File: lithium.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (725 lines) | stat: -rw-r--r-- 23,383 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/lithium.h"

#include "src/v8.h"

#include "src/scopes.h"

#if V8_TARGET_ARCH_IA32
#include "src/ia32/lithium-ia32.h"  // NOLINT
#include "src/ia32/lithium-codegen-ia32.h"  // NOLINT
#elif V8_TARGET_ARCH_X64
#include "src/x64/lithium-x64.h"  // NOLINT
#include "src/x64/lithium-codegen-x64.h"  // NOLINT
#elif V8_TARGET_ARCH_ARM
#include "src/arm/lithium-arm.h"  // NOLINT
#include "src/arm/lithium-codegen-arm.h"  // NOLINT
#elif V8_TARGET_ARCH_PPC
#include "src/ppc/lithium-ppc.h"          // NOLINT
#include "src/ppc/lithium-codegen-ppc.h"  // NOLINT
#elif V8_TARGET_ARCH_MIPS
#include "src/mips/lithium-mips.h"  // NOLINT
#include "src/mips/lithium-codegen-mips.h"  // NOLINT
#elif V8_TARGET_ARCH_ARM64
#include "src/arm64/lithium-arm64.h"  // NOLINT
#include "src/arm64/lithium-codegen-arm64.h"  // NOLINT
#elif V8_TARGET_ARCH_MIPS64
#include "src/mips64/lithium-mips64.h"  // NOLINT
#include "src/mips64/lithium-codegen-mips64.h"  // NOLINT
#elif V8_TARGET_ARCH_X87
#include "src/x87/lithium-x87.h"  // NOLINT
#include "src/x87/lithium-codegen-x87.h"  // NOLINT
#elif V8_TARGET_ARCH_S390
#include "s390/lithium-s390.h" // NOLINT
#include "s390/lithium-codegen-s390.h" // NOLINT
#else
#error "Unknown architecture."
#endif

namespace v8 {
namespace internal {


void LOperand::PrintTo(StringStream* stream) {
  LUnallocated* unalloc = NULL;
  switch (kind()) {
    case INVALID:
      stream->Add("(0)");
      break;
    case UNALLOCATED:
      unalloc = LUnallocated::cast(this);
      stream->Add("v%d", unalloc->virtual_register());
      if (unalloc->basic_policy() == LUnallocated::FIXED_SLOT) {
        stream->Add("(=%dS)", unalloc->fixed_slot_index());
        break;
      }
      switch (unalloc->extended_policy()) {
        case LUnallocated::NONE:
          break;
        case LUnallocated::FIXED_REGISTER: {
          int reg_index = unalloc->fixed_register_index();
          if (reg_index < 0 ||
              reg_index >= Register::kMaxNumAllocatableRegisters) {
            stream->Add("(=invalid_reg#%d)", reg_index);
          } else {
            const char* register_name =
                Register::AllocationIndexToString(reg_index);
            stream->Add("(=%s)", register_name);
          }
          break;
        }
        case LUnallocated::FIXED_DOUBLE_REGISTER: {
          int reg_index = unalloc->fixed_register_index();
          if (reg_index < 0 ||
              reg_index >= DoubleRegister::kMaxNumAllocatableRegisters) {
            stream->Add("(=invalid_double_reg#%d)", reg_index);
          } else {
            const char* double_register_name =
                DoubleRegister::AllocationIndexToString(reg_index);
            stream->Add("(=%s)", double_register_name);
          }
          break;
        }
        case LUnallocated::MUST_HAVE_REGISTER:
          stream->Add("(R)");
          break;
        case LUnallocated::MUST_HAVE_DOUBLE_REGISTER:
          stream->Add("(D)");
          break;
        case LUnallocated::WRITABLE_REGISTER:
          stream->Add("(WR)");
          break;
        case LUnallocated::SAME_AS_FIRST_INPUT:
          stream->Add("(1)");
          break;
        case LUnallocated::ANY:
          stream->Add("(-)");
          break;
      }
      break;
    case CONSTANT_OPERAND:
      stream->Add("[constant:%d]", index());
      break;
    case STACK_SLOT:
      stream->Add("[stack:%d]", index());
      break;
    case DOUBLE_STACK_SLOT:
      stream->Add("[double_stack:%d]", index());
      break;
    case REGISTER: {
      int reg_index = index();
      if (reg_index < 0 || reg_index >= Register::kMaxNumAllocatableRegisters) {
        stream->Add("(=invalid_reg#%d|R)", reg_index);
      } else {
        stream->Add("[%s|R]", Register::AllocationIndexToString(reg_index));
      }
      break;
    }
    case DOUBLE_REGISTER: {
      int reg_index = index();
      if (reg_index < 0 ||
          reg_index >= DoubleRegister::kMaxNumAllocatableRegisters) {
        stream->Add("(=invalid_double_reg#%d|R)", reg_index);
      } else {
        stream->Add("[%s|R]",
                    DoubleRegister::AllocationIndexToString(reg_index));
      }
      break;
    }
  }
}


template<LOperand::Kind kOperandKind, int kNumCachedOperands>
LSubKindOperand<kOperandKind, kNumCachedOperands>*
LSubKindOperand<kOperandKind, kNumCachedOperands>::cache = NULL;


template<LOperand::Kind kOperandKind, int kNumCachedOperands>
void LSubKindOperand<kOperandKind, kNumCachedOperands>::SetUpCache() {
  if (cache) return;
  cache = new LSubKindOperand[kNumCachedOperands];
  for (int i = 0; i < kNumCachedOperands; i++) {
    cache[i].ConvertTo(kOperandKind, i);
  }
}


template<LOperand::Kind kOperandKind, int kNumCachedOperands>
void LSubKindOperand<kOperandKind, kNumCachedOperands>::TearDownCache() {
  delete[] cache;
  cache = NULL;
}


void LOperand::SetUpCaches() {
#define LITHIUM_OPERAND_SETUP(name, type, number) L##name::SetUpCache();
  LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_SETUP)
#undef LITHIUM_OPERAND_SETUP
}


void LOperand::TearDownCaches() {
#define LITHIUM_OPERAND_TEARDOWN(name, type, number) L##name::TearDownCache();
  LITHIUM_OPERAND_LIST(LITHIUM_OPERAND_TEARDOWN)
#undef LITHIUM_OPERAND_TEARDOWN
}


bool LParallelMove::IsRedundant() const {
  for (int i = 0; i < move_operands_.length(); ++i) {
    if (!move_operands_[i].IsRedundant()) return false;
  }
  return true;
}


void LParallelMove::PrintDataTo(StringStream* stream) const {
  bool first = true;
  for (int i = 0; i < move_operands_.length(); ++i) {
    if (!move_operands_[i].IsEliminated()) {
      LOperand* source = move_operands_[i].source();
      LOperand* destination = move_operands_[i].destination();
      if (!first) stream->Add(" ");
      first = false;
      if (source->Equals(destination)) {
        destination->PrintTo(stream);
      } else {
        destination->PrintTo(stream);
        stream->Add(" = ");
        source->PrintTo(stream);
      }
      stream->Add(";");
    }
  }
}


void LEnvironment::PrintTo(StringStream* stream) {
  stream->Add("[id=%d|", ast_id().ToInt());
  if (deoptimization_index() != Safepoint::kNoDeoptimizationIndex) {
    stream->Add("deopt_id=%d|", deoptimization_index());
  }
  stream->Add("parameters=%d|", parameter_count());
  stream->Add("arguments_stack_height=%d|", arguments_stack_height());
  for (int i = 0; i < values_.length(); ++i) {
    if (i != 0) stream->Add(";");
    if (values_[i] == NULL) {
      stream->Add("[hole]");
    } else {
      values_[i]->PrintTo(stream);
    }
  }
  stream->Add("]");
}


void LPointerMap::RecordPointer(LOperand* op, Zone* zone) {
  // Do not record arguments as pointers.
  if (op->IsStackSlot() && op->index() < 0) return;
  DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
  pointer_operands_.Add(op, zone);
}


void LPointerMap::RemovePointer(LOperand* op) {
  // Do not record arguments as pointers.
  if (op->IsStackSlot() && op->index() < 0) return;
  DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
  for (int i = 0; i < pointer_operands_.length(); ++i) {
    if (pointer_operands_[i]->Equals(op)) {
      pointer_operands_.Remove(i);
      --i;
    }
  }
}


void LPointerMap::RecordUntagged(LOperand* op, Zone* zone) {
  // Do not record arguments as pointers.
  if (op->IsStackSlot() && op->index() < 0) return;
  DCHECK(!op->IsDoubleRegister() && !op->IsDoubleStackSlot());
  untagged_operands_.Add(op, zone);
}


void LPointerMap::PrintTo(StringStream* stream) {
  stream->Add("{");
  for (int i = 0; i < pointer_operands_.length(); ++i) {
    if (i != 0) stream->Add(";");
    pointer_operands_[i]->PrintTo(stream);
  }
  stream->Add("}");
}


int StackSlotOffset(int index) {
  if (index >= 0) {
    // Local or spill slot. Skip the frame pointer, function, and
    // context in the fixed part of the frame.
    return -(index + 1) * kPointerSize -
        StandardFrameConstants::kFixedFrameSizeFromFp;
  } else {
    // Incoming parameter. Skip the return address.
    return -(index + 1) * kPointerSize + kFPOnStackSize + kPCOnStackSize;
  }
}


LChunk::LChunk(CompilationInfo* info, HGraph* graph)
    : spill_slot_count_(0),
      info_(info),
      graph_(graph),
      instructions_(32, info->zone()),
      pointer_maps_(8, info->zone()),
      inlined_functions_(1, info->zone()),
      deprecation_dependencies_(32, info->zone()),
      stability_dependencies_(8, info->zone()) {}


LLabel* LChunk::GetLabel(int block_id) const {
  HBasicBlock* block = graph_->blocks()->at(block_id);
  int first_instruction = block->first_instruction_index();
  return LLabel::cast(instructions_[first_instruction]);
}


int LChunk::LookupDestination(int block_id) const {
  LLabel* cur = GetLabel(block_id);
  while (cur->replacement() != NULL) {
    cur = cur->replacement();
  }
  return cur->block_id();
}

Label* LChunk::GetAssemblyLabel(int block_id) const {
  LLabel* label = GetLabel(block_id);
  DCHECK(!label->HasReplacement());
  return label->label();
}


void LChunk::MarkEmptyBlocks() {
  LPhase phase("L_Mark empty blocks", this);
  for (int i = 0; i < graph()->blocks()->length(); ++i) {
    HBasicBlock* block = graph()->blocks()->at(i);
    int first = block->first_instruction_index();
    int last = block->last_instruction_index();
    LInstruction* first_instr = instructions()->at(first);
    LInstruction* last_instr = instructions()->at(last);

    LLabel* label = LLabel::cast(first_instr);
    if (last_instr->IsGoto()) {
      LGoto* goto_instr = LGoto::cast(last_instr);
      if (label->IsRedundant() &&
          !label->is_loop_header()) {
        bool can_eliminate = true;
        for (int i = first + 1; i < last && can_eliminate; ++i) {
          LInstruction* cur = instructions()->at(i);
          if (cur->IsGap()) {
            LGap* gap = LGap::cast(cur);
            if (!gap->IsRedundant()) {
              can_eliminate = false;
            }
          } else {
            can_eliminate = false;
          }
        }
        if (can_eliminate) {
          label->set_replacement(GetLabel(goto_instr->block_id()));
        }
      }
    }
  }
}


void LChunk::AddInstruction(LInstruction* instr, HBasicBlock* block) {
  LInstructionGap* gap = new (zone()) LInstructionGap(block);
  gap->set_hydrogen_value(instr->hydrogen_value());
  int index = -1;
  if (instr->IsControl()) {
    instructions_.Add(gap, zone());
    index = instructions_.length();
    instructions_.Add(instr, zone());
  } else {
    index = instructions_.length();
    instructions_.Add(instr, zone());
    instructions_.Add(gap, zone());
  }
  if (instr->HasPointerMap()) {
    pointer_maps_.Add(instr->pointer_map(), zone());
    instr->pointer_map()->set_lithium_position(index);
  }
}


LConstantOperand* LChunk::DefineConstantOperand(HConstant* constant) {
  return LConstantOperand::Create(constant->id(), zone());
}


int LChunk::GetParameterStackSlot(int index) const {
  // The receiver is at index 0, the first parameter at index 1, so we
  // shift all parameter indexes down by the number of parameters, and
  // make sure they end up negative so they are distinguishable from
  // spill slots.
  int result = index - info()->num_parameters() - 1;

  DCHECK(result < 0);
  return result;
}


// A parameter relative to ebp in the arguments stub.
int LChunk::ParameterAt(int index) {
  DCHECK(-1 <= index);  // -1 is the receiver.
  return (1 + info()->scope()->num_parameters() - index) *
      kPointerSize;
}


LGap* LChunk::GetGapAt(int index) const {
  return LGap::cast(instructions_[index]);
}


bool LChunk::IsGapAt(int index) const {
  return instructions_[index]->IsGap();
}


int LChunk::NearestGapPos(int index) const {
  while (!IsGapAt(index)) index--;
  return index;
}


void LChunk::AddGapMove(int index, LOperand* from, LOperand* to) {
  GetGapAt(index)->GetOrCreateParallelMove(
      LGap::START, zone())->AddMove(from, to, zone());
}


HConstant* LChunk::LookupConstant(LConstantOperand* operand) const {
  return HConstant::cast(graph_->LookupValue(operand->index()));
}


Representation LChunk::LookupLiteralRepresentation(
    LConstantOperand* operand) const {
  return graph_->LookupValue(operand->index())->representation();
}


static void AddWeakObjectToCodeDependency(Isolate* isolate,
                                          Handle<HeapObject> object,
                                          Handle<Code> code) {
  Handle<WeakCell> cell = Code::WeakCellFor(code);
  Heap* heap = isolate->heap();
  Handle<DependentCode> dep(heap->LookupWeakObjectToCodeDependency(object));
  dep = DependentCode::InsertWeakCode(dep, DependentCode::kWeakCodeGroup, cell);
  heap->AddWeakObjectToCodeDependency(object, dep);
}


void LChunk::RegisterWeakObjectsInOptimizedCode(Handle<Code> code) const {
  DCHECK(code->is_optimized_code());
  ZoneList<Handle<Map> > maps(1, zone());
  ZoneList<Handle<HeapObject> > objects(1, zone());
  int mode_mask = RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
                  RelocInfo::ModeMask(RelocInfo::CELL);
  for (RelocIterator it(*code, mode_mask); !it.done(); it.next()) {
    RelocInfo::Mode mode = it.rinfo()->rmode();
    if (mode == RelocInfo::CELL &&
        code->IsWeakObjectInOptimizedCode(it.rinfo()->target_cell())) {
      objects.Add(Handle<HeapObject>(it.rinfo()->target_cell()), zone());
    } else if (mode == RelocInfo::EMBEDDED_OBJECT &&
               code->IsWeakObjectInOptimizedCode(it.rinfo()->target_object())) {
      if (it.rinfo()->target_object()->IsMap()) {
        Handle<Map> map(Map::cast(it.rinfo()->target_object()));
        maps.Add(map, zone());
      } else {
        Handle<HeapObject> object(
            HeapObject::cast(it.rinfo()->target_object()));
        objects.Add(object, zone());
      }
    }
  }
  for (int i = 0; i < maps.length(); i++) {
    if (maps.at(i)->dependent_code()->number_of_entries(
            DependentCode::kWeakCodeGroup) == 0) {
      isolate()->heap()->AddRetainedMap(maps.at(i));
    }
    Map::AddDependentCode(maps.at(i), DependentCode::kWeakCodeGroup, code);
  }
  for (int i = 0; i < objects.length(); i++) {
    AddWeakObjectToCodeDependency(isolate(), objects.at(i), code);
  }
  code->set_can_have_weak_objects(true);
}


void LChunk::CommitDependencies(Handle<Code> code) const {
  if (!code->is_optimized_code()) return;
  HandleScope scope(isolate());

  for (Handle<Map> map : deprecation_dependencies_) {
    DCHECK(!map->is_deprecated());
    DCHECK(map->CanBeDeprecated());
    Map::AddDependentCode(map, DependentCode::kTransitionGroup, code);
  }

  for (Handle<Map> map : stability_dependencies_) {
    DCHECK(map->is_stable());
    DCHECK(map->CanTransition());
    Map::AddDependentCode(map, DependentCode::kPrototypeCheckGroup, code);
  }

  info_->dependencies()->Commit(code);
  RegisterWeakObjectsInOptimizedCode(code);
}


LChunk* LChunk::NewChunk(HGraph* graph) {
  DisallowHandleAllocation no_handles;
  DisallowHeapAllocation no_gc;
  graph->DisallowAddingNewValues();
  int values = graph->GetMaximumValueID();
  CompilationInfo* info = graph->info();
  if (values > LUnallocated::kMaxVirtualRegisters) {
    info->AbortOptimization(kNotEnoughVirtualRegistersForValues);
    return NULL;
  }
  LAllocator allocator(values, graph);
  LChunkBuilder builder(info, graph, &allocator);
  LChunk* chunk = builder.Build();
  if (chunk == NULL) return NULL;

  if (!allocator.Allocate(chunk)) {
    info->AbortOptimization(kNotEnoughVirtualRegistersRegalloc);
    return NULL;
  }

  chunk->set_allocated_double_registers(
      allocator.assigned_double_registers());

  return chunk;
}


Handle<Code> LChunk::Codegen() {
  MacroAssembler assembler(info()->isolate(), NULL, 0);
  LOG_CODE_EVENT(info()->isolate(),
                 CodeStartLinePosInfoRecordEvent(
                     assembler.positions_recorder()));
  // Code serializer only takes unoptimized code.
  DCHECK(!info()->will_serialize());
  LCodeGen generator(this, &assembler, info());

  MarkEmptyBlocks();

  if (generator.GenerateCode()) {
    generator.CheckEnvironmentUsage();
    CodeGenerator::MakeCodePrologue(info(), "optimized");
    Code::Flags flags = info()->flags();
    Handle<Code> code =
        CodeGenerator::MakeCodeEpilogue(&assembler, flags, info());
    generator.FinishCode(code);
    CommitDependencies(code);
    code->set_is_crankshafted(true);
    void* jit_handler_data =
        assembler.positions_recorder()->DetachJITHandlerData();
    LOG_CODE_EVENT(info()->isolate(),
                   CodeEndLinePosInfoRecordEvent(*code, jit_handler_data));

    CodeGenerator::PrintCode(code, info());
    DCHECK(!(info()->isolate()->serializer_enabled() &&
             info()->GetMustNotHaveEagerFrame() &&
             generator.NeedsEagerFrame()));
    return code;
  }
  assembler.AbortedCodeGeneration();
  return Handle<Code>::null();
}


void LChunk::set_allocated_double_registers(BitVector* allocated_registers) {
  allocated_double_registers_ = allocated_registers;
  BitVector* doubles = allocated_double_registers();
  BitVector::Iterator iterator(doubles);
  while (!iterator.Done()) {
    if (info()->saves_caller_doubles()) {
      if (kDoubleSize == kPointerSize * 2) {
        spill_slot_count_ += 2;
      } else {
        spill_slot_count_++;
      }
    }
    iterator.Advance();
  }
}


void LChunkBuilderBase::Abort(BailoutReason reason) {
  info()->AbortOptimization(reason);
  status_ = ABORTED;
}


void LChunkBuilderBase::Retry(BailoutReason reason) {
  info()->RetryOptimization(reason);
  status_ = ABORTED;
}


LEnvironment* LChunkBuilderBase::CreateEnvironment(
    HEnvironment* hydrogen_env, int* argument_index_accumulator,
    ZoneList<HValue*>* objects_to_materialize) {
  if (hydrogen_env == NULL) return NULL;

  LEnvironment* outer =
      CreateEnvironment(hydrogen_env->outer(), argument_index_accumulator,
                        objects_to_materialize);
  BailoutId ast_id = hydrogen_env->ast_id();
  DCHECK(!ast_id.IsNone() ||
         hydrogen_env->frame_type() != JS_FUNCTION);

  int omitted_count = (hydrogen_env->frame_type() == JS_FUNCTION)
                          ? 0
                          : hydrogen_env->specials_count();

  int value_count = hydrogen_env->length() - omitted_count;
  LEnvironment* result =
      new(zone()) LEnvironment(hydrogen_env->closure(),
                               hydrogen_env->frame_type(),
                               ast_id,
                               hydrogen_env->parameter_count(),
                               argument_count_,
                               value_count,
                               outer,
                               hydrogen_env->entry(),
                               zone());
  int argument_index = *argument_index_accumulator;

  // Store the environment description into the environment
  // (with holes for nested objects)
  for (int i = 0; i < hydrogen_env->length(); ++i) {
    if (hydrogen_env->is_special_index(i) &&
        hydrogen_env->frame_type() != JS_FUNCTION) {
      continue;
    }
    LOperand* op;
    HValue* value = hydrogen_env->values()->at(i);
    CHECK(!value->IsPushArguments());  // Do not deopt outgoing arguments
    if (value->IsArgumentsObject() || value->IsCapturedObject()) {
      op = LEnvironment::materialization_marker();
    } else {
      op = UseAny(value);
    }
    result->AddValue(op,
                     value->representation(),
                     value->CheckFlag(HInstruction::kUint32));
  }

  // Recursively store the nested objects into the environment
  for (int i = 0; i < hydrogen_env->length(); ++i) {
    if (hydrogen_env->is_special_index(i)) continue;

    HValue* value = hydrogen_env->values()->at(i);
    if (value->IsArgumentsObject() || value->IsCapturedObject()) {
      AddObjectToMaterialize(value, objects_to_materialize, result);
    }
  }

  if (hydrogen_env->frame_type() == JS_FUNCTION) {
    *argument_index_accumulator = argument_index;
  }

  return result;
}


// Add an object to the supplied environment and object materialization list.
//
// Notes:
//
// We are building three lists here:
//
// 1. In the result->object_mapping_ list (added to by the
//    LEnvironment::Add*Object methods), we store the lengths (number
//    of fields) of the captured objects in depth-first traversal order, or
//    in case of duplicated objects, we store the index to the duplicate object
//    (with a tag to differentiate between captured and duplicated objects).
//
// 2. The object fields are stored in the result->values_ list
//    (added to by the LEnvironment.AddValue method) sequentially as lists
//    of fields with holes for nested objects (the holes will be expanded
//    later by LCodegen::AddToTranslation according to the
//    LEnvironment.object_mapping_ list).
//
// 3. The auxiliary objects_to_materialize array stores the hydrogen values
//    in the same order as result->object_mapping_ list. This is used
//    to detect duplicate values and calculate the corresponding object index.
void LChunkBuilderBase::AddObjectToMaterialize(HValue* value,
    ZoneList<HValue*>* objects_to_materialize, LEnvironment* result) {
  int object_index = objects_to_materialize->length();
  // Store the hydrogen value into the de-duplication array
  objects_to_materialize->Add(value, zone());
  // Find out whether we are storing a duplicated value
  int previously_materialized_object = -1;
  for (int prev = 0; prev < object_index; ++prev) {
    if (objects_to_materialize->at(prev) == value) {
      previously_materialized_object = prev;
      break;
    }
  }
  // Store the captured object length (or duplicated object index)
  // into the environment. For duplicated objects, we stop here.
  int length = value->OperandCount();
  bool is_arguments = value->IsArgumentsObject();
  if (previously_materialized_object >= 0) {
    result->AddDuplicateObject(previously_materialized_object);
    return;
  } else {
    result->AddNewObject(is_arguments ? length - 1 : length, is_arguments);
  }
  // Store the captured object's fields into the environment
  for (int i = is_arguments ? 1 : 0; i < length; ++i) {
    LOperand* op;
    HValue* arg_value = value->OperandAt(i);
    if (arg_value->IsArgumentsObject() || arg_value->IsCapturedObject()) {
      // Insert a hole for nested objects
      op = LEnvironment::materialization_marker();
    } else {
      DCHECK(!arg_value->IsPushArguments());
      // For ordinary values, tell the register allocator we need the value
      // to be alive here
      op = UseAny(arg_value);
    }
    result->AddValue(op,
                     arg_value->representation(),
                     arg_value->CheckFlag(HInstruction::kUint32));
  }
  // Recursively store all the nested captured objects into the environment
  for (int i = is_arguments ? 1 : 0; i < length; ++i) {
    HValue* arg_value = value->OperandAt(i);
    if (arg_value->IsArgumentsObject() || arg_value->IsCapturedObject()) {
      AddObjectToMaterialize(arg_value, objects_to_materialize, result);
    }
  }
}


LPhase::~LPhase() {
  if (ShouldProduceTraceOutput()) {
    isolate()->GetHTracer()->TraceLithium(name(), chunk_);
  }
}


}  // namespace internal
}  // namespace v8