File: cpu.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (683 lines) | stat: -rw-r--r-- 18,959 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
// Copyright 2013 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/base/cpu.h"

#if V8_LIBC_MSVCRT
#include <intrin.h>  // __cpuid()
#endif
#if V8_OS_LINUX
#include <linux/auxvec.h>  // AT_HWCAP
#endif
#if V8_GLIBC_PREREQ(2, 16)
#include <sys/auxv.h>  // getauxval()
#endif
#if V8_OS_QNX
#include <sys/syspage.h>  // cpuinfo
#endif
#if V8_OS_LINUX && V8_HOST_ARCH_PPC
#include <elf.h>
#endif
#if V8_OS_AIX
#include <sys/systemcfg.h>  // _system_configuration
#ifndef POWER_8
#define POWER_8 0x10000
#endif
#endif
#if V8_OS_POSIX
#include <unistd.h>  // sysconf()
#endif

#include <ctype.h>
#include <limits.h>
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <algorithm>

#include "src/base/logging.h"
#if V8_OS_WIN
#include "src/base/win32-headers.h"  // NOLINT
#endif

namespace v8 {
namespace base {

#if defined(__pnacl__)
// Portable host shouldn't do feature detection.
#elif V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64

// Define __cpuid() for non-MSVC libraries.
#if !V8_LIBC_MSVCRT

static V8_INLINE void __cpuid(int cpu_info[4], int info_type) {
// Clear ecx to align with __cpuid() of MSVC:
// https://msdn.microsoft.com/en-us/library/hskdteyh.aspx
#if defined(__i386__) && defined(__pic__)
  // Make sure to preserve ebx, which contains the pointer
  // to the GOT in case we're generating PIC.
  __asm__ volatile(
      "mov %%ebx, %%edi\n\t"
      "cpuid\n\t"
      "xchg %%edi, %%ebx\n\t"
      : "=a"(cpu_info[0]), "=D"(cpu_info[1]), "=c"(cpu_info[2]),
        "=d"(cpu_info[3])
      : "a"(info_type), "c"(0));
#else
  __asm__ volatile("cpuid \n\t"
                   : "=a"(cpu_info[0]), "=b"(cpu_info[1]), "=c"(cpu_info[2]),
                     "=d"(cpu_info[3])
                   : "a"(info_type), "c"(0));
#endif  // defined(__i386__) && defined(__pic__)
}

#endif  // !V8_LIBC_MSVCRT

#elif V8_HOST_ARCH_ARM || V8_HOST_ARCH_ARM64 \
    || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

#if V8_OS_LINUX

#if V8_HOST_ARCH_ARM

// See <uapi/asm/hwcap.h> kernel header.
/*
 * HWCAP flags - for elf_hwcap (in kernel) and AT_HWCAP
 */
#define HWCAP_SWP (1 << 0)
#define HWCAP_HALF  (1 << 1)
#define HWCAP_THUMB (1 << 2)
#define HWCAP_26BIT (1 << 3)  /* Play it safe */
#define HWCAP_FAST_MULT (1 << 4)
#define HWCAP_FPA (1 << 5)
#define HWCAP_VFP (1 << 6)
#define HWCAP_EDSP  (1 << 7)
#define HWCAP_JAVA  (1 << 8)
#define HWCAP_IWMMXT  (1 << 9)
#define HWCAP_CRUNCH  (1 << 10)
#define HWCAP_THUMBEE (1 << 11)
#define HWCAP_NEON  (1 << 12)
#define HWCAP_VFPv3 (1 << 13)
#define HWCAP_VFPv3D16  (1 << 14) /* also set for VFPv4-D16 */
#define HWCAP_TLS (1 << 15)
#define HWCAP_VFPv4 (1 << 16)
#define HWCAP_IDIVA (1 << 17)
#define HWCAP_IDIVT (1 << 18)
#define HWCAP_VFPD32  (1 << 19) /* set if VFP has 32 regs (not 16) */
#define HWCAP_IDIV  (HWCAP_IDIVA | HWCAP_IDIVT)
#define HWCAP_LPAE  (1 << 20)

static uint32_t ReadELFHWCaps() {
  uint32_t result = 0;
#if V8_GLIBC_PREREQ(2, 16)
  result = static_cast<uint32_t>(getauxval(AT_HWCAP));
#else
  // Read the ELF HWCAP flags by parsing /proc/self/auxv.
  FILE* fp = fopen("/proc/self/auxv", "r");
  if (fp != NULL) {
    struct { uint32_t tag; uint32_t value; } entry;
    for (;;) {
      size_t n = fread(&entry, sizeof(entry), 1, fp);
      if (n == 0 || (entry.tag == 0 && entry.value == 0)) {
        break;
      }
      if (entry.tag == AT_HWCAP) {
        result = entry.value;
        break;
      }
    }
    fclose(fp);
  }
#endif
  return result;
}

#endif  // V8_HOST_ARCH_ARM

#if V8_HOST_ARCH_MIPS
int __detect_fp64_mode(void) {
#ifdef FPU_MODE_FP64
  return 1;
#else
  return 0;
#endif
}


int __detect_mips_arch_revision(void) {
  // TODO(dusmil): Do the specific syscall as soon as it is implemented in mips
  // kernel.
  uint32_t result = 0;
  __asm__ volatile(
      "move $v0, $zero\n\t"
      // Encoding for "addi $v0, $v0, 1" on non-r6,
      // which is encoding for "bovc $v0, %v0, 1" on r6.
      // Use machine code directly to avoid compilation errors with different
      // toolchains and maintain compatibility.
      ".word 0x20420001\n\t"
      "sw $v0, %0\n\t"
      : "=m"(result)
      :
      : "v0", "memory");
  // Result is 0 on r6 architectures, 1 on other architecture revisions.
  // Fall-back to the least common denominator which is mips32 revision 1.
  return result ? 1 : 6;
}
#endif

// Extract the information exposed by the kernel via /proc/cpuinfo.
class CPUInfo final {
 public:
  CPUInfo() : datalen_(0) {
    // Get the size of the cpuinfo file by reading it until the end. This is
    // required because files under /proc do not always return a valid size
    // when using fseek(0, SEEK_END) + ftell(). Nor can the be mmap()-ed.
    static const char PATHNAME[] = "/proc/cpuinfo";
    FILE* fp = fopen(PATHNAME, "r");
    if (fp != NULL) {
      for (;;) {
        char buffer[256];
        size_t n = fread(buffer, 1, sizeof(buffer), fp);
        if (n == 0) {
          break;
        }
        datalen_ += n;
      }
      fclose(fp);
    }

    // Read the contents of the cpuinfo file.
    data_ = new char[datalen_ + 1];
    fp = fopen(PATHNAME, "r");
    if (fp != NULL) {
      for (size_t offset = 0; offset < datalen_; ) {
        size_t n = fread(data_ + offset, 1, datalen_ - offset, fp);
        if (n == 0) {
          break;
        }
        offset += n;
      }
      fclose(fp);
    }

    // Zero-terminate the data.
    data_[datalen_] = '\0';
  }

  ~CPUInfo() {
    delete[] data_;
  }

  // Extract the content of a the first occurence of a given field in
  // the content of the cpuinfo file and return it as a heap-allocated
  // string that must be freed by the caller using delete[].
  // Return NULL if not found.
  char* ExtractField(const char* field) const {
    DCHECK(field != NULL);

    // Look for first field occurence, and ensure it starts the line.
    size_t fieldlen = strlen(field);
    char* p = data_;
    for (;;) {
      p = strstr(p, field);
      if (p == NULL) {
        return NULL;
      }
      if (p == data_ || p[-1] == '\n') {
        break;
      }
      p += fieldlen;
    }

    // Skip to the first colon followed by a space.
    p = strchr(p + fieldlen, ':');
    if (p == NULL || !isspace(p[1])) {
      return NULL;
    }
    p += 2;

    // Find the end of the line.
    char* q = strchr(p, '\n');
    if (q == NULL) {
      q = data_ + datalen_;
    }

    // Copy the line into a heap-allocated buffer.
    size_t len = q - p;
    char* result = new char[len + 1];
    if (result != NULL) {
      memcpy(result, p, len);
      result[len] = '\0';
    }
    return result;
  }

 private:
  char* data_;
  size_t datalen_;
};

#if V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

// Checks that a space-separated list of items contains one given 'item'.
static bool HasListItem(const char* list, const char* item) {
  ssize_t item_len = strlen(item);
  const char* p = list;
  if (p != NULL) {
    while (*p != '\0') {
      // Skip whitespace.
      while (isspace(*p)) ++p;

      // Find end of current list item.
      const char* q = p;
      while (*q != '\0' && !isspace(*q)) ++q;

      if (item_len == q - p && memcmp(p, item, item_len) == 0) {
        return true;
      }

      // Skip to next item.
      p = q;
    }
  }
  return false;
}

#endif  // V8_HOST_ARCH_ARM || V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

#endif  // V8_OS_LINUX

#endif  // V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64

CPU::CPU()
    : stepping_(0),
      model_(0),
      ext_model_(0),
      family_(0),
      ext_family_(0),
      type_(0),
      implementer_(0),
      architecture_(0),
      variant_(-1),
      part_(0),
      has_fpu_(false),
      has_cmov_(false),
      has_sahf_(false),
      has_mmx_(false),
      has_sse_(false),
      has_sse2_(false),
      has_sse3_(false),
      has_ssse3_(false),
      has_sse41_(false),
      has_sse42_(false),
      is_atom_(false),
      has_osxsave_(false),
      has_avx_(false),
      has_fma3_(false),
      has_bmi1_(false),
      has_bmi2_(false),
      has_lzcnt_(false),
      has_popcnt_(false),
      has_idiva_(false),
      has_neon_(false),
      has_thumb2_(false),
      has_vfp_(false),
      has_vfp3_(false),
      has_vfp3_d32_(false),
      is_fp64_mode_(false) {
  memcpy(vendor_, "Unknown", 8);
#if V8_OS_NACL
// Portable host shouldn't do feature detection.
// TODO(jfb): Remove the hardcoded ARM simulator flags in the build, and
// hardcode them here instead.
#elif V8_HOST_ARCH_IA32 || V8_HOST_ARCH_X64
  int cpu_info[4];

  // __cpuid with an InfoType argument of 0 returns the number of
  // valid Ids in CPUInfo[0] and the CPU identification string in
  // the other three array elements. The CPU identification string is
  // not in linear order. The code below arranges the information
  // in a human readable form. The human readable order is CPUInfo[1] |
  // CPUInfo[3] | CPUInfo[2]. CPUInfo[2] and CPUInfo[3] are swapped
  // before using memcpy to copy these three array elements to cpu_string.
  __cpuid(cpu_info, 0);
  unsigned num_ids = cpu_info[0];
  std::swap(cpu_info[2], cpu_info[3]);
  memcpy(vendor_, cpu_info + 1, 12);
  vendor_[12] = '\0';

  // Interpret CPU feature information.
  if (num_ids > 0) {
    __cpuid(cpu_info, 1);
    stepping_ = cpu_info[0] & 0xf;
    model_ = ((cpu_info[0] >> 4) & 0xf) + ((cpu_info[0] >> 12) & 0xf0);
    family_ = (cpu_info[0] >> 8) & 0xf;
    type_ = (cpu_info[0] >> 12) & 0x3;
    ext_model_ = (cpu_info[0] >> 16) & 0xf;
    ext_family_ = (cpu_info[0] >> 20) & 0xff;
    has_fpu_ = (cpu_info[3] & 0x00000001) != 0;
    has_cmov_ = (cpu_info[3] & 0x00008000) != 0;
    has_mmx_ = (cpu_info[3] & 0x00800000) != 0;
    has_sse_ = (cpu_info[3] & 0x02000000) != 0;
    has_sse2_ = (cpu_info[3] & 0x04000000) != 0;
    has_sse3_ = (cpu_info[2] & 0x00000001) != 0;
    has_ssse3_ = (cpu_info[2] & 0x00000200) != 0;
    has_sse41_ = (cpu_info[2] & 0x00080000) != 0;
    has_sse42_ = (cpu_info[2] & 0x00100000) != 0;
    has_popcnt_ = (cpu_info[2] & 0x00800000) != 0;
    has_osxsave_ = (cpu_info[2] & 0x08000000) != 0;
    has_avx_ = (cpu_info[2] & 0x10000000) != 0;
    has_fma3_ = (cpu_info[2] & 0x00001000) != 0;

    if (family_ == 0x6) {
      switch (model_) {
        case 0x1c:  // SLT
        case 0x26:
        case 0x36:
        case 0x27:
        case 0x35:
        case 0x37:  // SLM
        case 0x4a:
        case 0x4d:
        case 0x4c:  // AMT
        case 0x6e:
          is_atom_ = true;
      }
    }
  }

  // There are separate feature flags for VEX-encoded GPR instructions.
  if (num_ids >= 7) {
    __cpuid(cpu_info, 7);
    has_bmi1_ = (cpu_info[1] & 0x00000008) != 0;
    has_bmi2_ = (cpu_info[1] & 0x00000100) != 0;
  }

  // Query extended IDs.
  __cpuid(cpu_info, 0x80000000);
  unsigned num_ext_ids = cpu_info[0];

  // Interpret extended CPU feature information.
  if (num_ext_ids > 0x80000000) {
    __cpuid(cpu_info, 0x80000001);
    has_lzcnt_ = (cpu_info[2] & 0x00000020) != 0;
    // SAHF must be probed in long mode.
    has_sahf_ = (cpu_info[2] & 0x00000001) != 0;
  }

#elif V8_HOST_ARCH_ARM

#if V8_OS_LINUX

  CPUInfo cpu_info;

  // Extract implementor from the "CPU implementer" field.
  char* implementer = cpu_info.ExtractField("CPU implementer");
  if (implementer != NULL) {
    char* end;
    implementer_ = strtol(implementer, &end, 0);
    if (end == implementer) {
      implementer_ = 0;
    }
    delete[] implementer;
  }

  char* variant = cpu_info.ExtractField("CPU variant");
  if (variant != NULL) {
    char* end;
    variant_ = strtol(variant, &end, 0);
    if (end == variant) {
      variant_ = -1;
    }
    delete[] variant;
  }

  // Extract part number from the "CPU part" field.
  char* part = cpu_info.ExtractField("CPU part");
  if (part != NULL) {
    char* end;
    part_ = strtol(part, &end, 0);
    if (end == part) {
      part_ = 0;
    }
    delete[] part;
  }

  // Extract architecture from the "CPU Architecture" field.
  // The list is well-known, unlike the the output of
  // the 'Processor' field which can vary greatly.
  // See the definition of the 'proc_arch' array in
  // $KERNEL/arch/arm/kernel/setup.c and the 'c_show' function in
  // same file.
  char* architecture = cpu_info.ExtractField("CPU architecture");
  if (architecture != NULL) {
    char* end;
    architecture_ = strtol(architecture, &end, 10);
    if (end == architecture) {
      architecture_ = 0;
    }
    delete[] architecture;

    // Unfortunately, it seems that certain ARMv6-based CPUs
    // report an incorrect architecture number of 7!
    //
    // See http://code.google.com/p/android/issues/detail?id=10812
    //
    // We try to correct this by looking at the 'elf_platform'
    // field reported by the 'Processor' field, which is of the
    // form of "(v7l)" for an ARMv7-based CPU, and "(v6l)" for
    // an ARMv6-one. For example, the Raspberry Pi is one popular
    // ARMv6 device that reports architecture 7.
    if (architecture_ == 7) {
      char* processor = cpu_info.ExtractField("Processor");
      if (HasListItem(processor, "(v6l)")) {
        architecture_ = 6;
      }
      delete[] processor;
    }

    // elf_platform moved to the model name field in Linux v3.8.
    if (architecture_ == 7) {
      char* processor = cpu_info.ExtractField("model name");
      if (HasListItem(processor, "(v6l)")) {
        architecture_ = 6;
      }
      delete[] processor;
    }
  }

  // Try to extract the list of CPU features from ELF hwcaps.
  uint32_t hwcaps = ReadELFHWCaps();
  if (hwcaps != 0) {
    has_idiva_ = (hwcaps & HWCAP_IDIVA) != 0;
    has_neon_ = (hwcaps & HWCAP_NEON) != 0;
    has_vfp_ = (hwcaps & HWCAP_VFP) != 0;
    has_vfp3_ = (hwcaps & (HWCAP_VFPv3 | HWCAP_VFPv3D16 | HWCAP_VFPv4)) != 0;
    has_vfp3_d32_ = (has_vfp3_ && ((hwcaps & HWCAP_VFPv3D16) == 0 ||
                                   (hwcaps & HWCAP_VFPD32) != 0));
  } else {
    // Try to fallback to "Features" CPUInfo field.
    char* features = cpu_info.ExtractField("Features");
    has_idiva_ = HasListItem(features, "idiva");
    has_neon_ = HasListItem(features, "neon");
    has_thumb2_ = HasListItem(features, "thumb2");
    has_vfp_ = HasListItem(features, "vfp");
    if (HasListItem(features, "vfpv3d16")) {
      has_vfp3_ = true;
    } else if (HasListItem(features, "vfpv3")) {
      has_vfp3_ = true;
      has_vfp3_d32_ = true;
    }
    delete[] features;
  }

  // Some old kernels will report vfp not vfpv3. Here we make an attempt
  // to detect vfpv3 by checking for vfp *and* neon, since neon is only
  // available on architectures with vfpv3. Checking neon on its own is
  // not enough as it is possible to have neon without vfp.
  if (has_vfp_ && has_neon_) {
    has_vfp3_ = true;
  }

  // VFPv3 implies ARMv7, see ARM DDI 0406B, page A1-6.
  if (architecture_ < 7 && has_vfp3_) {
    architecture_ = 7;
  }

  // ARMv7 implies Thumb2.
  if (architecture_ >= 7) {
    has_thumb2_ = true;
  }

  // The earliest architecture with Thumb2 is ARMv6T2.
  if (has_thumb2_ && architecture_ < 6) {
    architecture_ = 6;
  }

  // We don't support any FPUs other than VFP.
  has_fpu_ = has_vfp_;

#elif V8_OS_QNX

  uint32_t cpu_flags = SYSPAGE_ENTRY(cpuinfo)->flags;
  if (cpu_flags & ARM_CPU_FLAG_V7) {
    architecture_ = 7;
    has_thumb2_ = true;
  } else if (cpu_flags & ARM_CPU_FLAG_V6) {
    architecture_ = 6;
    // QNX doesn't say if Thumb2 is available.
    // Assume false for the architectures older than ARMv7.
  }
  DCHECK(architecture_ >= 6);
  has_fpu_ = (cpu_flags & CPU_FLAG_FPU) != 0;
  has_vfp_ = has_fpu_;
  if (cpu_flags & ARM_CPU_FLAG_NEON) {
    has_neon_ = true;
    has_vfp3_ = has_vfp_;
#ifdef ARM_CPU_FLAG_VFP_D32
    has_vfp3_d32_ = (cpu_flags & ARM_CPU_FLAG_VFP_D32) != 0;
#endif
  }
  has_idiva_ = (cpu_flags & ARM_CPU_FLAG_IDIV) != 0;

#endif  // V8_OS_LINUX

#elif V8_HOST_ARCH_MIPS || V8_HOST_ARCH_MIPS64

  // Simple detection of FPU at runtime for Linux.
  // It is based on /proc/cpuinfo, which reveals hardware configuration
  // to user-space applications.  According to MIPS (early 2010), no similar
  // facility is universally available on the MIPS architectures,
  // so it's up to individual OSes to provide such.
  CPUInfo cpu_info;
  char* cpu_model = cpu_info.ExtractField("cpu model");
  has_fpu_ = HasListItem(cpu_model, "FPU");
  delete[] cpu_model;
#ifdef V8_HOST_ARCH_MIPS
  is_fp64_mode_ = __detect_fp64_mode();
  architecture_ = __detect_mips_arch_revision();
#endif

#elif V8_HOST_ARCH_ARM64

  CPUInfo cpu_info;

  // Extract implementor from the "CPU implementer" field.
  char* implementer = cpu_info.ExtractField("CPU implementer");
  if (implementer != NULL) {
    char* end;
    implementer_ = strtol(implementer, &end, 0);
    if (end == implementer) {
      implementer_ = 0;
    }
    delete[] implementer;
  }

  char* variant = cpu_info.ExtractField("CPU variant");
  if (variant != NULL) {
    char* end;
    variant_ = strtol(variant, &end, 0);
    if (end == variant) {
      variant_ = -1;
    }
    delete[] variant;
  }

  // Extract part number from the "CPU part" field.
  char* part = cpu_info.ExtractField("CPU part");
  if (part != NULL) {
    char* end;
    part_ = strtol(part, &end, 0);
    if (end == part) {
      part_ = 0;
    }
    delete[] part;
  }

#elif V8_HOST_ARCH_PPC

#ifndef USE_SIMULATOR
#if V8_OS_LINUX
  // Read processor info from /proc/self/auxv.
  char* auxv_cpu_type = NULL;
  FILE* fp = fopen("/proc/self/auxv", "r");
  if (fp != NULL) {
#if V8_TARGET_ARCH_PPC64
    Elf64_auxv_t entry;
#else
    Elf32_auxv_t entry;
#endif
    for (;;) {
      size_t n = fread(&entry, sizeof(entry), 1, fp);
      if (n == 0 || entry.a_type == AT_NULL) {
        break;
      }
      if (entry.a_type == AT_PLATFORM) {
        auxv_cpu_type = reinterpret_cast<char*>(entry.a_un.a_val);
        break;
      }
    }
    fclose(fp);
  }

  part_ = -1;
  if (auxv_cpu_type) {
    if (strcmp(auxv_cpu_type, "power8") == 0) {
      part_ = PPC_POWER8;
    } else if (strcmp(auxv_cpu_type, "power7") == 0) {
      part_ = PPC_POWER7;
    } else if (strcmp(auxv_cpu_type, "power6") == 0) {
      part_ = PPC_POWER6;
    } else if (strcmp(auxv_cpu_type, "power5") == 0) {
      part_ = PPC_POWER5;
    } else if (strcmp(auxv_cpu_type, "ppc970") == 0) {
      part_ = PPC_G5;
    } else if (strcmp(auxv_cpu_type, "ppc7450") == 0) {
      part_ = PPC_G4;
    } else if (strcmp(auxv_cpu_type, "pa6t") == 0) {
      part_ = PPC_PA6T;
    }
  }

#elif V8_OS_AIX
  switch (_system_configuration.implementation) {
    case POWER_8:
      part_ = PPC_POWER8;
      break;
    case POWER_7:
      part_ = PPC_POWER7;
      break;
    case POWER_6:
      part_ = PPC_POWER6;
      break;
    case POWER_5:
      part_ = PPC_POWER5;
      break;
  }
#endif  // V8_OS_AIX
#endif  // !USE_SIMULATOR
#endif  // V8_HOST_ARCH_PPC
}

} }  // namespace v8::base