signal masks
typedef struct ucontext {
  uint32_t uc_flags;
  struct ucontext* uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_EBP = 6, REG_ESP = 7, REG_EIP = 14 };

#elif defined(__x86_64__)
// x64 version for Android.
typedef struct {
  uint64_t gregs[23];
  void* fpregs;
  uint64_t __reserved1[8];
} mcontext_t;

typedef struct ucontext {
  uint64_t uc_flags;
  struct ucontext *uc_link;
  stack_t uc_stack;
  mcontext_t uc_mcontext;
  // Other fields are not used by V8, don't define them here.
} ucontext_t;
enum { REG_RBP = 10, REG_RSP = 15, REG_RIP = 16 };
#endif

#endif  // V8_OS_ANDROID && !defined(__BIONIC_HAVE_UCONTEXT_T)


namespace v8 {
namespace internal {

namespace {

class PlatformDataCommon : public Malloced {
 public:
  PlatformDataCommon() : profiled_thread_id_(ThreadId::Current()) {}
  ThreadId profiled_thread_id() { return profiled_thread_id_; }

 protected:
  ~PlatformDataCommon() {}

 private:
  ThreadId profiled_thread_id_;
};

}  // namespace

#if defined(USE_SIGNALS)

class Sampler::PlatformData : public PlatformDataCommon {
 public:
  PlatformData() : vm_tid_(pthread_self()) {}
  pthread_t vm_tid() const { return vm_tid_; }

 private:
  pthread_t vm_tid_;
};

#elif V8_OS_WIN || V8_OS_CYGWIN

// ----------------------------------------------------------------------------
// Win32 profiler support. On Cygwin we use the same sampler implementation as
// on Win32.

class Sampler::PlatformData : public PlatformDataCommon {
 public:
  // Get a handle to the calling thread. This is the thread that we are
  // going to profile. We need to make a copy of the handle because we are
  // going to use it in the sampler thread. Using GetThreadHandle() will
  // not work in this case. We're using OpenThread because DuplicateHandle
  // for some reason doesn't work in Chrome's sandbox.
  PlatformData()
      : profiled_thread_(OpenThread(THREAD_GET_CONTEXT |
                                    THREAD_SUSPEND_RESUME |
                                    THREAD_QUERY_INFORMATION,
                                    false,
                                    GetCurrentThreadId())) {}

  ~PlatformData() {
    if (profiled_thread_ != NULL) {
      CloseHandle(profiled_thread_);
      profiled_thread_ = NULL;
    }
  }

  HANDLE profiled_thread() { return profiled_thread_; }

 private:
  HANDLE profiled_thread_;
};
#endif


#if defined(USE_SIMULATOR)
class SimulatorHelper {
 public:
  inline bool Init(Isolate* isolate) {
    simulator_ = isolate->thread_local_top()->simulator_;
    // Check if there is active simulator.
    return simulator_ != NULL;
  }

  inline void FillRegisters(v8::RegisterState* state) {
#if V8_TARGET_ARCH_ARM
    state->pc = reinterpret_cast<Address>(simulator_->get_pc());
    state->sp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::sp));
    state->fp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::r11));
#elif V8_TARGET_ARCH_ARM64
    if (simulator_->sp() == 0 || simulator_->fp() == 0) {
      // It's possible that the simulator is interrupted while it is updating
      // the sp or fp register. ARM64 simulator does this in two steps:
      // first setting it to zero and then setting it to a new value.
      // Bailout if sp/fp doesn't contain the new value.
      return;
    }
    state->pc = reinterpret_cast<Address>(simulator_->pc());
    state->sp = reinterpret_cast<Address>(simulator_->sp());
    state->fp = reinterpret_cast<Address>(simulator_->fp());
#elif V8_TARGET_ARCH_MIPS || V8_TARGET_ARCH_MIPS64
    state->pc = reinterpret_cast<Address>(simulator_->get_pc());
    state->sp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::sp));
    state->fp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::fp));
#elif V8_TARGET_ARCH_PPC
    state->pc = reinterpret_cast<Address>(simulator_->get_pc());
    state->sp =
        reinterpret_cast<Address>(simulator_->get_register(Simulator::sp));
    state->fp =
        reinterpret_cast<Address>(simulator_->get_register(Simulator::fp));
#elif V8_TARGET_ARCH_S390
    state->pc = reinterpret_cast<Address>(simulator_->get_pc());
    state->sp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::sp));
    state->fp = reinterpret_cast<Address>(simulator_->get_register(
        Simulator::fp));
#endif
  }

 private:
  Simulator* simulator_;
};
#endif  // USE_SIMULATOR


#if defined(USE_SIGNALS)

class SignalHandler : public AllStatic {
 public:
  static void SetUp() { if (!mutex_) mutex_ = new base::Mutex(); }
  static void TearDown() { delete mutex_; mutex_ = NULL; }

  static void IncreaseSamplerCount() {
    base::LockGuard<base::Mutex> lock_guard(mutex_);
    if (++client_count_ == 1) Install();
  }

  static void DecreaseSamplerCount() {
    base::LockGuard<base::Mutex> lock_guard(mutex_);
    if (--client_count_ == 0) Restore();
  }

  static bool Installed() {
    return signal_handler_installed_;
  }

 private:
  static void Install() {
#if !V8_OS_NACL
    struct sigaction sa;
    sa.sa_sigaction = &HandleProfilerSignal;
    sigemptyset(&sa.sa_mask);
#if V8_OS_QNX
    sa.sa_flags = SA_SIGINFO;
#else
    sa.sa_flags = SA_RESTART | SA_SIGINFO;
#endif
    signal_handler_installed_ =
        (sigaction(SIGPROF, &sa, &old_signal_handler_) == 0);
#endif
  }

  static void Restore() {
#if !V8_OS_NACL
    if (signal_handler_installed_) {
      sigaction(SIGPROF, &old_signal_handler_, 0);
      signal_handler_installed_ = false;
    }
#endif
  }

#if !V8_OS_NACL
  static void HandleProfilerSignal(int signal, siginfo_t* info, void* context);
#endif
  // Protects the process wide state below.
  static base::Mutex* mutex_;
  static int client_count_;
  static bool signal_handler_installed_;
  static struct sigaction old_signal_handler_;
};


base::Mutex* SignalHandler::mutex_ = NULL;
int SignalHandler::client_count_ = 0;
struct sigaction SignalHandler::old_signal_handler_;
bool SignalHandler::signal_handler_installed_ = false;


// As Native Client does not support signal handling, profiling is disabled.
#if !V8_OS_NACL
void SignalHandler::HandleProfilerSignal(int signal, siginfo_t* info,
                                         void* context) {
  USE(info);
  if (signal != SIGPROF) return;
  Isolate* isolate = Isolate::UnsafeCurrent();
  if (isolate == NULL || !isolate->IsInUse()) {
    // We require a fully initialized and entered isolate.
    return;
  }
  if (v8::Locker::IsActive() &&
      !isolate->thread_manager()->IsLockedByCurrentThread()) {
    return;
  }

  Sampler* sampler = isolate->logger()->sampler();
  if (sampler == NULL) return;

  v8::RegisterState state;

#if defined(USE_SIMULATOR)
  SimulatorHelper helper;
  if (!helper.Init(isolate)) return;
  helper.FillRegisters(&state);
  // It possible that the simulator is interrupted while it is updating
  // the sp or fp register. ARM64 simulator does this in two steps:
  // first setting it to zero and then setting it to the new value.
  // Bailout if sp/fp doesn't contain the new value.
  if (state.sp == 0 || state.fp == 0) return;
#else
  // Extracting the sample from the context is extremely machine dependent.
  ucontext_t* ucontext = reinterpret_cast<ucontext_t*>(context);
#if !(V8_OS_OPENBSD || (V8_OS_LINUX && (V8_HOST_ARCH_PPC || V8_HOST_ARCH_S390)))
  mcontext_t& mcontext = ucontext->uc_mcontext;
#endif
#if V8_OS_LINUX
#if V8_HOST_ARCH_IA32
  state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_EIP]);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_ESP]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_EBP]);
#elif V8_HOST_ARCH_X64
  state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_RIP]);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_RSP]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_RBP]);
#elif V8_HOST_ARCH_ARM
#if V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4)
  // Old GLibc ARM versions used a gregs[] array to access the register
  // values from mcontext_t.
  state.pc = reinterpret_cast<Address>(mcontext.gregs[R15]);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[R13]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[R11]);
#else
  state.pc = reinterpret_cast<Address>(mcontext.arm_pc);
  state.sp = reinterpret_cast<Address>(mcontext.arm_sp);
  state.fp = reinterpret_cast<Address>(mcontext.arm_fp);
#endif  // V8_LIBC_GLIBC && !V8_GLIBC_PREREQ(2, 4)
#elif V8_HOST_ARCH_ARM64
  state.pc = reinterpret_cast<Address>(mcontext.pc);
  state.sp = reinterpret_cast<Address>(mcontext.sp);
  // FP is an alias for x29.
  state.fp = reinterpret_cast<Address>(mcontext.regs[29]);
#elif V8_HOST_ARCH_MIPS
  state.pc = reinterpret_cast<Address>(mcontext.pc);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[29]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[30]);
#elif V8_HOST_ARCH_MIPS64
  state.pc = reinterpret_cast<Address>(mcontext.pc);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[29]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[30]);
#elif V8_HOST_ARCH_PPC
  state.pc = reinterpret_cast<Address>(ucontext->uc_mcontext.regs->nip);
  state.sp = reinterpret_cast<Address>(ucontext->uc_mcontext.regs->gpr[PT_R1]);
  state.fp = reinterpret_cast<Address>(ucontext->uc_mcontext.regs->gpr[PT_R31]);
#elif V8_HOST_ARCH_S390
#if V8_TARGET_ARCH_32_BIT
  // 31-bit targets will have the upper bit of the PSW set, and requires
  // masking out.
  state.pc = reinterpret_cast<Address>(ucontext->uc_mcontext.psw.addr &
                                       0x7FFFFFFF);
#else
  state.pc = reinterpret_cast<Address>(ucontext->uc_mcontext.psw.addr);
#endif
  state.sp = reinterpret_cast<Address>(ucontext->uc_mcontext.gregs[15]);
  state.fp = reinterpret_cast<Address>(ucontext->uc_mcontext.gregs[11]);
#endif  // V8_HOST_ARCH_*
#elif V8_OS_MACOSX
#if V8_HOST_ARCH_X64
#if __DARWIN_UNIX03
  state.pc = reinterpret_cast<Address>(mcontext->__ss.__rip);
  state.sp = reinterpret_cast<Address>(mcontext->__ss.__rsp);
  state.fp = reinterpret_cast<Address>(mcontext->__ss.__rbp);
#else  // !__DARWIN_UNIX03
  state.pc = reinterpret_cast<Address>(mcontext->ss.rip);
  state.sp = reinterpret_cast<Address>(mcontext->ss.rsp);
  state.fp = reinterpret_cast<Address>(mcontext->ss.rbp);
#endif  // __DARWIN_UNIX03
#elif V8_HOST_ARCH_IA32
#if __DARWIN_UNIX03
  state.pc = reinterpret_cast<Address>(mcontext->__ss.__eip);
  state.sp = reinterpret_cast<Address>(mcontext->__ss.__esp);
  state.fp = reinterpret_cast<Address>(mcontext->__ss.__ebp);
#else  // !__DARWIN_UNIX03
  state.pc = reinterpret_cast<Address>(mcontext->ss.eip);
  state.sp = reinterpret_cast<Address>(mcontext->ss.esp);
  state.fp = reinterpret_cast<Address>(mcontext->ss.ebp);
#endif  // __DARWIN_UNIX03
#endif  // V8_HOST_ARCH_IA32
#elif V8_OS_FREEBSD
#if V8_HOST_ARCH_IA32
  state.pc = reinterpret_cast<Address>(mcontext.mc_eip);
  state.sp = reinterpret_cast<Address>(mcontext.mc_esp);
  state.fp = reinterpret_cast<Address>(mcontext.mc_ebp);
#elif V8_HOST_ARCH_X64
  state.pc = reinterpret_cast<Address>(mcontext.mc_rip);
  state.sp = reinterpret_cast<Address>(mcontext.mc_rsp);
  state.fp = reinterpret_cast<Address>(mcontext.mc_rbp);
#elif V8_HOST_ARCH_ARM
  state.pc = reinterpret_cast<Address>(mcontext.mc_r15);
  state.sp = reinterpret_cast<Address>(mcontext.mc_r13);
  state.fp = reinterpret_cast<Address>(mcontext.mc_r11);
#endif  // V8_HOST_ARCH_*
#elif V8_OS_NETBSD
#if V8_HOST_ARCH_IA32
  state.pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_EIP]);
  state.sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_ESP]);
  state.fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_EBP]);
#elif V8_HOST_ARCH_X64
  state.pc = reinterpret_cast<Address>(mcontext.__gregs[_REG_RIP]);
  state.sp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RSP]);
  state.fp = reinterpret_cast<Address>(mcontext.__gregs[_REG_RBP]);
#endif  // V8_HOST_ARCH_*
#elif V8_OS_OPENBSD
#if V8_HOST_ARCH_IA32
  state.pc = reinterpret_cast<Address>(ucontext->sc_eip);
  state.sp = reinterpret_cast<Address>(ucontext->sc_esp);
  state.fp = reinterpret_cast<Address>(ucontext->sc_ebp);
#elif V8_HOST_ARCH_X64
  state.pc = reinterpret_cast<Address>(ucontext->sc_rip);
  state.sp = reinterpret_cast<Address>(ucontext->sc_rsp);
  state.fp = reinterpret_cast<Address>(ucontext->sc_rbp);
#endif  // V8_HOST_ARCH_*
#elif V8_OS_SOLARIS
  state.pc = reinterpret_cast<Address>(mcontext.gregs[REG_PC]);
  state.sp = reinterpret_cast<Address>(mcontext.gregs[REG_SP]);
  state.fp = reinterpret_cast<Address>(mcontext.gregs[REG_FP]);
#elif V8_OS_QNX
#if V8_HOST_ARCH_IA32
  state.pc = reinterpret_cast<Address>(mcontext.cpu.eip);
  state.sp = reinterpret_cast<Address>(mcontext.cpu.esp);
  state.fp = reinterpret_cast<Address>(mcontext.cpu.ebp);
#elif V8_HOST_ARCH_ARM
  state.pc = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_PC]);
  state.sp = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_SP]);
  state.fp = reinterpret_cast<Address>(mcontext.cpu.gpr[ARM_REG_FP]);
#endif  // V8_HOST_ARCH_*
#elif V8_OS_AIX
  state.pc = reinterpret_cast<Address>(mcontext.jmp_context.iar);
  state.sp = reinterpret_cast<Address>(mcontext.jmp_context.gpr[1]);
  state.fp = reinterpret_cast<Address>(mcontext.jmp_context.gpr[31]);
#endif  // V8_OS_AIX
#endif  // USE_SIMULATOR
  sampler->SampleStack(state);
}
#endif  // V8_OS_NACL

#endif


class SamplerThread : public base::Thread {
 public:
  static const int kSamplerThreadStackSize = 64 * KB;

  explicit SamplerThread(int interval)
      : Thread(base::Thread::Options("SamplerThread", kSamplerThreadStackSize)),
        interval_(interval) {}

  static void SetUp() { if (!mutex_) mutex_ = new base::Mutex(); }
  static void TearDown() { delete mutex_; mutex_ = NULL; }

  static void AddActiveSampler(Sampler* sampler) {
    bool need_to_start = false;
    base::LockGuard<base::Mutex> lock_guard(mutex_);
    if (instance_ == NULL) {
      // Start a thread that will send SIGPROF signal to VM threads,
      // when CPU profiling will be enabled.
      instance_ = new SamplerThread(sampler->interval());
      need_to_start = true;
    }

    DCHECK(sampler->IsActive());
    DCHECK(!instance_->active_samplers_.Contains(sampler));
    DCHECK(instance_->interval_ == sampler->interval());
    instance_->active_samplers_.Add(sampler);

    if (need_to_start) instance_->StartSynchronously();
  }

  static void RemoveActiveSampler(Sampler* sampler) {
    SamplerThread* instance_to_remove = NULL;
    {
      base::LockGuard<base::Mutex> lock_guard(mutex_);

      DCHECK(sampler->IsActive());
      bool removed = instance_->active_samplers_.RemoveElement(sampler);
      DCHECK(removed);
      USE(removed);

      // We cannot delete the instance immediately as we need to Join() the
      // thread but we are holding mutex_ and the thread may try to acquire it.
      if (instance_->active_samplers_.is_empty()) {
        instance_to_remove = instance_;
        instance_ = NULL;
      }
    }

    if (!instance_to_remove) return;
    instance_to_remove->Join();
    delete instance_to_remove;
  }

  // Implement Thread::Run().
  virtual void Run() {
    while (true) {
      {
        base::LockGuard<base::Mutex> lock_guard(mutex_);
        if (active_samplers_.is_empty()) break;
        // When CPU profiling is enabled both JavaScript and C++ code is
        // profiled. We must not suspend.
        for (int i = 0; i < active_samplers_.length(); ++i) {
          Sampler* sampler = active_samplers_.at(i);
          if (!sampler->IsProfiling()) continue;
          sampler->DoSample();
        }
      }
      base::OS::Sleep(base::TimeDelta::FromMilliseconds(interval_));
    }
  }

 private:
  // Protects the process wide state below.
  static base::Mutex* mutex_;
  static SamplerThread* instance_;

  const int interval_;
  List<Sampler*> active_samplers_;

  DISALLOW_COPY_AND_ASSIGN(SamplerThread);
};


base::Mutex* SamplerThread::mutex_ = NULL;
SamplerThread* SamplerThread::instance_ = NULL;


//
// StackTracer implementation
//
DISABLE_ASAN void TickSample::Init(Isolate* isolate,
                                   const v8::RegisterState& regs,
                                   RecordCEntryFrame record_c_entry_frame) {
  timestamp = base::TimeTicks::HighResolutionNow();
  pc = reinterpret_cast<Address>(regs.pc);
  state = isolate->current_vm_state();

  // Avoid collecting traces while doing GC.
  if (state == GC) return;

  Address js_entry_sp = isolate->js_entry_sp();
  if (js_entry_sp == 0) return;  // Not executing JS now.

  ExternalCallbackScope* scope = isolate->external_callback_scope();
  Address handler = Isolate::handler(isolate->thread_local_top());
  // If there is a handler on top of the external callback scope then
  // we have already entrered JavaScript again and the external callback
  // is not the top function.
  if (scope && scope->scope_address() < handler) {
    external_callback = scope->callback();
    has_external_callback = true;
  } else {
    // Sample potential return address value for frameless invocation of
    // stubs (we'll figure out later, if this value makes sense).
    tos = Memory::Address_at(reinterpret_cast<Address>(regs.sp));
    has_external_callback = false;
  }

  SafeStackFrameIterator it(isolate, reinterpret_cast<Address>(regs.fp),
                            reinterpret_cast<Address>(regs.sp), js_entry_sp);
  top_frame_type = it.top_frame_type();

  SampleInfo info;
  GetStackSample(isolate, regs, record_c_entry_frame,
                 reinterpret_cast<void**>(&stack[0]), kMaxFramesCount, &info);
  frames_count = static_cast<unsigned>(info.frames_count);
}


void TickSample::GetStackSample(Isolate* isolate, const v8::RegisterState& regs,
                                RecordCEntryFrame record_c_entry_frame,
                                void** frames, size_t frames_limit,
                                v8::SampleInfo* sample_info) {
  sample_info->frames_count = 0;
  sample_info->vm_state = isolate->current_vm_state();
  if (sample_info->vm_state == GC) return;

  Address js_entry_sp = isolate->js_entry_sp();
  if (js_entry_sp == 0) return;  // Not executing JS now.

  SafeStackFrameIterator it(isolate, reinterpret_cast<Address>(regs.fp),
                            reinterpret_cast<Address>(regs.sp), js_entry_sp);
  size_t i = 0;
  if (record_c_entry_frame == kIncludeCEntryFrame && !it.done() &&
      it.top_frame_type() == StackFrame::EXIT) {
    frames[i++] = isolate->c_function();
  }
  while (!it.done() && i < frames_limit) {
    frames[i++] = it.frame()->pc();
    it.Advance();
  }
  sample_info->frames_count = i;
}


void Sampler::SetUp() {
#if defined(USE_SIGNALS)
  SignalHandler::SetUp();
#endif
  SamplerThread::SetUp();
}


void Sampler::TearDown() {
  SamplerThread::TearDown();
#if defined(USE_SIGNALS)
  SignalHandler::TearDown();
#endif
}


Sampler::Sampler(Isolate* isolate, int interval)
    : isolate_(isolate),
      interval_(interval),
      profiling_(false),
      has_processing_thread_(false),
      active_(false),
      is_counting_samples_(false),
      js_and_external_sample_count_(0) {
  data_ = new PlatformData;
}


Sampler::~Sampler() {
  DCHECK(!IsActive());
  delete data_;
}


void Sampler::Start() {
  DCHECK(!IsActive());
  SetActive(true);
  SamplerThread::AddActiveSampler(this);
}


void Sampler::Stop() {
  DCHECK(IsActive());
  SamplerThread::RemoveActiveSampler(this);
  SetActive(false);
}


void Sampler::IncreaseProfilingDepth() {
  base::NoBarrier_AtomicIncrement(&profiling_, 1);
#if defined(USE_SIGNALS)
  SignalHandler::IncreaseSamplerCount();
#endif
}


void Sampler::DecreaseProfilingDepth() {
#if defined(USE_SIGNALS)
  SignalHandler::DecreaseSamplerCount();
#endif
  base::NoBarrier_AtomicIncrement(&profiling_, -1);
}


void Sampler::SampleStack(const v8::RegisterState& state) {
  TickSample* sample = isolate_->cpu_profiler()->StartTickSample();
  TickSample sample_obj;
  if (sample == NULL) sample = &sample_obj;
  sample->Init(isolate_, state, TickSample::kIncludeCEntryFrame);
  if (is_counting_samples_) {
    if (sample->state == JS || sample->state == EXTERNAL) {
      ++js_and_external_sample_count_;
    }
  }
  Tick(sample);
  if (sample != &sample_obj) {
    isolate_->cpu_profiler()->FinishTickSample();
  }
}


#if defined(USE_SIGNALS)

void Sampler::DoSample() {
  if (!SignalHandler::Installed()) return;
  pthread_kill(platform_data()->vm_tid(), SIGPROF);
}

#elif V8_OS_WIN || V8_OS_CYGWIN

void Sampler::DoSample() {
  HANDLE profiled_thread = platform_data()->profiled_thread();
  if (profiled_thread == NULL) return;

#if defined(USE_SIMULATOR)
  SimulatorHelper helper;
  if (!helper.Init(isolate())) return;
#endif

  const DWORD kSuspendFailed = static_cast<DWORD>(-1);
  if (SuspendThread(profiled_thread) == kSuspendFailed) return;

  // Context used for sampling the register state of the profiled thread.
  CONTEXT context;
  memset(&context, 0, sizeof(context));
  context.ContextFlags = CONTEXT_FULL;
  if (GetThreadContext(profiled_thread, &context) != 0) {
    v8::RegisterState state;
#if defined(USE_SIMULATOR)
    helper.FillRegisters(&state);
#else
#if V8_HOST_ARCH_X64
    state.pc = reinterpret_cast<Address>(context.Rip);
    state.sp = reinterpret_cast<Address>(context.Rsp);
    state.fp = reinterpret_cast<Address>(context.Rbp);
#else
    state.pc = reinterpret_cast<Address>(context.Eip);
    state.sp = reinterpret_cast<Address>(context.Esp);
    state.fp = reinterpret_cast<Address>(context.Ebp);
#endif
#endif  // USE_SIMULATOR
    SampleStack(state);
  }
  ResumeThread(profiled_thread);
}

#endif  // USE_SIGNALS


}  // namespace internal
}  // namespace v8