File: globals.h

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (1057 lines) | stat: -rw-r--r-- 32,059 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#ifndef V8_GLOBALS_H_
#define V8_GLOBALS_H_

#include <stddef.h>
#include <stdint.h>

#include <ostream>

#include "src/base/build_config.h"
#include "src/base/logging.h"
#include "src/base/macros.h"

// Unfortunately, the INFINITY macro cannot be used with the '-pedantic'
// warning flag and certain versions of GCC due to a bug:
// http://gcc.gnu.org/bugzilla/show_bug.cgi?id=11931
// For now, we use the more involved template-based version from <limits>, but
// only when compiling with GCC versions affected by the bug (2.96.x - 4.0.x)
#if V8_CC_GNU && V8_GNUC_PREREQ(2, 96, 0) && !V8_GNUC_PREREQ(4, 1, 0)
# include <limits>  // NOLINT
# define V8_INFINITY std::numeric_limits<double>::infinity()
#elif V8_LIBC_MSVCRT
# define V8_INFINITY HUGE_VAL
#elif V8_OS_AIX
#define V8_INFINITY (__builtin_inff())
#else
# define V8_INFINITY INFINITY
#endif

#if V8_TARGET_ARCH_IA32 || (V8_TARGET_ARCH_X64 && !V8_TARGET_ARCH_32_BIT) || \
    V8_TARGET_ARCH_ARM || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS ||     \
    V8_TARGET_ARCH_MIPS64 || V8_TARGET_ARCH_PPC || V8_TARGET_ARCH_X87 ||     \
    V8_TARGET_ARCH_S390

#define V8_TURBOFAN_BACKEND 1
#if V8_TARGET_ARCH_X64 || V8_TARGET_ARCH_ARM64 || V8_TARGET_ARCH_MIPS64 || \
    V8_TARGET_ARCH_PPC64 || V8_TARGET_ARCH_S390X
// 64-bit TurboFan backends support 64-bit integer arithmetic.
#define V8_TURBOFAN_BACKEND_64 1
#else
#define V8_TURBOFAN_BACKEND_64 0
#endif

#else
#define V8_TURBOFAN_BACKEND 0
#endif

#if V8_TURBOFAN_BACKEND
#define V8_TURBOFAN_TARGET 1
#else
#define V8_TURBOFAN_TARGET 0
#endif

namespace v8 {

namespace base {
class Mutex;
class RecursiveMutex;
class VirtualMemory;
}

namespace internal {

// Determine whether we are running in a simulated environment.
// Setting USE_SIMULATOR explicitly from the build script will force
// the use of a simulated environment.
#if !defined(USE_SIMULATOR)
#if (V8_TARGET_ARCH_ARM64 && !V8_HOST_ARCH_ARM64)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_ARM && !V8_HOST_ARCH_ARM)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_S390 && !V8_HOST_ARCH_S390)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_PPC && !V8_HOST_ARCH_PPC)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS && !V8_HOST_ARCH_MIPS)
#define USE_SIMULATOR 1
#endif
#if (V8_TARGET_ARCH_MIPS64 && !V8_HOST_ARCH_MIPS64)
#define USE_SIMULATOR 1
#endif
#endif

// Determine whether the architecture uses an embedded constant pool
// (contiguous constant pool embedded in code object).
#if V8_TARGET_ARCH_PPC
#define V8_EMBEDDED_CONSTANT_POOL 1
#else
#define V8_EMBEDDED_CONSTANT_POOL 0
#endif

#ifdef V8_TARGET_ARCH_ARM
// Set stack limit lower for ARM than for other architectures because
// stack allocating MacroAssembler takes 120K bytes.
// See issue crbug.com/405338
#define V8_DEFAULT_STACK_SIZE_KB 864
#else
// Slightly less than 1MB, since Windows' default stack size for
// the main execution thread is 1MB for both 32 and 64-bit.
#define V8_DEFAULT_STACK_SIZE_KB 984
#endif


// Determine whether double field unboxing feature is enabled.
#if V8_TARGET_ARCH_64_BIT
#define V8_DOUBLE_FIELDS_UNBOXING 1
#else
#define V8_DOUBLE_FIELDS_UNBOXING 0
#endif


typedef uint8_t byte;
typedef byte* Address;

// -----------------------------------------------------------------------------
// Constants

const int KB = 1024;
const int MB = KB * KB;
const int GB = KB * KB * KB;
const int kMaxInt = 0x7FFFFFFF;
const int kMinInt = -kMaxInt - 1;
const int kMaxInt8 = (1 << 7) - 1;
const int kMinInt8 = -(1 << 7);
const int kMaxUInt8 = (1 << 8) - 1;
const int kMinUInt8 = 0;
const int kMaxInt16 = (1 << 15) - 1;
const int kMinInt16 = -(1 << 15);
const int kMaxUInt16 = (1 << 16) - 1;
const int kMinUInt16 = 0;

const uint32_t kMaxUInt32 = 0xFFFFFFFFu;

const int kCharSize      = sizeof(char);      // NOLINT
const int kShortSize     = sizeof(short);     // NOLINT
const int kIntSize       = sizeof(int);       // NOLINT
const int kInt32Size     = sizeof(int32_t);   // NOLINT
const int kInt64Size     = sizeof(int64_t);   // NOLINT
const int kFloatSize     = sizeof(float);     // NOLINT
const int kDoubleSize    = sizeof(double);    // NOLINT
const int kIntptrSize    = sizeof(intptr_t);  // NOLINT
const int kPointerSize   = sizeof(void*);     // NOLINT
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
const int kRegisterSize  = kPointerSize + kPointerSize;
#else
const int kRegisterSize  = kPointerSize;
#endif
const int kPCOnStackSize = kRegisterSize;
const int kFPOnStackSize = kRegisterSize;

const int kDoubleSizeLog2 = 3;

#if V8_HOST_ARCH_64_BIT
const int kPointerSizeLog2 = 3;
const intptr_t kIntptrSignBit = V8_INT64_C(0x8000000000000000);
const uintptr_t kUintptrAllBitsSet = V8_UINT64_C(0xFFFFFFFFFFFFFFFF);
const bool kRequiresCodeRange = true;
#if V8_TARGET_ARCH_MIPS64
// To use pseudo-relative jumps such as j/jal instructions which have 28-bit
// encoded immediate, the addresses have to be in range of 256MB aligned
// region. Used only for large object space.
const size_t kMaximalCodeRangeSize = 256 * MB;
#else
const size_t kMaximalCodeRangeSize = 512 * MB;
#endif
#if V8_OS_WIN
const size_t kMinimumCodeRangeSize = 4 * MB;
const size_t kReservedCodeRangePages = 1;
#else
const size_t kMinimumCodeRangeSize = 3 * MB;
const size_t kReservedCodeRangePages = 0;
#endif
#else
const int kPointerSizeLog2 = 2;
const intptr_t kIntptrSignBit = 0x80000000;
const uintptr_t kUintptrAllBitsSet = 0xFFFFFFFFu;
#if V8_TARGET_ARCH_X64 && V8_TARGET_ARCH_32_BIT
// x32 port also requires code range.
const bool kRequiresCodeRange = true;
const size_t kMaximalCodeRangeSize = 256 * MB;
const size_t kMinimumCodeRangeSize = 3 * MB;
const size_t kReservedCodeRangePages = 0;
#else
const bool kRequiresCodeRange = false;
const size_t kMaximalCodeRangeSize = 0 * MB;
const size_t kMinimumCodeRangeSize = 0 * MB;
const size_t kReservedCodeRangePages = 0;
#endif
#endif

STATIC_ASSERT(kPointerSize == (1 << kPointerSizeLog2));

const int kBitsPerByte = 8;
const int kBitsPerByteLog2 = 3;
const int kBitsPerPointer = kPointerSize * kBitsPerByte;
const int kBitsPerInt = kIntSize * kBitsPerByte;

// IEEE 754 single precision floating point number bit layout.
const uint32_t kBinary32SignMask = 0x80000000u;
const uint32_t kBinary32ExponentMask = 0x7f800000u;
const uint32_t kBinary32MantissaMask = 0x007fffffu;
const int kBinary32ExponentBias = 127;
const int kBinary32MaxExponent  = 0xFE;
const int kBinary32MinExponent  = 0x01;
const int kBinary32MantissaBits = 23;
const int kBinary32ExponentShift = 23;

// Quiet NaNs have bits 51 to 62 set, possibly the sign bit, and no
// other bits set.
const uint64_t kQuietNaNMask = static_cast<uint64_t>(0xfff) << 51;

// Latin1/UTF-16 constants
// Code-point values in Unicode 4.0 are 21 bits wide.
// Code units in UTF-16 are 16 bits wide.
typedef uint16_t uc16;
typedef int32_t uc32;
const int kOneByteSize    = kCharSize;
const int kUC16Size     = sizeof(uc16);      // NOLINT

// 128 bit SIMD value size.
const int kSimd128Size = 16;

// Round up n to be a multiple of sz, where sz is a power of 2.
#define ROUND_UP(n, sz) (((n) + ((sz) - 1)) & ~((sz) - 1))


// FUNCTION_ADDR(f) gets the address of a C function f.
#define FUNCTION_ADDR(f)                                        \
  (reinterpret_cast<v8::internal::Address>(reinterpret_cast<intptr_t>(f)))


// FUNCTION_CAST<F>(addr) casts an address into a function
// of type F. Used to invoke generated code from within C.
template <typename F>
F FUNCTION_CAST(Address addr) {
  return reinterpret_cast<F>(reinterpret_cast<intptr_t>(addr));
}


// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes
// (sorted alphabetically)

class FreeStoreAllocationPolicy;
template <typename T, class P = FreeStoreAllocationPolicy> class List;

// -----------------------------------------------------------------------------
// Declarations for use in both the preparser and the rest of V8.

// The Strict Mode (ECMA-262 5th edition, 4.2.2).

enum LanguageMode {
  // LanguageMode is expressed as a bitmask. Descriptions of the bits:
  STRICT_BIT = 1 << 0,
  STRONG_BIT = 1 << 1,
  LANGUAGE_END,

  // Shorthands for some common language modes.
  SLOPPY = 0,
  STRICT = STRICT_BIT,
  STRONG = STRICT_BIT | STRONG_BIT
};


inline std::ostream& operator<<(std::ostream& os, const LanguageMode& mode) {
  switch (mode) {
    case SLOPPY:
      return os << "sloppy";
    case STRICT:
      return os << "strict";
    case STRONG:
      return os << "strong";
    default:
      return os << "unknown";
  }
}


inline bool is_sloppy(LanguageMode language_mode) {
  return (language_mode & STRICT_BIT) == 0;
}


inline bool is_strict(LanguageMode language_mode) {
  return language_mode & STRICT_BIT;
}


inline bool is_strong(LanguageMode language_mode) {
  return language_mode & STRONG_BIT;
}


inline bool is_valid_language_mode(int language_mode) {
  return language_mode == SLOPPY || language_mode == STRICT ||
         language_mode == STRONG;
}


inline LanguageMode construct_language_mode(bool strict_bit, bool strong_bit) {
  int language_mode = 0;
  if (strict_bit) language_mode |= STRICT_BIT;
  if (strong_bit) language_mode |= STRONG_BIT;
  DCHECK(is_valid_language_mode(language_mode));
  return static_cast<LanguageMode>(language_mode);
}


// Strong mode behaviour must sometimes be signalled by a two valued enum where
// caching is involved, to prevent sloppy and strict mode from being incorrectly
// differentiated.
enum class Strength : bool {
  WEAK,   // sloppy, strict behaviour
  STRONG  // strong behaviour
};


inline bool is_strong(Strength strength) {
  return strength == Strength::STRONG;
}


inline std::ostream& operator<<(std::ostream& os, const Strength& strength) {
  return os << (is_strong(strength) ? "strong" : "weak");
}


inline Strength strength(LanguageMode language_mode) {
  return is_strong(language_mode) ? Strength::STRONG : Strength::WEAK;
}


inline size_t hash_value(Strength strength) {
  return static_cast<size_t>(strength);
}


// Mask for the sign bit in a smi.
const intptr_t kSmiSignMask = kIntptrSignBit;

const int kObjectAlignmentBits = kPointerSizeLog2;
const intptr_t kObjectAlignment = 1 << kObjectAlignmentBits;
const intptr_t kObjectAlignmentMask = kObjectAlignment - 1;

// Desired alignment for pointers.
const intptr_t kPointerAlignment = (1 << kPointerSizeLog2);
const intptr_t kPointerAlignmentMask = kPointerAlignment - 1;

// Desired alignment for double values.
const intptr_t kDoubleAlignment = 8;
const intptr_t kDoubleAlignmentMask = kDoubleAlignment - 1;

// Desired alignment for 128 bit SIMD values.
const intptr_t kSimd128Alignment = 16;
const intptr_t kSimd128AlignmentMask = kSimd128Alignment - 1;

// Desired alignment for generated code is 32 bytes (to improve cache line
// utilization).
const int kCodeAlignmentBits = 5;
const intptr_t kCodeAlignment = 1 << kCodeAlignmentBits;
const intptr_t kCodeAlignmentMask = kCodeAlignment - 1;

// The owner field of a page is tagged with the page header tag. We need that
// to find out if a slot is part of a large object. If we mask out the lower
// 0xfffff bits (1M pages), go to the owner offset, and see that this field
// is tagged with the page header tag, we can just look up the owner.
// Otherwise, we know that we are somewhere (not within the first 1M) in a
// large object.
const int kPageHeaderTag = 3;
const int kPageHeaderTagSize = 2;
const intptr_t kPageHeaderTagMask = (1 << kPageHeaderTagSize) - 1;


// Zap-value: The value used for zapping dead objects.
// Should be a recognizable hex value tagged as a failure.
#ifdef V8_HOST_ARCH_64_BIT
const Address kZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0xdeadbeedbeadbeef));
const Address kHandleZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1baddead0baddeaf));
const Address kGlobalHandleZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1baffed00baffedf));
const Address kFromSpaceZapValue =
    reinterpret_cast<Address>(V8_UINT64_C(0x1beefdad0beefdaf));
const uint64_t kDebugZapValue = V8_UINT64_C(0xbadbaddbbadbaddb);
const uint64_t kSlotsZapValue = V8_UINT64_C(0xbeefdeadbeefdeef);
const uint64_t kFreeListZapValue = 0xfeed1eaffeed1eaf;
#else
const Address kZapValue = reinterpret_cast<Address>(0xdeadbeef);
const Address kHandleZapValue = reinterpret_cast<Address>(0xbaddeaf);
const Address kGlobalHandleZapValue = reinterpret_cast<Address>(0xbaffedf);
const Address kFromSpaceZapValue = reinterpret_cast<Address>(0xbeefdaf);
const uint32_t kSlotsZapValue = 0xbeefdeef;
const uint32_t kDebugZapValue = 0xbadbaddb;
const uint32_t kFreeListZapValue = 0xfeed1eaf;
#endif

const int kCodeZapValue = 0xbadc0de;
const uint32_t kPhantomReferenceZap = 0xca11bac;

// On Intel architecture, cache line size is 64 bytes.
// On ARM it may be less (32 bytes), but as far this constant is
// used for aligning data, it doesn't hurt to align on a greater value.
#define PROCESSOR_CACHE_LINE_SIZE 64

// Constants relevant to double precision floating point numbers.
// If looking only at the top 32 bits, the QNaN mask is bits 19 to 30.
const uint32_t kQuietNaNHighBitsMask = 0xfff << (51 - 32);


// -----------------------------------------------------------------------------
// Forward declarations for frequently used classes

class AccessorInfo;
class Allocation;
class Arguments;
class Assembler;
class Code;
class CodeGenerator;
class CodeStub;
class Context;
class Debug;
class Debugger;
class DebugInfo;
class Descriptor;
class DescriptorArray;
class TransitionArray;
class ExternalReference;
class FixedArray;
class FunctionTemplateInfo;
class MemoryChunk;
class SeededNumberDictionary;
class UnseededNumberDictionary;
class NameDictionary;
class GlobalDictionary;
template <typename T> class MaybeHandle;
template <typename T> class Handle;
class Heap;
class HeapObject;
class IC;
class InterceptorInfo;
class Isolate;
class JSReceiver;
class JSArray;
class JSFunction;
class JSObject;
class LargeObjectSpace;
class MacroAssembler;
class Map;
class MapSpace;
class MarkCompactCollector;
class NewSpace;
class Object;
class OldSpace;
class Foreign;
class Scope;
class ScopeInfo;
class Script;
class Smi;
template <typename Config, class Allocator = FreeStoreAllocationPolicy>
    class SplayTree;
class String;
class Symbol;
class Name;
class Struct;
class Symbol;
class Variable;
class RelocInfo;
class Deserializer;
class MessageLocation;

typedef bool (*WeakSlotCallback)(Object** pointer);

typedef bool (*WeakSlotCallbackWithHeap)(Heap* heap, Object** pointer);

// -----------------------------------------------------------------------------
// Miscellaneous

// NOTE: SpaceIterator depends on AllocationSpace enumeration values being
// consecutive.
// Keep this enum in sync with the ObjectSpace enum in v8.h
enum AllocationSpace {
  NEW_SPACE,   // Semispaces collected with copying collector.
  OLD_SPACE,   // May contain pointers to new space.
  CODE_SPACE,  // No pointers to new space, marked executable.
  MAP_SPACE,   // Only and all map objects.
  LO_SPACE,    // Promoted large objects.

  FIRST_SPACE = NEW_SPACE,
  LAST_SPACE = LO_SPACE,
  FIRST_PAGED_SPACE = OLD_SPACE,
  LAST_PAGED_SPACE = MAP_SPACE
};
const int kSpaceTagSize = 3;
const int kSpaceTagMask = (1 << kSpaceTagSize) - 1;

enum AllocationAlignment {
  kWordAligned,
  kDoubleAligned,
  kDoubleUnaligned,
  kSimd128Unaligned
};

// A flag that indicates whether objects should be pretenured when
// allocated (allocated directly into the old generation) or not
// (allocated in the young generation if the object size and type
// allows).
enum PretenureFlag { NOT_TENURED, TENURED };

inline std::ostream& operator<<(std::ostream& os, const PretenureFlag& flag) {
  switch (flag) {
    case NOT_TENURED:
      return os << "NotTenured";
    case TENURED:
      return os << "Tenured";
  }
  UNREACHABLE();
  return os;
}

enum MinimumCapacity {
  USE_DEFAULT_MINIMUM_CAPACITY,
  USE_CUSTOM_MINIMUM_CAPACITY
};

enum GarbageCollector { SCAVENGER, MARK_COMPACTOR };

enum Executability { NOT_EXECUTABLE, EXECUTABLE };

enum VisitMode {
  VISIT_ALL,
  VISIT_ALL_IN_SCAVENGE,
  VISIT_ALL_IN_SWEEP_NEWSPACE,
  VISIT_ONLY_STRONG
};

// Flag indicating whether code is built into the VM (one of the natives files).
enum NativesFlag { NOT_NATIVES_CODE, NATIVES_CODE };


// ParseRestriction is used to restrict the set of valid statements in a
// unit of compilation.  Restriction violations cause a syntax error.
enum ParseRestriction {
  NO_PARSE_RESTRICTION,         // All expressions are allowed.
  ONLY_SINGLE_FUNCTION_LITERAL  // Only a single FunctionLiteral expression.
};

// A CodeDesc describes a buffer holding instructions and relocation
// information. The instructions start at the beginning of the buffer
// and grow forward, the relocation information starts at the end of
// the buffer and grows backward.  A constant pool may exist at the
// end of the instructions.
//
//  |<--------------- buffer_size ----------------------------------->|
//  |<------------- instr_size ---------->|        |<-- reloc_size -->|
//  |               |<- const_pool_size ->|                           |
//  +=====================================+========+==================+
//  |  instructions |        data         |  free  |    reloc info    |
//  +=====================================+========+==================+
//  ^
//  |
//  buffer

struct CodeDesc {
  byte* buffer;
  int buffer_size;
  int instr_size;
  int reloc_size;
  int constant_pool_size;
  Assembler* origin;
};


// Callback function used for iterating objects in heap spaces,
// for example, scanning heap objects.
typedef int (*HeapObjectCallback)(HeapObject* obj);


// Callback function used for checking constraints when copying/relocating
// objects. Returns true if an object can be copied/relocated from its
// old_addr to a new_addr.
typedef bool (*ConstraintCallback)(Address new_addr, Address old_addr);


// Callback function on inline caches, used for iterating over inline caches
// in compiled code.
typedef void (*InlineCacheCallback)(Code* code, Address ic);


// State for inline cache call sites. Aliased as IC::State.
enum InlineCacheState {
  // Has never been executed.
  UNINITIALIZED,
  // Has been executed but monomorhic state has been delayed.
  PREMONOMORPHIC,
  // Has been executed and only one receiver type has been seen.
  MONOMORPHIC,
  // Check failed due to prototype (or map deprecation).
  PROTOTYPE_FAILURE,
  // Multiple receiver types have been seen.
  POLYMORPHIC,
  // Many receiver types have been seen.
  MEGAMORPHIC,
  // A generic handler is installed and no extra typefeedback is recorded.
  GENERIC,
  // Special state for debug break or step in prepare stubs.
  DEBUG_STUB,
  // Type-vector-based ICs have a default state, with the full calculation
  // of IC state only determined by a look at the IC and the typevector
  // together.
  DEFAULT
};


enum CallFunctionFlags {
  NO_CALL_FUNCTION_FLAGS,
  CALL_AS_METHOD,
  // Always wrap the receiver and call to the JSFunction. Only use this flag
  // both the receiver type and the target method are statically known.
  WRAP_AND_CALL
};


enum CallConstructorFlags {
  NO_CALL_CONSTRUCTOR_FLAGS = 0,
  // The call target is cached in the instruction stream.
  RECORD_CONSTRUCTOR_TARGET = 1,
  SUPER_CONSTRUCTOR_CALL = 1 << 1,
  SUPER_CALL_RECORD_TARGET = SUPER_CONSTRUCTOR_CALL | RECORD_CONSTRUCTOR_TARGET
};


enum CacheHolderFlag {
  kCacheOnPrototype,
  kCacheOnPrototypeReceiverIsDictionary,
  kCacheOnPrototypeReceiverIsPrimitive,
  kCacheOnReceiver
};


// The Store Buffer (GC).
typedef enum {
  kStoreBufferFullEvent,
  kStoreBufferStartScanningPagesEvent,
  kStoreBufferScanningPageEvent
} StoreBufferEvent;


typedef void (*StoreBufferCallback)(Heap* heap,
                                    MemoryChunk* page,
                                    StoreBufferEvent event);


// Union used for fast testing of specific double values.
union DoubleRepresentation {
  double  value;
  int64_t bits;
  DoubleRepresentation(double x) { value = x; }
  bool operator==(const DoubleRepresentation& other) const {
    return bits == other.bits;
  }
};


// Union used for customized checking of the IEEE double types
// inlined within v8 runtime, rather than going to the underlying
// platform headers and libraries
union IeeeDoubleLittleEndianArchType {
  double d;
  struct {
    unsigned int man_low  :32;
    unsigned int man_high :20;
    unsigned int exp      :11;
    unsigned int sign     :1;
  } bits;
};


union IeeeDoubleBigEndianArchType {
  double d;
  struct {
    unsigned int sign     :1;
    unsigned int exp      :11;
    unsigned int man_high :20;
    unsigned int man_low  :32;
  } bits;
};


// AccessorCallback
struct AccessorDescriptor {
  Object* (*getter)(Isolate* isolate, Object* object, void* data);
  Object* (*setter)(
      Isolate* isolate, JSObject* object, Object* value, void* data);
  void* data;
};


// -----------------------------------------------------------------------------
// Macros

// Testers for test.

#define HAS_SMI_TAG(value) \
  ((reinterpret_cast<intptr_t>(value) & kSmiTagMask) == kSmiTag)

// OBJECT_POINTER_ALIGN returns the value aligned as a HeapObject pointer
#define OBJECT_POINTER_ALIGN(value)                             \
  (((value) + kObjectAlignmentMask) & ~kObjectAlignmentMask)

// POINTER_SIZE_ALIGN returns the value aligned as a pointer.
#define POINTER_SIZE_ALIGN(value)                               \
  (((value) + kPointerAlignmentMask) & ~kPointerAlignmentMask)

// CODE_POINTER_ALIGN returns the value aligned as a generated code segment.
#define CODE_POINTER_ALIGN(value)                               \
  (((value) + kCodeAlignmentMask) & ~kCodeAlignmentMask)

// DOUBLE_POINTER_ALIGN returns the value algined for double pointers.
#define DOUBLE_POINTER_ALIGN(value) \
  (((value) + kDoubleAlignmentMask) & ~kDoubleAlignmentMask)


// CPU feature flags.
enum CpuFeature {
  // x86
  SSE4_1,
  SSE3,
  SAHF,
  AVX,
  FMA3,
  BMI1,
  BMI2,
  LZCNT,
  POPCNT,
  ATOM,
  // ARM
  VFP3,
  ARMv7,
  ARMv8,
  SUDIV,
  MLS,
  UNALIGNED_ACCESSES,
  MOVW_MOVT_IMMEDIATE_LOADS,
  VFP32DREGS,
  NEON,
  // MIPS, MIPS64
  FPU,
  FP64FPU,
  MIPSr1,
  MIPSr2,
  MIPSr6,
  // ARM64
  ALWAYS_ALIGN_CSP,
  COHERENT_CACHE,
  // PPC
  FPR_GPR_MOV,
  LWSYNC,
  ISELECT,
  // S390
  DISTINCT_OPS,
  GENERAL_INSTR_EXT,
  FLOATING_POINT_EXT,
  NUMBER_OF_CPU_FEATURES
};


// Used to specify if a macro instruction must perform a smi check on tagged
// values.
enum SmiCheckType {
  DONT_DO_SMI_CHECK,
  DO_SMI_CHECK
};


enum ScopeType {
  EVAL_SCOPE,      // The top-level scope for an eval source.
  FUNCTION_SCOPE,  // The top-level scope for a function.
  MODULE_SCOPE,    // The scope introduced by a module literal
  SCRIPT_SCOPE,    // The top-level scope for a script or a top-level eval.
  CATCH_SCOPE,     // The scope introduced by catch.
  BLOCK_SCOPE,     // The scope introduced by a new block.
  WITH_SCOPE,      // The scope introduced by with.
  ARROW_SCOPE      // The top-level scope for an arrow function literal.
};

// The mips architecture prior to revision 5 has inverted encoding for sNaN.
#if (V8_TARGET_ARCH_MIPS && !defined(_MIPS_ARCH_MIPS32R6)) || \
    (V8_TARGET_ARCH_MIPS64 && !defined(_MIPS_ARCH_MIPS64R6))
const uint32_t kHoleNanUpper32 = 0xFFFF7FFF;
const uint32_t kHoleNanLower32 = 0xFFFF7FFF;
#else
const uint32_t kHoleNanUpper32 = 0xFFF7FFFF;
const uint32_t kHoleNanLower32 = 0xFFF7FFFF;
#endif

const uint64_t kHoleNanInt64 =
    (static_cast<uint64_t>(kHoleNanUpper32) << 32) | kHoleNanLower32;


// The order of this enum has to be kept in sync with the predicates below.
enum VariableMode {
  // User declared variables:
  VAR,             // declared via 'var', and 'function' declarations

  CONST_LEGACY,    // declared via legacy 'const' declarations

  LET,             // declared via 'let' declarations (first lexical)

  CONST,           // declared via 'const' declarations

  IMPORT,          // declared via 'import' declarations (last lexical)

  // Variables introduced by the compiler:
  INTERNAL,        // like VAR, but not user-visible (may or may not
                   // be in a context)

  TEMPORARY,       // temporary variables (not user-visible), stack-allocated
                   // unless the scope as a whole has forced context allocation

  DYNAMIC,         // always require dynamic lookup (we don't know
                   // the declaration)

  DYNAMIC_GLOBAL,  // requires dynamic lookup, but we know that the
                   // variable is global unless it has been shadowed
                   // by an eval-introduced variable

  DYNAMIC_LOCAL    // requires dynamic lookup, but we know that the
                   // variable is local and where it is unless it
                   // has been shadowed by an eval-introduced
                   // variable
};


inline bool IsDynamicVariableMode(VariableMode mode) {
  return mode >= DYNAMIC && mode <= DYNAMIC_LOCAL;
}


inline bool IsDeclaredVariableMode(VariableMode mode) {
  return mode >= VAR && mode <= IMPORT;
}


inline bool IsLexicalVariableMode(VariableMode mode) {
  return mode >= LET && mode <= IMPORT;
}


inline bool IsImmutableVariableMode(VariableMode mode) {
  return mode == CONST || mode == CONST_LEGACY || mode == IMPORT;
}


enum class VariableLocation {
  // Before and during variable allocation, a variable whose location is
  // not yet determined.  After allocation, a variable looked up as a
  // property on the global object (and possibly absent).  name() is the
  // variable name, index() is invalid.
  UNALLOCATED,

  // A slot in the parameter section on the stack.  index() is the
  // parameter index, counting left-to-right.  The receiver is index -1;
  // the first parameter is index 0.
  PARAMETER,

  // A slot in the local section on the stack.  index() is the variable
  // index in the stack frame, starting at 0.
  LOCAL,

  // An indexed slot in a heap context.  index() is the variable index in
  // the context object on the heap, starting at 0.  scope() is the
  // corresponding scope.
  CONTEXT,

  // An indexed slot in a script context that contains a respective global
  // property cell.  name() is the variable name, index() is the variable
  // index in the context object on the heap, starting at 0.  scope() is the
  // corresponding script scope.
  GLOBAL,

  // A named slot in a heap context.  name() is the variable name in the
  // context object on the heap, with lookup starting at the current
  // context.  index() is invalid.
  LOOKUP
};


// ES6 Draft Rev3 10.2 specifies declarative environment records with mutable
// and immutable bindings that can be in two states: initialized and
// uninitialized. In ES5 only immutable bindings have these two states. When
// accessing a binding, it needs to be checked for initialization. However in
// the following cases the binding is initialized immediately after creation
// so the initialization check can always be skipped:
// 1. Var declared local variables.
//      var foo;
// 2. A local variable introduced by a function declaration.
//      function foo() {}
// 3. Parameters
//      function x(foo) {}
// 4. Catch bound variables.
//      try {} catch (foo) {}
// 6. Function variables of named function expressions.
//      var x = function foo() {}
// 7. Implicit binding of 'this'.
// 8. Implicit binding of 'arguments' in functions.
//
// ES5 specified object environment records which are introduced by ES elements
// such as Program and WithStatement that associate identifier bindings with the
// properties of some object. In the specification only mutable bindings exist
// (which may be non-writable) and have no distinct initialization step. However
// V8 allows const declarations in global code with distinct creation and
// initialization steps which are represented by non-writable properties in the
// global object. As a result also these bindings need to be checked for
// initialization.
//
// The following enum specifies a flag that indicates if the binding needs a
// distinct initialization step (kNeedsInitialization) or if the binding is
// immediately initialized upon creation (kCreatedInitialized).
enum InitializationFlag {
  kNeedsInitialization,
  kCreatedInitialized
};


enum MaybeAssignedFlag { kNotAssigned, kMaybeAssigned };


// Serialized in PreparseData, so numeric values should not be changed.
enum ParseErrorType { kSyntaxError = 0, kReferenceError = 1 };


enum ClearExceptionFlag {
  KEEP_EXCEPTION,
  CLEAR_EXCEPTION
};


enum MinusZeroMode {
  TREAT_MINUS_ZERO_AS_ZERO,
  FAIL_ON_MINUS_ZERO
};


enum Signedness { kSigned, kUnsigned };


enum FunctionKind {
  kNormalFunction = 0,
  kArrowFunction = 1 << 0,
  kGeneratorFunction = 1 << 1,
  kConciseMethod = 1 << 2,
  kConciseGeneratorMethod = kGeneratorFunction | kConciseMethod,
  kAccessorFunction = 1 << 3,
  kDefaultConstructor = 1 << 4,
  kSubclassConstructor = 1 << 5,
  kBaseConstructor = 1 << 6,
  kInObjectLiteral = 1 << 7,
  kDefaultBaseConstructor = kDefaultConstructor | kBaseConstructor,
  kDefaultSubclassConstructor = kDefaultConstructor | kSubclassConstructor,
  kConciseMethodInObjectLiteral = kConciseMethod | kInObjectLiteral,
  kConciseGeneratorMethodInObjectLiteral =
      kConciseGeneratorMethod | kInObjectLiteral,
  kAccessorFunctionInObjectLiteral = kAccessorFunction | kInObjectLiteral,
};


inline bool IsValidFunctionKind(FunctionKind kind) {
  return kind == FunctionKind::kNormalFunction ||
         kind == FunctionKind::kArrowFunction ||
         kind == FunctionKind::kGeneratorFunction ||
         kind == FunctionKind::kConciseMethod ||
         kind == FunctionKind::kConciseGeneratorMethod ||
         kind == FunctionKind::kAccessorFunction ||
         kind == FunctionKind::kDefaultBaseConstructor ||
         kind == FunctionKind::kDefaultSubclassConstructor ||
         kind == FunctionKind::kBaseConstructor ||
         kind == FunctionKind::kSubclassConstructor ||
         kind == FunctionKind::kConciseMethodInObjectLiteral ||
         kind == FunctionKind::kConciseGeneratorMethodInObjectLiteral ||
         kind == FunctionKind::kAccessorFunctionInObjectLiteral;
}


inline bool IsArrowFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kArrowFunction;
}


inline bool IsGeneratorFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kGeneratorFunction;
}


inline bool IsConciseMethod(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kConciseMethod;
}


inline bool IsAccessorFunction(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kAccessorFunction;
}


inline bool IsDefaultConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kDefaultConstructor;
}


inline bool IsBaseConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kBaseConstructor;
}


inline bool IsSubclassConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kSubclassConstructor;
}


inline bool IsConstructor(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind &
         (FunctionKind::kBaseConstructor | FunctionKind::kSubclassConstructor |
          FunctionKind::kDefaultConstructor);
}


inline bool IsInObjectLiteral(FunctionKind kind) {
  DCHECK(IsValidFunctionKind(kind));
  return kind & FunctionKind::kInObjectLiteral;
}


inline FunctionKind WithObjectLiteralBit(FunctionKind kind) {
  kind = static_cast<FunctionKind>(kind | FunctionKind::kInObjectLiteral);
  DCHECK(IsValidFunctionKind(kind));
  return kind;
}
} }  // namespace v8::internal

namespace i = v8::internal;

#endif  // V8_GLOBALS_H_