File: codegen-s390.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (703 lines) | stat: -rw-r--r-- 25,128 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
// Copyright 2015 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#if V8_TARGET_ARCH_S390

#include "src/codegen.h"
#include "src/macro-assembler.h"
#include "src/s390/simulator-s390.h"

namespace v8 {
namespace internal {


#define __ masm.


#if defined(USE_SIMULATOR)
byte* fast_exp_s390_machine_code = NULL;
double fast_exp_simulator(double x) {
  return Simulator::current(Isolate::Current())
      ->CallFPReturnsDouble(fast_exp_s390_machine_code, x, 0);
}
#endif


UnaryMathFunction CreateExpFunction() {
  if (!FLAG_fast_math) return &std::exp;
  size_t actual_size;
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == NULL) return &std::exp;
  ExternalReference::InitializeMathExpData();

  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));

  {
    DoubleRegister input = d0;
    DoubleRegister result = d2;
    DoubleRegister double_scratch1 = d3;
    DoubleRegister double_scratch2 = d4;
    Register temp1 = r6;
    Register temp2 = r7;
    Register temp3 = r8;

    __ Push(temp3, temp2, temp1);
    MathExpGenerator::EmitMathExp(&masm, input, result, double_scratch1,
                                  double_scratch2, temp1, temp2, temp3);
    __ Pop(temp3, temp2, temp1);
    __ ldr(d0, result);
    __ Ret();
  }

  CodeDesc desc;
  masm.GetCode(&desc);
#if !ABI_USES_FUNCTION_DESCRIPTORS
  DCHECK(!RelocInfo::RequiresRelocation(desc));
#endif

  CpuFeatures::FlushICache(buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);

#if !defined(USE_SIMULATOR)
  return FUNCTION_CAST<UnaryMathFunction>(buffer);
#else
  fast_exp_s390_machine_code = buffer;
  return &fast_exp_simulator;
#endif
}


UnaryMathFunction CreateSqrtFunction() {
#if defined(USE_SIMULATOR)
  return &std::sqrt;
#else
  size_t actual_size;
  byte* buffer =
      static_cast<byte*>(base::OS::Allocate(1 * KB, &actual_size, true));
  if (buffer == NULL) return &std::sqrt;

  MacroAssembler masm(NULL, buffer, static_cast<int>(actual_size));

  __ MovFromFloatParameter(d0);
  __ sqdbr(d0, d0);
  __ MovToFloatResult(d0);
  __ Ret();

  CodeDesc desc;
  masm.GetCode(&desc);
#if !ABI_USES_FUNCTION_DESCRIPTORS
  DCHECK(!RelocInfo::RequiresRelocation(desc));
#endif

  CpuFeatures::FlushICache(buffer, actual_size);
  base::OS::ProtectCode(buffer, actual_size);
  return FUNCTION_CAST<UnaryMathFunction>(buffer);
#endif
}

#undef __


// -------------------------------------------------------------------------
// Platform-specific RuntimeCallHelper functions.

void StubRuntimeCallHelper::BeforeCall(MacroAssembler* masm) const {
  masm->EnterFrame(StackFrame::INTERNAL);
  DCHECK(!masm->has_frame());
  masm->set_has_frame(true);
}


void StubRuntimeCallHelper::AfterCall(MacroAssembler* masm) const {
  masm->LeaveFrame(StackFrame::INTERNAL);
  DCHECK(masm->has_frame());
  masm->set_has_frame(false);
}


// -------------------------------------------------------------------------
// Code generators

#define __ ACCESS_MASM(masm)

void ElementsTransitionGenerator::GenerateMapChangeElementsTransition(
    MacroAssembler* masm, Register receiver, Register key, Register value,
    Register target_map, AllocationSiteMode mode,
    Label* allocation_memento_found) {
  Register scratch_elements = r6;
  DCHECK(!AreAliased(receiver, key, value, target_map, scratch_elements));

  if (mode == TRACK_ALLOCATION_SITE) {
    DCHECK(allocation_memento_found != NULL);
    __ JumpIfJSArrayHasAllocationMemento(receiver, scratch_elements,
                                         allocation_memento_found);
  }

  // Set transitioned map.
  __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, r1,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


void ElementsTransitionGenerator::GenerateSmiToDouble(
    MacroAssembler* masm, Register receiver, Register key, Register value,
    Register target_map, AllocationSiteMode mode, Label* fail) {
  // lr contains the return address
  Label loop, entry, convert_hole, gc_required, only_change_map, done;
  Register elements = r6;
  Register length = r7;
  Register array = r8;
  Register array_end = array;

  // target_map parameter can be clobbered.
  Register scratch1 = target_map;
  Register scratch2 = r1;

  // Verify input registers don't conflict with locals.
  DCHECK(!AreAliased(receiver, key, value, target_map, elements, length, array,
                     scratch2));

  if (mode == TRACK_ALLOCATION_SITE) {
    __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
  }

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
  __ beq(&only_change_map, Label::kNear);

  // Preserve lr and use r14 as a temporary register.
  __ push(r14);

  __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
  // length: number of elements (smi-tagged)

  // Allocate new FixedDoubleArray.
  __ SmiToDoubleArrayOffset(r14, length);
  __ AddP(r14, Operand(FixedDoubleArray::kHeaderSize));
  __ Allocate(r14, array, r9, scratch2, &gc_required, DOUBLE_ALIGNMENT);

  // Set destination FixedDoubleArray's length and map.
  __ LoadRoot(scratch2, Heap::kFixedDoubleArrayMapRootIndex);
  __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
  // Update receiver's map.
  __ StoreP(scratch2, MemOperand(array, HeapObject::kMapOffset));

  __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver,
                      HeapObject::kMapOffset,
                      target_map,
                      scratch2,
                      kLRHasBeenSaved,
                      kDontSaveFPRegs,
                      OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  // Replace receiver's backing store with newly created FixedDoubleArray.
  __ AddP(scratch1, array, Operand(kHeapObjectTag));
  __ StoreP(scratch1, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ RecordWriteField(receiver,
                      JSObject::kElementsOffset,
                      scratch1,
                      scratch2,
                      kLRHasBeenSaved,
                      kDontSaveFPRegs,
                      EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  // Prepare for conversion loop.
  __ AddP(target_map, elements,
          Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ AddP(r9, array, Operand(FixedDoubleArray::kHeaderSize));
  __ SmiToDoubleArrayOffset(array, length);
  __ AddP(array_end, r9, array);
// Repurpose registers no longer in use.
#if V8_TARGET_ARCH_S390X
  Register hole_int64 = elements;
#else
  Register hole_lower = elements;
  Register hole_upper = length;
#endif
  // scratch1: begin of source FixedArray element fields, not tagged
  // hole_lower: kHoleNanLower32 OR hol_int64
  // hole_upper: kHoleNanUpper32
  // array_end: end of destination FixedDoubleArray, not tagged
  // scratch2: begin of FixedDoubleArray element fields, not tagged

  __ b(&entry, Label::kNear);

  __ bind(&only_change_map);
  __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch2,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
  __ b(&done, Label::kNear);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
  __ pop(r14);
  __ b(fail);

  // Convert and copy elements.
  __ bind(&loop);
  __ LoadP(r14, MemOperand(scratch1));
  __ la(scratch1, MemOperand(scratch1, kPointerSize));
  // r1: current element
  __ UntagAndJumpIfNotSmi(r14, r14, &convert_hole);

  // Normal smi, convert to double and store.
  __ ConvertIntToDouble(r14, d0);
  __ StoreF(d0, MemOperand(r9, 0));
  __ la(r9, MemOperand(r9, 8));

  __ b(&entry, Label::kNear);

  // Hole found, store the-hole NaN.
  __ bind(&convert_hole);
  if (FLAG_debug_code) {
    // Restore a "smi-untagged" heap object.
    __ LoadP(r1, MemOperand(r5, -kPointerSize));
    __ CompareRoot(r1, Heap::kTheHoleValueRootIndex);
    __ Assert(eq, kObjectFoundInSmiOnlyArray);
  }
#if V8_TARGET_ARCH_S390X
  __ stg(hole_int64, MemOperand(r9, 0));
#else
  // TODO(joransiu): Check if this works
  __ StoreW(hole_upper, MemOperand(r9, Register::kExponentOffset));
  __ StoreW(hole_lower, MemOperand(r9, Register::kMantissaOffset));
#endif
  __ AddP(r9, Operand(8));

  __ bind(&entry);
  __ CmpP(r9, array_end);
  __ blt(&loop);

  __ pop(r14);
  __ bind(&done);
}


void ElementsTransitionGenerator::GenerateDoubleToObject(
    MacroAssembler* masm, Register receiver, Register key, Register value,
    Register target_map, AllocationSiteMode mode, Label* fail) {
  // Register lr contains the return address.
  Label loop, convert_hole, gc_required, only_change_map;
  Register elements = r6;
  Register array = r8;
  Register length = r7;
  Register scratch = r1;

  // Verify input registers don't conflict with locals.
  DCHECK(!AreAliased(receiver, key, value, target_map, elements, array, length,
                     scratch));

  if (mode == TRACK_ALLOCATION_SITE) {
    __ JumpIfJSArrayHasAllocationMemento(receiver, elements, fail);
  }

  // Check for empty arrays, which only require a map transition and no changes
  // to the backing store.
  __ LoadP(elements, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ CompareRoot(elements, Heap::kEmptyFixedArrayRootIndex);
  __ beq(&only_change_map);

  __ Push(target_map, receiver, key, value);
  __ LoadP(length, FieldMemOperand(elements, FixedArray::kLengthOffset));
  // elements: source FixedDoubleArray
  // length: number of elements (smi-tagged)

  // Allocate new FixedArray.
  // Re-use value and target_map registers, as they have been saved on the
  // stack.
  Register array_size = value;
  Register allocate_scratch = target_map;
  __ LoadImmP(array_size, Operand(FixedDoubleArray::kHeaderSize));
  __ SmiToPtrArrayOffset(r0, length);
  __ AddP(array_size, r0);
  __ Allocate(array_size, array, allocate_scratch, scratch, &gc_required,
              NO_ALLOCATION_FLAGS);
  // array: destination FixedArray, not tagged as heap object
  // Set destination FixedDoubleArray's length and map.
  __ LoadRoot(scratch, Heap::kFixedArrayMapRootIndex);
  __ StoreP(length, MemOperand(array, FixedDoubleArray::kLengthOffset));
  __ StoreP(scratch, MemOperand(array, HeapObject::kMapOffset));
  __ AddP(array, Operand(kHeapObjectTag));

  // Prepare for conversion loop.
  Register src_elements = elements;
  Register dst_elements = target_map;
  Register dst_end = length;
  Register heap_number_map = scratch;
  __ AddP(src_elements,
          Operand(FixedDoubleArray::kHeaderSize - kHeapObjectTag));
  __ SmiToPtrArrayOffset(length, length);
  __ LoadRoot(r9, Heap::kTheHoleValueRootIndex);

  Label initialization_loop, loop_done;
  __ ShiftRightP(r0, length, Operand(kPointerSizeLog2));
  __ beq(&loop_done, Label::kNear/*, cr0*/);

  // Allocating heap numbers in the loop below can fail and cause a jump to
  // gc_required. We can't leave a partly initialized FixedArray behind,
  // so pessimistically fill it with holes now.
  __ AddP(dst_elements, array,
          Operand(FixedArray::kHeaderSize - kHeapObjectTag - kPointerSize));
  __ bind(&initialization_loop);
  __ StoreP(r9, MemOperand(dst_elements, kPointerSize));
  __ lay(dst_elements, MemOperand(dst_elements, kPointerSize));
  __ BranchOnCount(r0, &initialization_loop);

  __ AddP(dst_elements, array,
          Operand(FixedArray::kHeaderSize - kHeapObjectTag));
  __ AddP(dst_end, dst_elements, length);
  __ LoadRoot(heap_number_map, Heap::kHeapNumberMapRootIndex);
  // Using offsetted addresses in src_elements to fully take advantage of
  // post-indexing.
  // dst_elements: begin of destination FixedArray element fields, not tagged
  // src_elements: begin of source FixedDoubleArray element fields,
  //               not tagged, +4
  // dst_end: end of destination FixedArray, not tagged
  // array: destination FixedArray
  // r9: the-hole pointer
  // heap_number_map: heap number map
  __ b(&loop, Label::kNear);

  // Call into runtime if GC is required.
  __ bind(&gc_required);
  __ Pop(target_map, receiver, key, value);
  __ b(fail);

  // Replace the-hole NaN with the-hole pointer.
  __ bind(&convert_hole);
  __ StoreP(r9, MemOperand(dst_elements));
  __ AddP(dst_elements, Operand(kPointerSize));
  __ CmpLogicalP(dst_elements, dst_end);
  __ bge(&loop_done);

  __ bind(&loop);
  Register upper_bits = key;
  __ LoadlW(upper_bits, MemOperand(src_elements, Register::kExponentOffset));
  __ AddP(src_elements, Operand(kDoubleSize));
  // upper_bits: current element's upper 32 bit
  // src_elements: address of next element's upper 32 bit
  __ Cmp32(upper_bits, Operand(kHoleNanUpper32));
  __ beq(&convert_hole, Label::kNear);

  // Non-hole double, copy value into a heap number.
  Register heap_number = receiver;
  Register scratch2 = value;
  __ AllocateHeapNumber(heap_number, scratch2, r1, heap_number_map,
                         &gc_required);
  // heap_number: new heap number
#if V8_TARGET_ARCH_S390X
  __ lg(scratch2, MemOperand(src_elements, -kDoubleSize));
  // subtract tag for std
  __ AddP(upper_bits, heap_number, Operand(-kHeapObjectTag));
  __ stg(scratch2, MemOperand(upper_bits, HeapNumber::kValueOffset));
#else
  __ LoadlW(scratch2,
            MemOperand(src_elements, Register::kMantissaOffset - kDoubleSize));
  __ LoadlW(upper_bits,
            MemOperand(src_elements, Register::kExponentOffset - kDoubleSize));
  __ StoreW(scratch2,
            FieldMemOperand(heap_number, HeapNumber::kMantissaOffset));
  __ StoreW(upper_bits,
            FieldMemOperand(heap_number, HeapNumber::kExponentOffset));
#endif
  __ LoadRR(scratch2, dst_elements);
  __ StoreP(heap_number, MemOperand(dst_elements));
  __ AddP(dst_elements, Operand(kPointerSize));
  __ RecordWrite(array, scratch2, heap_number, kLRHasNotBeenSaved,
                 kDontSaveFPRegs, EMIT_REMEMBERED_SET, OMIT_SMI_CHECK);
  __ CmpLogicalP(dst_elements, dst_end);
  __ blt(&loop);
  __ bind(&loop_done);

  __ Pop(target_map, receiver, key, value);
  // Replace receiver's backing store with newly created and filled FixedArray.
  __ StoreP(array, FieldMemOperand(receiver, JSObject::kElementsOffset));
  __ RecordWriteField(receiver, JSObject::kElementsOffset, array, scratch,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, EMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);

  __ bind(&only_change_map);
  // Update receiver's map.
  __ StoreP(target_map, FieldMemOperand(receiver, HeapObject::kMapOffset));
  __ RecordWriteField(receiver, HeapObject::kMapOffset, target_map, scratch,
                      kLRHasNotBeenSaved, kDontSaveFPRegs, OMIT_REMEMBERED_SET,
                      OMIT_SMI_CHECK);
}


// assume ip can be used as a scratch register below
void StringCharLoadGenerator::Generate(MacroAssembler* masm, Register string,
                                       Register index, Register result,
                                       Label* call_runtime) {
  // Fetch the instance type of the receiver into result register.
  __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // We need special handling for indirect strings.
  Label check_sequential;
  __ mov(r0, Operand(kIsIndirectStringMask));
  __ AndP(r0, result);
  __ beq(&check_sequential, Label::kNear/*, cr0*/);

  // Dispatch on the indirect string shape: slice or cons.
  Label cons_string;
  __ mov(ip, Operand(kSlicedNotConsMask));
  __ LoadRR(r0, result);
  __ AndP(r0, ip/*, SetRC*/);  // Should be okay to remove RC
  __ beq(&cons_string , Label::kNear/*, cr0*/);

  // Handle slices.
  Label indirect_string_loaded;
  __ LoadP(result, FieldMemOperand(string, SlicedString::kOffsetOffset));
  __ LoadP(string, FieldMemOperand(string, SlicedString::kParentOffset));
  __ SmiUntag(ip, result);
  __ AddP(index, ip);
  __ b(&indirect_string_loaded, Label::kNear);

  // Handle cons strings.
  // Check whether the right hand side is the empty string (i.e. if
  // this is really a flat string in a cons string). If that is not
  // the case we would rather go to the runtime system now to flatten
  // the string.
  __ bind(&cons_string);
  __ LoadP(result, FieldMemOperand(string, ConsString::kSecondOffset));
  __ CompareRoot(result, Heap::kempty_stringRootIndex);
  __ bne(call_runtime);
  // Get the first of the two strings and load its instance type.
  __ LoadP(string, FieldMemOperand(string, ConsString::kFirstOffset));

  __ bind(&indirect_string_loaded);
  __ LoadP(result, FieldMemOperand(string, HeapObject::kMapOffset));
  __ LoadlB(result, FieldMemOperand(result, Map::kInstanceTypeOffset));

  // Distinguish sequential and external strings. Only these two string
  // representations can reach here (slices and flat cons strings have been
  // reduced to the underlying sequential or external string).
  Label external_string, check_encoding;
  __ bind(&check_sequential);
  STATIC_ASSERT(kSeqStringTag == 0);
  __ mov(r0, Operand(kStringRepresentationMask));
  __ AndP(r0, result);
  __ bne(&external_string, Label::kNear);

  // Prepare sequential strings
  STATIC_ASSERT(SeqTwoByteString::kHeaderSize == SeqOneByteString::kHeaderSize);
  __ AddP(string, Operand(SeqTwoByteString::kHeaderSize - kHeapObjectTag));
  __ b(&check_encoding, Label::kNear);

  // Handle external strings.
  __ bind(&external_string);
  if (FLAG_debug_code) {
    // Assert that we do not have a cons or slice (indirect strings) here.
    // Sequential strings have already been ruled out.
    __ mov(r0, Operand(kIsIndirectStringMask));
    __ AndP(r0, result);
    __ Assert(eq, kExternalStringExpectedButNotFound, cr0);
  }
  // Rule out short external strings.
  STATIC_ASSERT(kShortExternalStringTag != 0);
  __ mov(r0, Operand(kShortExternalStringMask));
  __ AndP(r0, result);
  __ bne(call_runtime /*, cr0*/);
  __ LoadP(string,
           FieldMemOperand(string, ExternalString::kResourceDataOffset));

  Label one_byte, done;
  __ bind(&check_encoding);
  STATIC_ASSERT(kTwoByteStringTag == 0);
  __ mov(r0, Operand(kStringEncodingMask));
  __ AndP(r0, result);
  __ bne(&one_byte, Label::kNear);
  // Two-byte string.
  __ ShiftLeftP(result, index, Operand(1));
  __ LoadLogicalHalfWordP(result, MemOperand(string, result));
  __ b(&done, Label::kNear);
  __ bind(&one_byte);
  // One-byte string.
  __ LoadlB(result, MemOperand(string, index));
  __ bind(&done);
}


static MemOperand ExpConstant(int index, Register base) {
  return MemOperand(base, index * kDoubleSize);
}


void MathExpGenerator::EmitMathExp(MacroAssembler* masm, DoubleRegister input,
                                   DoubleRegister result,
                                   DoubleRegister double_scratch1,
                                   DoubleRegister double_scratch2,
                                   Register temp1, Register temp2,
                                   Register temp3) {
  DCHECK(!input.is(result));
  DCHECK(!input.is(double_scratch1));
  DCHECK(!input.is(double_scratch2));
  DCHECK(!result.is(double_scratch1));
  DCHECK(!result.is(double_scratch2));
  DCHECK(!double_scratch1.is(double_scratch2));
  DCHECK(!temp1.is(temp2));
  DCHECK(!temp1.is(temp3));
  DCHECK(!temp2.is(temp3));
  DCHECK(ExternalReference::math_exp_constants(0).address() != NULL);
  DCHECK(!masm->serializer_enabled());  // External references not serializable.

  Label zero, infinity, done;

  __ mov(temp3, Operand(ExternalReference::math_exp_constants(0)));

  __ LoadF(double_scratch1, ExpConstant(0, temp3));
  __ cdbr(double_scratch1, input);
  __ ldr(result, input);
  __ bunordered(&done, Label::kNear);
  __ bge(&zero, Label::kNear);

  __ LoadF(double_scratch2, ExpConstant(1, temp3));
  __ cdbr(input, double_scratch2);
  __ bge(&infinity, Label::kNear);

  __ LoadF(double_scratch1, ExpConstant(3, temp3));
  __ LoadF(result, ExpConstant(4, temp3));
  // @TODO(Tara): verify madbr for correctness and use here instead of mdbr,adbr
  __ mdbr(double_scratch1, input);
  __ adbr(double_scratch1, result);

  // Move low word of double_scratch1 to temp2
  __ lgdr(temp2, double_scratch1);
  __ nihf(temp2, Operand::Zero());

  __ sdbr(double_scratch1, result);
  __ LoadF(result, ExpConstant(6, temp3));
  __ LoadF(double_scratch2, ExpConstant(5, temp3));
  __ mdbr(double_scratch1, double_scratch2);
  __ sdbr(double_scratch1, input);
  __ sdbr(result, double_scratch1);
  __ ldr(double_scratch2, double_scratch1);
  __ mdbr(double_scratch2, double_scratch2);
  __ mdbr(result, double_scratch2);
  __ LoadF(double_scratch2, ExpConstant(7, temp3));
  __ mdbr(result, double_scratch2);
  __ sdbr(result, double_scratch1);
  __ LoadF(double_scratch2, ExpConstant(8, temp3));
  __ adbr(result, double_scratch2);
  __ ShiftRight(temp1, temp2, Operand(11));
  __ AndP(temp2, Operand(0x7ff));
  __ AddP(temp1, Operand(0x3ff));

  // Must not call ExpConstant() after overwriting temp3!
  __ mov(temp3, Operand(ExternalReference::math_exp_log_table()));
  __ ShiftLeft(temp2, temp2, Operand(3));

  __ lg(temp2, MemOperand(temp2, temp3));
  __ sllg(temp1, temp1, Operand(52));
  __ ogr(temp2, temp1);
  __ ldgr(double_scratch1, temp2);

  __ mdbr(result, double_scratch1);
  __ b(&done, Label::kNear);

  __ bind(&zero);
  __ lzdr(kDoubleRegZero);
  __ ldr(result, kDoubleRegZero);
  __ b(&done, Label::kNear);

  __ bind(&infinity);
  __ LoadF(result, ExpConstant(2, temp3));

  __ bind(&done);
}

#undef __


CodeAgingHelper::CodeAgingHelper() {
  DCHECK(young_sequence_.length() == kNoCodeAgeSequenceLength);
  // Since patcher is a large object, allocate it dynamically when needed,
  // to avoid overloading the stack in stress conditions.
  // DONT_FLUSH is used because the CodeAgingHelper is initialized early in
  // the process, before ARM simulator ICache is setup.
  SmartPointer<CodePatcher> patcher(new CodePatcher(
      young_sequence_.start(), young_sequence_.length(),
      CodePatcher::DONT_FLUSH));
  PredictableCodeSizeScope scope(patcher->masm(), young_sequence_.length());
  patcher->masm()->PushFixedFrame(r3);
  patcher->masm()->la(fp,
           MemOperand(sp, StandardFrameConstants::kFixedFrameSizeFromFp));
}


#ifdef DEBUG
bool CodeAgingHelper::IsOld(byte* candidate) const {
  return Assembler::IsNop(Assembler::instr_at(candidate));
}
#endif


bool Code::IsYoungSequence(Isolate* isolate, byte* sequence) {
  bool result = isolate->code_aging_helper()->IsYoung(sequence);
  DCHECK(result || isolate->code_aging_helper()->IsOld(sequence));
  return result;
}


void Code::GetCodeAgeAndParity(Isolate* isolate, byte* sequence, Age* age,
                               MarkingParity* parity) {
  if (IsYoungSequence(isolate, sequence)) {
    *age = kNoAgeCodeAge;
    *parity = NO_MARKING_PARITY;
  } else {
    Code* code = NULL;
    Address target_address =
        Assembler::target_address_at(sequence + kCodeAgingTargetDelta, code);
    Code* stub = GetCodeFromTargetAddress(target_address);
    GetCodeAgeAndParity(stub, age, parity);
  }
}


void Code::PatchPlatformCodeAge(Isolate* isolate, byte* sequence, Code::Age age,
                                MarkingParity parity) {
  uint32_t young_length = isolate->code_aging_helper()->young_sequence_length();
  if (age == kNoAgeCodeAge) {
    isolate->code_aging_helper()->CopyYoungSequenceTo(sequence);
    CpuFeatures::FlushICache(sequence, young_length);
  } else {
    // FIXED_SEQUENCE
    Code* stub = GetCodeAgeStub(isolate, age, parity);
    CodePatcher patcher(sequence, young_length);
    Assembler::BlockTrampolinePoolScope block_trampoline_pool(patcher.masm());
    intptr_t target = reinterpret_cast<intptr_t>(stub->instruction_start());
    // We need to push lr on stack so that GenerateMakeCodeYoungAgainCommon
    // knows where to pick up the return address
    //
    // Since we can no longer guarentee ip will hold the branch address
    // because of BRASL, use Call so that GenerateMakeCodeYoungAgainCommon
    // can calculate the branch address offset
    patcher.masm()->nop();  // marker to detect sequence (see IsOld)
    patcher.masm()->CleanseP(r14);
    patcher.masm()->Push(r14);
    patcher.masm()->mov(r2, Operand(target));
    patcher.masm()->Call(r2);
    for (int i = 0;
         i < kNoCodeAgeSequenceLength - kCodeAgingSequenceLength; i += 2) {
      // TODO(joransiu): Create nop function to pad
      //       (kNoCodeAgeSequenceLength - kCodeAgingSequenceLength) bytes.
      patcher.masm()->nop();   // 2-byte nops().
    }
  }
}
}  // namespace internal
}  // namespace v8

#endif  // V8_TARGET_ARCH_S390