File: instruction-codes.h

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (149 lines) | stat: -rw-r--r-- 4,962 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// Copyright 2014 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_COMPILER_INSTRUCTION_CODES_H_
#define V8_COMPILER_INSTRUCTION_CODES_H_

#include <iosfwd>

#if V8_TARGET_ARCH_ARM
#include "src/compiler/arm/instruction-codes-arm.h"
#elif V8_TARGET_ARCH_ARM64
#include "src/compiler/arm64/instruction-codes-arm64.h"
#elif V8_TARGET_ARCH_IA32
#include "src/compiler/ia32/instruction-codes-ia32.h"
#elif V8_TARGET_ARCH_MIPS
#include "src/compiler/mips/instruction-codes-mips.h"
#elif V8_TARGET_ARCH_MIPS64
#include "src/compiler/mips64/instruction-codes-mips64.h"
#elif V8_TARGET_ARCH_X64
#include "src/compiler/x64/instruction-codes-x64.h"
#elif V8_TARGET_ARCH_PPC
#include "src/compiler/ppc/instruction-codes-ppc.h"
#elif V8_TARGET_ARCH_S390
#include "src/compiler/s390/instruction-codes-s390.h"
#elif V8_TARGET_ARCH_X87
#include "src/compiler/x87/instruction-codes-x87.h"
#else
#define TARGET_ARCH_OPCODE_LIST(V)
#define TARGET_ADDRESSING_MODE_LIST(V)
#endif
#include "src/utils.h"

namespace v8 {
namespace internal {
namespace compiler {

// Target-specific opcodes that specify which assembly sequence to emit.
// Most opcodes specify a single instruction.
#define ARCH_OPCODE_LIST(V)   \
  V(ArchCallCodeObject)       \
  V(ArchTailCallCodeObject)   \
  V(ArchCallJSFunction)       \
  V(ArchTailCallJSFunction)   \
  V(ArchPrepareCallCFunction) \
  V(ArchCallCFunction)        \
  V(ArchJmp)                  \
  V(ArchLookupSwitch)         \
  V(ArchTableSwitch)          \
  V(ArchNop)                  \
  V(ArchDeoptimize)           \
  V(ArchRet)                  \
  V(ArchStackPointer)         \
  V(ArchFramePointer)         \
  V(ArchTruncateDoubleToI)    \
  V(CheckedLoadInt8)          \
  V(CheckedLoadUint8)         \
  V(CheckedLoadInt16)         \
  V(CheckedLoadUint16)        \
  V(CheckedLoadWord32)        \
  V(CheckedLoadFloat32)       \
  V(CheckedLoadFloat64)       \
  V(CheckedStoreWord8)        \
  V(CheckedStoreWord16)       \
  V(CheckedStoreWord32)       \
  V(CheckedStoreFloat32)      \
  V(CheckedStoreFloat64)      \
  TARGET_ARCH_OPCODE_LIST(V)

enum ArchOpcode {
#define DECLARE_ARCH_OPCODE(Name) k##Name,
  ARCH_OPCODE_LIST(DECLARE_ARCH_OPCODE)
#undef DECLARE_ARCH_OPCODE
#define COUNT_ARCH_OPCODE(Name) +1
  kLastArchOpcode = -1 ARCH_OPCODE_LIST(COUNT_ARCH_OPCODE)
#undef COUNT_ARCH_OPCODE
};

std::ostream& operator<<(std::ostream& os, const ArchOpcode& ao);

// Addressing modes represent the "shape" of inputs to an instruction.
// Many instructions support multiple addressing modes. Addressing modes
// are encoded into the InstructionCode of the instruction and tell the
// code generator after register allocation which assembler method to call.
#define ADDRESSING_MODE_LIST(V) \
  V(None)                       \
  TARGET_ADDRESSING_MODE_LIST(V)

enum AddressingMode {
#define DECLARE_ADDRESSING_MODE(Name) kMode_##Name,
  ADDRESSING_MODE_LIST(DECLARE_ADDRESSING_MODE)
#undef DECLARE_ADDRESSING_MODE
#define COUNT_ADDRESSING_MODE(Name) +1
  kLastAddressingMode = -1 ADDRESSING_MODE_LIST(COUNT_ADDRESSING_MODE)
#undef COUNT_ADDRESSING_MODE
};

std::ostream& operator<<(std::ostream& os, const AddressingMode& am);

// The mode of the flags continuation (see below).
enum FlagsMode { kFlags_none = 0, kFlags_branch = 1, kFlags_set = 2 };

std::ostream& operator<<(std::ostream& os, const FlagsMode& fm);

// The condition of flags continuation (see below).
enum FlagsCondition {
  kEqual,
  kNotEqual,
  kSignedLessThan,
  kSignedGreaterThanOrEqual,
  kSignedLessThanOrEqual,
  kSignedGreaterThan,
  kUnsignedLessThan,
  kUnsignedGreaterThanOrEqual,
  kUnsignedLessThanOrEqual,
  kUnsignedGreaterThan,
  kUnorderedEqual,
  kUnorderedNotEqual,
  kOverflow,
  kNotOverflow
};

inline FlagsCondition NegateFlagsCondition(FlagsCondition condition) {
  return static_cast<FlagsCondition>(condition ^ 1);
}

std::ostream& operator<<(std::ostream& os, const FlagsCondition& fc);

// The InstructionCode is an opaque, target-specific integer that encodes
// what code to emit for an instruction in the code generator. It is not
// interesting to the register allocator, as the inputs and flags on the
// instructions specify everything of interest.
typedef int32_t InstructionCode;

// Helpers for encoding / decoding InstructionCode into the fields needed
// for code generation. We encode the instruction, addressing mode, and flags
// continuation into a single InstructionCode which is stored as part of
// the instruction.
typedef BitField<ArchOpcode, 0, 8> ArchOpcodeField;
typedef BitField<AddressingMode, 8, 5> AddressingModeField;
typedef BitField<FlagsMode, 13, 2> FlagsModeField;
typedef BitField<FlagsCondition, 15, 4> FlagsConditionField;
typedef BitField<int, 19, 13> MiscField;

}  // namespace compiler
}  // namespace internal
}  // namespace v8

#endif  // V8_COMPILER_INSTRUCTION_CODES_H_