File: handler-compiler-s390.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (785 lines) | stat: -rw-r--r-- 28,823 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#if V8_TARGET_ARCH_S390

#include "src/ic/call-optimization.h"
#include "src/ic/handler-compiler.h"
#include "src/ic/ic.h"

namespace v8 {
namespace internal {

#define __ ACCESS_MASM(masm)


void NamedLoadHandlerCompiler::GenerateLoadViaGetter(
    MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
    int accessor_index, int expected_arguments, Register scratch) {
  // ----------- S t a t e -------------
  //  -- r2    : receiver
  //  -- r4    : name
  //  -- lr    : return address
  // -----------------------------------
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    if (accessor_index >= 0) {
      DCHECK(!holder.is(scratch));
      DCHECK(!receiver.is(scratch));
      // Call the JavaScript getter with the receiver on the stack.
      if (map->IsJSGlobalObjectMap()) {
        // Swap in the global receiver.
        __ LoadP(scratch,
                 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
        receiver = scratch;
      }
      __ Push(receiver);
      ParameterCount actual(0);
      ParameterCount expected(expected_arguments);
      __ LoadAccessor(r3, holder, accessor_index, ACCESSOR_GETTER);
      __ InvokeFunction(r3, expected, actual, CALL_FUNCTION, NullCallWrapper());
    } else {
      // If we generate a global code snippet for deoptimization only, remember
      // the place to continue after deoptimization.
      masm->isolate()->heap()->SetGetterStubDeoptPCOffset(masm->pc_offset());
    }

    // Restore context register.
    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  }
  __ Ret();
}


void NamedStoreHandlerCompiler::GenerateStoreViaSetter(
    MacroAssembler* masm, Handle<Map> map, Register receiver, Register holder,
    int accessor_index, int expected_arguments, Register scratch) {
  // ----------- S t a t e -------------
  //  -- lr    : return address
  // -----------------------------------
  {
    FrameScope scope(masm, StackFrame::INTERNAL);

    // Save value register, so we can restore it later.
    __ Push(value());

    if (accessor_index >= 0) {
      DCHECK(!holder.is(scratch));
      DCHECK(!receiver.is(scratch));
      DCHECK(!value().is(scratch));
      // Call the JavaScript setter with receiver and value on the stack.
      if (map->IsJSGlobalObjectMap()) {
        // Swap in the global receiver.
        __ LoadP(scratch,
                 FieldMemOperand(receiver, JSGlobalObject::kGlobalProxyOffset));
        receiver = scratch;
      }
      __ Push(receiver, value());
      ParameterCount actual(1);
      ParameterCount expected(expected_arguments);
      __ LoadAccessor(r3, holder, accessor_index, ACCESSOR_SETTER);
      __ InvokeFunction(r3, expected, actual, CALL_FUNCTION, NullCallWrapper());
    } else {
      // If we generate a global code snippet for deoptimization only, remember
      // the place to continue after deoptimization.
      masm->isolate()->heap()->SetSetterStubDeoptPCOffset(masm->pc_offset());
    }

    // We have to return the passed value, not the return value of the setter.
    __ Pop(r2);

    // Restore context register.
    __ LoadP(cp, MemOperand(fp, StandardFrameConstants::kContextOffset));
  }
  __ Ret();
}


void PropertyHandlerCompiler::PushVectorAndSlot(Register vector,
                                                Register slot) {
  MacroAssembler* masm = this->masm();
  __ Push(vector, slot);
}


void PropertyHandlerCompiler::PopVectorAndSlot(Register vector, Register slot) {
  MacroAssembler* masm = this->masm();
  __ Pop(vector, slot);
}


void PropertyHandlerCompiler::DiscardVectorAndSlot() {
  MacroAssembler* masm = this->masm();
  // Remove vector and slot.
  __ la(sp, MemOperand(sp, 2 * kPointerSize));
}


void PropertyHandlerCompiler::GenerateDictionaryNegativeLookup(
    MacroAssembler* masm, Label* miss_label, Register receiver,
    Handle<Name> name, Register scratch0, Register scratch1) {
  DCHECK(name->IsUniqueName());
  DCHECK(!receiver.is(scratch0));
  Counters* counters = masm->isolate()->counters();
  __ IncrementCounter(counters->negative_lookups(), 1, scratch0, scratch1);
  __ IncrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);

  Label done;

  const int kInterceptorOrAccessCheckNeededMask =
      (1 << Map::kHasNamedInterceptor) | (1 << Map::kIsAccessCheckNeeded);

  // Bail out if the receiver has a named interceptor or requires access checks.
  Register map = scratch1;
  __ LoadP(map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ LoadlB(scratch0, FieldMemOperand(map, Map::kBitFieldOffset));
  __ AndP(r0, scratch0, Operand(kInterceptorOrAccessCheckNeededMask));
  __ bne(miss_label);

  // Check that receiver is a JSObject.
  // TODO(joransiu): Merge into SI compare
  __ LoadlB(scratch0, FieldMemOperand(map, Map::kInstanceTypeOffset));
  __ CmpP(scratch0, Operand(FIRST_SPEC_OBJECT_TYPE));
  __ blt(miss_label);

  // Load properties array.
  Register properties = scratch0;
  __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));
  // Check that the properties array is a dictionary.
  __ LoadP(map, FieldMemOperand(properties, HeapObject::kMapOffset));
  __ CompareRoot(map, Heap::kHashTableMapRootIndex);
  __ bne(miss_label);

  // Restore the temporarily used register.
  __ LoadP(properties, FieldMemOperand(receiver, JSObject::kPropertiesOffset));


  NameDictionaryLookupStub::GenerateNegativeLookup(
      masm, miss_label, &done, receiver, properties, name, scratch1);
  __ bind(&done);
  __ DecrementCounter(counters->negative_lookups_miss(), 1, scratch0, scratch1);
}


void NamedLoadHandlerCompiler::GenerateDirectLoadGlobalFunctionPrototype(
    MacroAssembler* masm, int index, Register result, Label* miss) {
  const int offset = Context::SlotOffset(Context::GLOBAL_OBJECT_INDEX);
  __ LoadP(result, MemOperand(cp, offset));
  __ LoadP(result, FieldMemOperand(result, GlobalObject::kNativeContextOffset));
  __ LoadP(result, MemOperand(result, Context::SlotOffset(index)));
  // Load its initial map. The global functions all have initial maps.
  __ LoadP(result,
           FieldMemOperand(result, JSFunction::kPrototypeOrInitialMapOffset));
  // Load the prototype from the initial map.
  __ LoadP(result, FieldMemOperand(result, Map::kPrototypeOffset));
}


void NamedLoadHandlerCompiler::GenerateLoadFunctionPrototype(
    MacroAssembler* masm, Register receiver, Register scratch1,
    Register scratch2, Label* miss_label) {
  __ TryGetFunctionPrototype(receiver, scratch1, scratch2, miss_label);
  __ LoadRR(r2, scratch1);
  __ Ret();
}


// Generate code to check that a global property cell is empty. Create
// the property cell at compilation time if no cell exists for the
// property.
void PropertyHandlerCompiler::GenerateCheckPropertyCell(
    MacroAssembler* masm, Handle<JSGlobalObject> global, Handle<Name> name,
    Register scratch, Label* miss) {
  Handle<PropertyCell> cell = JSGlobalObject::EnsurePropertyCell(global, name);
  DCHECK(cell->value()->IsTheHole());
  Handle<WeakCell> weak_cell = masm->isolate()->factory()->NewWeakCell(cell);
  __ LoadWeakValue(scratch, weak_cell, miss);
  __ LoadP(scratch, FieldMemOperand(scratch, PropertyCell::kValueOffset));
  __ CompareRoot(scratch, Heap::kTheHoleValueRootIndex);
  __ bne(miss);
}


static void PushInterceptorArguments(MacroAssembler* masm, Register receiver,
                                     Register holder, Register name,
                                     Handle<JSObject> holder_obj) {
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsNameIndex == 0);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsThisIndex == 1);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsHolderIndex == 2);
  STATIC_ASSERT(NamedLoadHandlerCompiler::kInterceptorArgsLength == 3);
  __ Push(name);
  __ Push(receiver);
  __ Push(holder);
}


static void CompileCallLoadPropertyWithInterceptor(
    MacroAssembler* masm, Register receiver, Register holder, Register name,
    Handle<JSObject> holder_obj, IC::UtilityId id) {
  PushInterceptorArguments(masm, receiver, holder, name, holder_obj);
  __ CallExternalReference(ExternalReference(IC_Utility(id), masm->isolate()),
                           NamedLoadHandlerCompiler::kInterceptorArgsLength);
}


// Generate call to api function.
void PropertyHandlerCompiler::GenerateApiAccessorCall(
    MacroAssembler* masm, const CallOptimization& optimization,
    Handle<Map> receiver_map, Register receiver, Register scratch_in,
    bool is_store, Register store_parameter, Register accessor_holder,
    int accessor_index) {
  DCHECK(!accessor_holder.is(scratch_in));
  DCHECK(!receiver.is(scratch_in));
  __ Push(receiver);
  // Write the arguments to stack frame.
  if (is_store) {
    DCHECK(!receiver.is(store_parameter));
    DCHECK(!scratch_in.is(store_parameter));
    __ Push(store_parameter);
  }
  DCHECK(optimization.is_simple_api_call());

  // Abi for CallApiFunctionStub.
  Register callee = r2;
  Register data = r6;
  Register holder = r4;
  Register api_function_address = r3;

  // Put callee in place.
  __ LoadAccessor(callee, accessor_holder, accessor_index,
                  is_store ? ACCESSOR_SETTER : ACCESSOR_GETTER);

  // Put holder in place.
  CallOptimization::HolderLookup holder_lookup;
  int holder_depth = 0;
  optimization.LookupHolderOfExpectedType(receiver_map, &holder_lookup,
                                          &holder_depth);
  switch (holder_lookup) {
    case CallOptimization::kHolderIsReceiver:
      __ Move(holder, receiver);
      break;
    case CallOptimization::kHolderFound:
      __ LoadP(holder, FieldMemOperand(receiver, HeapObject::kMapOffset));
      __ LoadP(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
      for (int i = 1; i < holder_depth; i++) {
        __ LoadP(holder, FieldMemOperand(holder, HeapObject::kMapOffset));
        __ LoadP(holder, FieldMemOperand(holder, Map::kPrototypeOffset));
      }
      break;
    case CallOptimization::kHolderNotFound:
      UNREACHABLE();
      break;
  }

  Isolate* isolate = masm->isolate();
  Handle<CallHandlerInfo> api_call_info = optimization.api_call_info();
  bool call_data_undefined = false;
  // Put call data in place.
  if (api_call_info->data()->IsUndefined()) {
    call_data_undefined = true;
    __ LoadRoot(data, Heap::kUndefinedValueRootIndex);
  } else {
    __ LoadP(data,
             FieldMemOperand(callee, JSFunction::kSharedFunctionInfoOffset));
    __ LoadP(data,
             FieldMemOperand(data, SharedFunctionInfo::kFunctionDataOffset));
    __ LoadP(data,
             FieldMemOperand(data, FunctionTemplateInfo::kCallCodeOffset));
    __ LoadP(data, FieldMemOperand(data, CallHandlerInfo::kDataOffset));
  }

  // Put api_function_address in place.
  Address function_address = v8::ToCData<Address>(api_call_info->callback());
  ApiFunction fun(function_address);
  ExternalReference::Type type = ExternalReference::DIRECT_API_CALL;
  ExternalReference ref = ExternalReference(&fun, type, masm->isolate());
  __ mov(api_function_address, Operand(ref));

  // Jump to stub.
  CallApiAccessorStub stub(isolate, is_store, call_data_undefined);
  __ TailCallStub(&stub);
}


void NamedStoreHandlerCompiler::GenerateSlow(MacroAssembler* masm) {
  // Push receiver, key and value for runtime call.
  __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
          StoreDescriptor::ValueRegister());

  // The slow case calls into the runtime to complete the store without causing
  // an IC miss that would otherwise cause a transition to the generic stub.
  ExternalReference ref =
      ExternalReference(IC_Utility(IC::kStoreIC_Slow), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


void ElementHandlerCompiler::GenerateStoreSlow(MacroAssembler* masm) {
  // Push receiver, key and value for runtime call.
  __ Push(StoreDescriptor::ReceiverRegister(), StoreDescriptor::NameRegister(),
          StoreDescriptor::ValueRegister());

  // The slow case calls into the runtime to complete the store without causing
  // an IC miss that would otherwise cause a transition to the generic stub.
  ExternalReference ref =
      ExternalReference(IC_Utility(IC::kKeyedStoreIC_Slow), masm->isolate());
  __ TailCallExternalReference(ref, 3, 1);
}


#undef __
#define __ ACCESS_MASM(masm())


void NamedStoreHandlerCompiler::GenerateRestoreName(Label* label,
                                                    Handle<Name> name) {
  if (!label->is_unused()) {
    __ bind(label);
    __ mov(this->name(), Operand(name));
  }
}


void NamedStoreHandlerCompiler::GenerateRestoreName(Handle<Name> name) {
  __ mov(this->name(), Operand(name));
}


void NamedStoreHandlerCompiler::GenerateRestoreMap(Handle<Map> transition,
                                                   Register scratch,
                                                   Label* miss) {
  Handle<WeakCell> cell = Map::WeakCellForMap(transition);
  Register map_reg = StoreTransitionDescriptor::MapRegister();
  DCHECK(!map_reg.is(scratch));
  __ LoadWeakValue(map_reg, cell, miss);
  if (transition->CanBeDeprecated()) {
    __ LoadlW(scratch, FieldMemOperand(map_reg, Map::kBitField3Offset));
    __ DecodeField<Map::Deprecated>(r0, scratch);
    __ bne(miss);
  }
}


void NamedStoreHandlerCompiler::GenerateConstantCheck(Register map_reg,
                                                      int descriptor,
                                                      Register value_reg,
                                                      Register scratch,
                                                      Label* miss_label) {
  DCHECK(!map_reg.is(scratch));
  DCHECK(!map_reg.is(value_reg));
  DCHECK(!value_reg.is(scratch));
  __ LoadInstanceDescriptors(map_reg, scratch);
  __ CmpP(value_reg, FieldMemOperand(
                        scratch, DescriptorArray::GetValueOffset(descriptor)));
  __ bne(miss_label);
}


void NamedStoreHandlerCompiler::GenerateFieldTypeChecks(HeapType* field_type,
                                                        Register value_reg,
                                                        Label* miss_label) {
  Register map_reg = scratch1();
  Register scratch = scratch2();
  DCHECK(!value_reg.is(map_reg));
  DCHECK(!value_reg.is(scratch));
  __ JumpIfSmi(value_reg, miss_label);
  HeapType::Iterator<Map> it = field_type->Classes();
  if (!it.Done()) {
    __ LoadP(map_reg, FieldMemOperand(value_reg, HeapObject::kMapOffset));
    Label do_store;
    while (true) {
      __ CmpWeakValue(map_reg, Map::WeakCellForMap(it.Current()), scratch);
      it.Advance();
      if (it.Done()) {
        __ bne(miss_label);
        break;
      }
      __ beq(&do_store);
    }
    __ bind(&do_store);
  }
}


Register PropertyHandlerCompiler::CheckPrototypes(
    Register object_reg, Register holder_reg, Register scratch1,
    Register scratch2, Handle<Name> name, Label* miss, PrototypeCheckType check,
    ReturnHolder return_what) {
  Handle<Map> receiver_map = map();

  // Make sure there's no overlap between holder and object registers.
  DCHECK(!scratch1.is(object_reg) && !scratch1.is(holder_reg));
  DCHECK(!scratch2.is(object_reg) && !scratch2.is(holder_reg) &&
         !scratch2.is(scratch1));

  if (FLAG_eliminate_prototype_chain_checks) {
    Handle<Cell> validity_cell =
        Map::GetOrCreatePrototypeChainValidityCell(receiver_map, isolate());
    if (!validity_cell.is_null()) {
      DCHECK_EQ(Smi::FromInt(Map::kPrototypeChainValid),
                validity_cell->value());
      __ mov(scratch1, Operand(validity_cell));
      __ LoadP(scratch1, FieldMemOperand(scratch1, Cell::kValueOffset));
      __ CmpSmiLiteral(scratch1, Smi::FromInt(Map::kPrototypeChainValid), r0);
      __ bne(miss);
    }

    // The prototype chain of primitives (and their JSValue wrappers) depends
    // on the native context, which can't be guarded by validity cells.
    // |object_reg| holds the native context specific prototype in this case;
    // we need to check its map.
    if (check == CHECK_ALL_MAPS) {
      __ LoadP(scratch1, FieldMemOperand(object_reg, HeapObject::kMapOffset));
      Handle<WeakCell> cell = Map::WeakCellForMap(receiver_map);
      __ CmpWeakValue(scratch1, cell, scratch2);
      __ b(ne, miss);
    }
  }

  // Keep track of the current object in register reg.
  Register reg = object_reg;
  int depth = 0;

  Handle<JSObject> current = Handle<JSObject>::null();
  if (receiver_map->IsJSGlobalObjectMap()) {
    current = isolate()->global_object();
  }
  // Check access rights to the global object.  This has to happen after
  // the map check so that we know that the object is actually a global
  // object.
  // This allows us to install generated handlers for accesses to the
  // global proxy (as opposed to using slow ICs). See corresponding code
  // in LookupForRead().
  if (receiver_map->IsJSGlobalProxyMap()) {
    __ CheckAccessGlobalProxy(reg, scratch2, miss);
  }

  Handle<JSObject> prototype = Handle<JSObject>::null();
  Handle<Map> current_map = receiver_map;
  Handle<Map> holder_map(holder()->map());
  // Traverse the prototype chain and check the maps in the prototype chain for
  // fast and global objects or do negative lookup for normal objects.
  while (!current_map.is_identical_to(holder_map)) {
    ++depth;

    // Only global objects and objects that do not require access
    // checks are allowed in stubs.
    DCHECK(current_map->IsJSGlobalProxyMap() ||
           !current_map->is_access_check_needed());

    prototype = handle(JSObject::cast(current_map->prototype()));
    if (current_map->is_dictionary_map() &&
        !current_map->IsJSGlobalObjectMap()) {
      DCHECK(!current_map->IsJSGlobalProxyMap());  // Proxy maps are fast.
      if (!name->IsUniqueName()) {
        DCHECK(name->IsString());
        name = factory()->InternalizeString(Handle<String>::cast(name));
      }
      DCHECK(current.is_null() ||
             current->property_dictionary()->FindEntry(name) ==
                 NameDictionary::kNotFound);

      if (FLAG_eliminate_prototype_chain_checks && depth > 1) {
        // TODO(jkummerow): Cache and re-use weak cell.
        __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
      }
      GenerateDictionaryNegativeLookup(masm(), miss, reg, name, scratch1,
                                       scratch2);
      if (!FLAG_eliminate_prototype_chain_checks) {
        __ LoadP(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
        __ LoadP(holder_reg, FieldMemOperand(scratch1, Map::kPrototypeOffset));
      }
    } else {
      Register map_reg = scratch1;
      if (!FLAG_eliminate_prototype_chain_checks) {
        __ LoadP(map_reg, FieldMemOperand(reg, HeapObject::kMapOffset));
      }
      if (current_map->IsJSGlobalObjectMap()) {
        GenerateCheckPropertyCell(masm(), Handle<JSGlobalObject>::cast(current),
                                  name, scratch2, miss);
      } else if (!FLAG_eliminate_prototype_chain_checks &&
                 (depth != 1 || check == CHECK_ALL_MAPS)) {
        Handle<WeakCell> cell = Map::WeakCellForMap(current_map);
        __ CmpWeakValue(map_reg, cell, scratch2);
        __ bne(miss);
      }
      if (!FLAG_eliminate_prototype_chain_checks) {
        __ LoadP(holder_reg, FieldMemOperand(map_reg, Map::kPrototypeOffset));
      }
    }

    reg = holder_reg;  // From now on the object will be in holder_reg.
    // Go to the next object in the prototype chain.
    current = prototype;
    current_map = handle(current->map());
  }

  DCHECK(!current_map->IsJSGlobalProxyMap());

  // Log the check depth.
  LOG(isolate(), IntEvent("check-maps-depth", depth + 1));

  if (!FLAG_eliminate_prototype_chain_checks &&
      (depth != 0 || check == CHECK_ALL_MAPS)) {
    // Check the holder map.
    __ LoadP(scratch1, FieldMemOperand(reg, HeapObject::kMapOffset));
    Handle<WeakCell> cell = Map::WeakCellForMap(current_map);
    __ CmpWeakValue(scratch1, cell, scratch2);
    __ bne(miss);
  }

  bool return_holder = return_what == RETURN_HOLDER;
  if (FLAG_eliminate_prototype_chain_checks && return_holder && depth != 0) {
    __ LoadWeakValue(reg, isolate()->factory()->NewWeakCell(current), miss);
  }

  // Return the register containing the holder.
  return return_holder ? reg : no_reg;
}


void NamedLoadHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
  if (!miss->is_unused()) {
    Label success;
    __ b(&success);
    __ bind(miss);
    if (IC::ICUseVector(kind())) {
      DCHECK(kind() == Code::LOAD_IC);
      PopVectorAndSlot();
    }
    TailCallBuiltin(masm(), MissBuiltin(kind()));
    __ bind(&success);
  }
}


void NamedStoreHandlerCompiler::FrontendFooter(Handle<Name> name, Label* miss) {
  if (!miss->is_unused()) {
    Label success;
    __ b(&success);
    GenerateRestoreName(miss, name);
    TailCallBuiltin(masm(), MissBuiltin(kind()));
    __ bind(&success);
  }
}


void NamedLoadHandlerCompiler::GenerateLoadConstant(Handle<Object> value) {
  // Return the constant value.
  __ Move(r2, value);
  __ Ret();
}


void NamedLoadHandlerCompiler::GenerateLoadCallback(
    Register reg, Handle<ExecutableAccessorInfo> callback) {
  // Build AccessorInfo::args_ list on the stack and push property name below
  // the exit frame to make GC aware of them and store pointers to them.
  STATIC_ASSERT(PropertyCallbackArguments::kHolderIndex == 0);
  STATIC_ASSERT(PropertyCallbackArguments::kIsolateIndex == 1);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueDefaultValueIndex == 2);
  STATIC_ASSERT(PropertyCallbackArguments::kReturnValueOffset == 3);
  STATIC_ASSERT(PropertyCallbackArguments::kDataIndex == 4);
  STATIC_ASSERT(PropertyCallbackArguments::kThisIndex == 5);
  STATIC_ASSERT(PropertyCallbackArguments::kArgsLength == 6);
  DCHECK(!scratch2().is(reg));
  DCHECK(!scratch3().is(reg));
  DCHECK(!scratch4().is(reg));
  __ Push(receiver());
  // Push data from ExecutableAccessorInfo.
  Handle<Object> data(callback->data(), isolate());
  if (data->IsUndefined() || data->IsSmi()) {
    __ Move(scratch3(), data);
  } else {
    Handle<WeakCell> cell =
        isolate()->factory()->NewWeakCell(Handle<HeapObject>::cast(data));
    // The callback is alive if this instruction is executed,
    // so the weak cell is not cleared and points to data.
    __ GetWeakValue(scratch3(), cell);
  }
  __ Push(scratch3());
  __ LoadRoot(scratch3(), Heap::kUndefinedValueRootIndex);
  __ LoadRR(scratch4(), scratch3());
  __ Push(scratch3(), scratch4());
  __ mov(scratch4(), Operand(ExternalReference::isolate_address(isolate())));
  __ Push(scratch4(), reg);
  __ Push(name());

  // Abi for CallApiGetter
  Register getter_address_reg = ApiGetterDescriptor::function_address();

  Address getter_address = v8::ToCData<Address>(callback->getter());
  ApiFunction fun(getter_address);
  ExternalReference::Type type = ExternalReference::DIRECT_GETTER_CALL;
  ExternalReference ref = ExternalReference(&fun, type, isolate());
  __ mov(getter_address_reg, Operand(ref));

  CallApiGetterStub stub(isolate());
  __ TailCallStub(&stub);
}


void NamedLoadHandlerCompiler::GenerateLoadInterceptorWithFollowup(
    LookupIterator* it, Register holder_reg) {
  DCHECK(holder()->HasNamedInterceptor());
  DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());

  // Compile the interceptor call, followed by inline code to load the
  // property from further up the prototype chain if the call fails.
  // Check that the maps haven't changed.
  DCHECK(holder_reg.is(receiver()) || holder_reg.is(scratch1()));

  // Preserve the receiver register explicitly whenever it is different from the
  // holder and it is needed should the interceptor return without any result.
  // The ACCESSOR case needs the receiver to be passed into C++ code, the FIELD
  // case might cause a miss during the prototype check.
  bool must_perform_prototype_check =
      !holder().is_identical_to(it->GetHolder<JSObject>());
  bool must_preserve_receiver_reg =
      !receiver().is(holder_reg) &&
      (it->state() == LookupIterator::ACCESSOR || must_perform_prototype_check);

  // Save necessary data before invoking an interceptor.
  // Requires a frame to make GC aware of pushed pointers.
  {
    FrameScope frame_scope(masm(), StackFrame::INTERNAL);
    if (must_preserve_receiver_reg) {
      __ Push(receiver(), holder_reg, this->name());
    } else {
      __ Push(holder_reg, this->name());
    }
    InterceptorVectorSlotPush(holder_reg);
    // Invoke an interceptor.  Note: map checks from receiver to
    // interceptor's holder has been compiled before (see a caller
    // of this method.)
    CompileCallLoadPropertyWithInterceptor(
        masm(), receiver(), holder_reg, this->name(), holder(),
        IC::kLoadPropertyWithInterceptorOnly);

    // Check if interceptor provided a value for property.  If it's
    // the case, return immediately.
    Label interceptor_failed;
    __ CompareRoot(r2, Heap::kNoInterceptorResultSentinelRootIndex);
    __ beq(&interceptor_failed, Label::kNear);
    frame_scope.GenerateLeaveFrame();
    __ Ret();

    __ bind(&interceptor_failed);
    InterceptorVectorSlotPop(holder_reg);
    __ Pop(this->name());
    __ Pop(holder_reg);
    if (must_preserve_receiver_reg) {
      __ Pop(receiver());
    }
    // Leave the internal frame.
  }

  GenerateLoadPostInterceptor(it, holder_reg);
}


void NamedLoadHandlerCompiler::GenerateLoadInterceptor(Register holder_reg) {
  // Call the runtime system to load the interceptor.
  DCHECK(holder()->HasNamedInterceptor());
  DCHECK(!holder()->GetNamedInterceptor()->getter()->IsUndefined());
  PushInterceptorArguments(masm(), receiver(), holder_reg, this->name(),
                           holder());

  ExternalReference ref = ExternalReference(
      IC_Utility(IC::kLoadPropertyWithInterceptor), isolate());
  __ TailCallExternalReference(
      ref, NamedLoadHandlerCompiler::kInterceptorArgsLength, 1);
}


Handle<Code> NamedStoreHandlerCompiler::CompileStoreCallback(
    Handle<JSObject> object, Handle<Name> name,
    Handle<ExecutableAccessorInfo> callback) {
  Register holder_reg = Frontend(name);

  __ Push(receiver(), holder_reg);  // receiver

  // If the callback cannot leak, then push the callback directly,
  // otherwise wrap it in a weak cell.
  if (callback->data()->IsUndefined() || callback->data()->IsSmi()) {
    __ mov(ip, Operand(callback));
  } else {
    Handle<WeakCell> cell = isolate()->factory()->NewWeakCell(callback);
    __ mov(ip, Operand(cell));
  }
  __ Push(ip);
  __ mov(ip, Operand(name));
  __ Push(ip, value());

  // Do tail-call to the runtime system.
  ExternalReference store_callback_property =
      ExternalReference(IC_Utility(IC::kStoreCallbackProperty), isolate());
  __ TailCallExternalReference(store_callback_property, 5, 1);

  // Return the generated code.
  return GetCode(kind(), Code::FAST, name);
}


Handle<Code> NamedStoreHandlerCompiler::CompileStoreInterceptor(
    Handle<Name> name) {
  __ Push(receiver(), this->name(), value());

  // Do tail-call to the runtime system.
  ExternalReference store_ic_property = ExternalReference(
      IC_Utility(IC::kStorePropertyWithInterceptor), isolate());
  __ TailCallExternalReference(store_ic_property, 3, 1);

  // Return the generated code.
  return GetCode(kind(), Code::FAST, name);
}


Register NamedStoreHandlerCompiler::value() {
  return StoreDescriptor::ValueRegister();
}


Handle<Code> NamedLoadHandlerCompiler::CompileLoadGlobal(
    Handle<PropertyCell> cell, Handle<Name> name, bool is_configurable) {
  Label miss;
  if (IC::ICUseVector(kind())) {
    PushVectorAndSlot();
  }
  FrontendHeader(receiver(), name, &miss, DONT_RETURN_ANYTHING);

  // Get the value from the cell.
  Register result = StoreDescriptor::ValueRegister();
  Handle<WeakCell> weak_cell = factory()->NewWeakCell(cell);
  __ LoadWeakValue(result, weak_cell, &miss);
  __ LoadP(result, FieldMemOperand(result, PropertyCell::kValueOffset));

  // Check for deleted property if property can actually be deleted.
  if (is_configurable) {
    __ CompareRoot(result, Heap::kTheHoleValueRootIndex);
    __ beq(&miss);
  }

  Counters* counters = isolate()->counters();
  __ IncrementCounter(counters->named_load_global_stub(), 1, r3, r5);
  if (IC::ICUseVector(kind())) {
    DiscardVectorAndSlot();
  }
  __ Ret();

  FrontendFooter(name, &miss);

  // Return the generated code.
  return GetCode(kind(), Code::NORMAL, name);
}


#undef __
}
}  // namespace v8::internal

#endif  // V8_TARGET_ARCH_ARM