File: serialize.cc

package info (click to toggle)
nodejs 4.8.2~dfsg-1
  • links: PTS, VCS
  • area: main
  • in suites: stretch
  • size: 62,476 kB
  • ctags: 111,183
  • sloc: cpp: 661,544; ansic: 31,406; python: 23,073; makefile: 1,418; sh: 1,384; perl: 255; lisp: 222; ruby: 76; xml: 50
file content (2775 lines) | stat: -rw-r--r-- 109,744 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
// Copyright 2012 the V8 project authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

#include "src/v8.h"

#include "src/accessors.h"
#include "src/api.h"
#include "src/base/platform/platform.h"
#include "src/bootstrapper.h"
#include "src/code-stubs.h"
#include "src/cpu-profiler.h"
#include "src/deoptimizer.h"
#include "src/execution.h"
#include "src/global-handles.h"
#include "src/ic/ic.h"
#include "src/ic/stub-cache.h"
#include "src/objects.h"
#include "src/parser.h"
#include "src/runtime/runtime.h"
#include "src/snapshot/natives.h"
#include "src/snapshot/serialize.h"
#include "src/snapshot/snapshot.h"
#include "src/snapshot/snapshot-source-sink.h"
#include "src/v8threads.h"
#include "src/version.h"

namespace v8 {
namespace internal {


// -----------------------------------------------------------------------------
// Coding of external references.


ExternalReferenceTable* ExternalReferenceTable::instance(Isolate* isolate) {
  ExternalReferenceTable* external_reference_table =
      isolate->external_reference_table();
  if (external_reference_table == NULL) {
    external_reference_table = new ExternalReferenceTable(isolate);
    isolate->set_external_reference_table(external_reference_table);
  }
  return external_reference_table;
}


ExternalReferenceTable::ExternalReferenceTable(Isolate* isolate) {
  // Miscellaneous
  Add(ExternalReference::roots_array_start(isolate).address(),
      "Heap::roots_array_start()");
  Add(ExternalReference::address_of_stack_limit(isolate).address(),
      "StackGuard::address_of_jslimit()");
  Add(ExternalReference::address_of_real_stack_limit(isolate).address(),
      "StackGuard::address_of_real_jslimit()");
  Add(ExternalReference::new_space_start(isolate).address(),
      "Heap::NewSpaceStart()");
  Add(ExternalReference::new_space_mask(isolate).address(),
      "Heap::NewSpaceMask()");
  Add(ExternalReference::new_space_allocation_limit_address(isolate).address(),
      "Heap::NewSpaceAllocationLimitAddress()");
  Add(ExternalReference::new_space_allocation_top_address(isolate).address(),
      "Heap::NewSpaceAllocationTopAddress()");
  Add(ExternalReference::debug_break(isolate).address(), "Debug::Break()");
  Add(ExternalReference::debug_step_in_fp_address(isolate).address(),
      "Debug::step_in_fp_addr()");
  Add(ExternalReference::mod_two_doubles_operation(isolate).address(),
      "mod_two_doubles");
  // Keyed lookup cache.
  Add(ExternalReference::keyed_lookup_cache_keys(isolate).address(),
      "KeyedLookupCache::keys()");
  Add(ExternalReference::keyed_lookup_cache_field_offsets(isolate).address(),
      "KeyedLookupCache::field_offsets()");
  Add(ExternalReference::handle_scope_next_address(isolate).address(),
      "HandleScope::next");
  Add(ExternalReference::handle_scope_limit_address(isolate).address(),
      "HandleScope::limit");
  Add(ExternalReference::handle_scope_level_address(isolate).address(),
      "HandleScope::level");
  Add(ExternalReference::new_deoptimizer_function(isolate).address(),
      "Deoptimizer::New()");
  Add(ExternalReference::compute_output_frames_function(isolate).address(),
      "Deoptimizer::ComputeOutputFrames()");
  Add(ExternalReference::address_of_min_int().address(),
      "LDoubleConstant::min_int");
  Add(ExternalReference::address_of_one_half().address(),
      "LDoubleConstant::one_half");
  Add(ExternalReference::isolate_address(isolate).address(), "isolate");
  Add(ExternalReference::address_of_negative_infinity().address(),
      "LDoubleConstant::negative_infinity");
  Add(ExternalReference::power_double_double_function(isolate).address(),
      "power_double_double_function");
  Add(ExternalReference::power_double_int_function(isolate).address(),
      "power_double_int_function");
  Add(ExternalReference::math_log_double_function(isolate).address(),
      "std::log");
  Add(ExternalReference::store_buffer_top(isolate).address(),
      "store_buffer_top");
  Add(ExternalReference::address_of_the_hole_nan().address(), "the_hole_nan");
  Add(ExternalReference::get_date_field_function(isolate).address(),
      "JSDate::GetField");
  Add(ExternalReference::date_cache_stamp(isolate).address(),
      "date_cache_stamp");
  Add(ExternalReference::address_of_pending_message_obj(isolate).address(),
      "address_of_pending_message_obj");
  Add(ExternalReference::get_make_code_young_function(isolate).address(),
      "Code::MakeCodeYoung");
  Add(ExternalReference::cpu_features().address(), "cpu_features");
  Add(ExternalReference::old_space_allocation_top_address(isolate).address(),
      "Heap::OldSpaceAllocationTopAddress");
  Add(ExternalReference::old_space_allocation_limit_address(isolate).address(),
      "Heap::OldSpaceAllocationLimitAddress");
  Add(ExternalReference::allocation_sites_list_address(isolate).address(),
      "Heap::allocation_sites_list_address()");
  Add(ExternalReference::address_of_uint32_bias().address(), "uint32_bias");
  Add(ExternalReference::get_mark_code_as_executed_function(isolate).address(),
      "Code::MarkCodeAsExecuted");
  Add(ExternalReference::is_profiling_address(isolate).address(),
      "CpuProfiler::is_profiling");
  Add(ExternalReference::scheduled_exception_address(isolate).address(),
      "Isolate::scheduled_exception");
  Add(ExternalReference::invoke_function_callback(isolate).address(),
      "InvokeFunctionCallback");
  Add(ExternalReference::invoke_accessor_getter_callback(isolate).address(),
      "InvokeAccessorGetterCallback");
  Add(ExternalReference::flush_icache_function(isolate).address(),
      "CpuFeatures::FlushICache");
  Add(ExternalReference::log_enter_external_function(isolate).address(),
      "Logger::EnterExternal");
  Add(ExternalReference::log_leave_external_function(isolate).address(),
      "Logger::LeaveExternal");
  Add(ExternalReference::address_of_minus_one_half().address(),
      "double_constants.minus_one_half");
  Add(ExternalReference::stress_deopt_count(isolate).address(),
      "Isolate::stress_deopt_count_address()");

  // Debug addresses
  Add(ExternalReference::debug_after_break_target_address(isolate).address(),
      "Debug::after_break_target_address()");
  Add(ExternalReference::debug_restarter_frame_function_pointer_address(isolate)
          .address(),
      "Debug::restarter_frame_function_pointer_address()");
  Add(ExternalReference::debug_is_active_address(isolate).address(),
      "Debug::is_active_address()");

#ifndef V8_INTERPRETED_REGEXP
  Add(ExternalReference::re_case_insensitive_compare_uc16(isolate).address(),
      "NativeRegExpMacroAssembler::CaseInsensitiveCompareUC16()");
  Add(ExternalReference::re_check_stack_guard_state(isolate).address(),
      "RegExpMacroAssembler*::CheckStackGuardState()");
  Add(ExternalReference::re_grow_stack(isolate).address(),
      "NativeRegExpMacroAssembler::GrowStack()");
  Add(ExternalReference::re_word_character_map().address(),
      "NativeRegExpMacroAssembler::word_character_map");
  Add(ExternalReference::address_of_regexp_stack_limit(isolate).address(),
      "RegExpStack::limit_address()");
  Add(ExternalReference::address_of_regexp_stack_memory_address(isolate)
          .address(),
      "RegExpStack::memory_address()");
  Add(ExternalReference::address_of_regexp_stack_memory_size(isolate).address(),
      "RegExpStack::memory_size()");
  Add(ExternalReference::address_of_static_offsets_vector(isolate).address(),
      "OffsetsVector::static_offsets_vector");
#endif  // V8_INTERPRETED_REGEXP

  // The following populates all of the different type of external references
  // into the ExternalReferenceTable.
  //
  // NOTE: This function was originally 100k of code.  It has since been
  // rewritten to be mostly table driven, as the callback macro style tends to
  // very easily cause code bloat.  Please be careful in the future when adding
  // new references.

  struct RefTableEntry {
    uint16_t id;
    const char* name;
  };

  static const RefTableEntry c_builtins[] = {
#define DEF_ENTRY_C(name, ignored)           \
  { Builtins::c_##name, "Builtins::" #name } \
  ,
      BUILTIN_LIST_C(DEF_ENTRY_C)
#undef DEF_ENTRY_C
  };

  for (unsigned i = 0; i < arraysize(c_builtins); ++i) {
    ExternalReference ref(static_cast<Builtins::CFunctionId>(c_builtins[i].id),
                          isolate);
    Add(ref.address(), c_builtins[i].name);
  }

  static const RefTableEntry builtins[] = {
#define DEF_ENTRY_C(name, ignored)          \
  { Builtins::k##name, "Builtins::" #name } \
  ,
#define DEF_ENTRY_A(name, i1, i2, i3)       \
  { Builtins::k##name, "Builtins::" #name } \
  ,
      BUILTIN_LIST_C(DEF_ENTRY_C) BUILTIN_LIST_A(DEF_ENTRY_A)
          BUILTIN_LIST_DEBUG_A(DEF_ENTRY_A)
#undef DEF_ENTRY_C
#undef DEF_ENTRY_A
  };

  for (unsigned i = 0; i < arraysize(builtins); ++i) {
    ExternalReference ref(static_cast<Builtins::Name>(builtins[i].id), isolate);
    Add(ref.address(), builtins[i].name);
  }

  static const RefTableEntry runtime_functions[] = {
#define RUNTIME_ENTRY(name, i1, i2)       \
  { Runtime::k##name, "Runtime::" #name } \
  ,
      FOR_EACH_INTRINSIC(RUNTIME_ENTRY)
#undef RUNTIME_ENTRY
  };

  for (unsigned i = 0; i < arraysize(runtime_functions); ++i) {
    ExternalReference ref(
        static_cast<Runtime::FunctionId>(runtime_functions[i].id), isolate);
    Add(ref.address(), runtime_functions[i].name);
  }

  static const RefTableEntry inline_caches[] = {
#define IC_ENTRY(name)          \
  { IC::k##name, "IC::" #name } \
  ,
      IC_UTIL_LIST(IC_ENTRY)
#undef IC_ENTRY
  };

  for (unsigned i = 0; i < arraysize(inline_caches); ++i) {
    ExternalReference ref(
        IC_Utility(static_cast<IC::UtilityId>(inline_caches[i].id)), isolate);
    Add(ref.address(), runtime_functions[i].name);
  }

  // Stat counters
  struct StatsRefTableEntry {
    StatsCounter* (Counters::*counter)();
    const char* name;
  };

  static const StatsRefTableEntry stats_ref_table[] = {
#define COUNTER_ENTRY(name, caption)      \
  { &Counters::name, "Counters::" #name } \
  ,
      STATS_COUNTER_LIST_1(COUNTER_ENTRY) STATS_COUNTER_LIST_2(COUNTER_ENTRY)
#undef COUNTER_ENTRY
  };

  Counters* counters = isolate->counters();
  for (unsigned i = 0; i < arraysize(stats_ref_table); ++i) {
    // To make sure the indices are not dependent on whether counters are
    // enabled, use a dummy address as filler.
    Address address = NotAvailable();
    StatsCounter* counter = (counters->*(stats_ref_table[i].counter))();
    if (counter->Enabled()) {
      address = reinterpret_cast<Address>(counter->GetInternalPointer());
    }
    Add(address, stats_ref_table[i].name);
  }

  // Top addresses
  static const char* address_names[] = {
#define BUILD_NAME_LITERAL(Name, name) "Isolate::" #name "_address",
      FOR_EACH_ISOLATE_ADDRESS_NAME(BUILD_NAME_LITERAL) NULL
#undef BUILD_NAME_LITERAL
  };

  for (int i = 0; i < Isolate::kIsolateAddressCount; ++i) {
    Add(isolate->get_address_from_id(static_cast<Isolate::AddressId>(i)),
        address_names[i]);
  }

  // Accessors
  struct AccessorRefTable {
    Address address;
    const char* name;
  };

  static const AccessorRefTable accessors[] = {
#define ACCESSOR_INFO_DECLARATION(name)                                     \
  { FUNCTION_ADDR(&Accessors::name##Getter), "Accessors::" #name "Getter" } \
  , {FUNCTION_ADDR(&Accessors::name##Setter), "Accessors::" #name "Setter"},
      ACCESSOR_INFO_LIST(ACCESSOR_INFO_DECLARATION)
#undef ACCESSOR_INFO_DECLARATION
  };

  for (unsigned i = 0; i < arraysize(accessors); ++i) {
    Add(accessors[i].address, accessors[i].name);
  }

  StubCache* stub_cache = isolate->stub_cache();

  // Stub cache tables
  Add(stub_cache->key_reference(StubCache::kPrimary).address(),
      "StubCache::primary_->key");
  Add(stub_cache->value_reference(StubCache::kPrimary).address(),
      "StubCache::primary_->value");
  Add(stub_cache->map_reference(StubCache::kPrimary).address(),
      "StubCache::primary_->map");
  Add(stub_cache->key_reference(StubCache::kSecondary).address(),
      "StubCache::secondary_->key");
  Add(stub_cache->value_reference(StubCache::kSecondary).address(),
      "StubCache::secondary_->value");
  Add(stub_cache->map_reference(StubCache::kSecondary).address(),
      "StubCache::secondary_->map");

  // Runtime entries
  Add(ExternalReference::delete_handle_scope_extensions(isolate).address(),
      "HandleScope::DeleteExtensions");
  Add(ExternalReference::incremental_marking_record_write_function(isolate)
          .address(),
      "IncrementalMarking::RecordWrite");
  Add(ExternalReference::store_buffer_overflow_function(isolate).address(),
      "StoreBuffer::StoreBufferOverflow");

  // Add a small set of deopt entry addresses to encoder without generating the
  // deopt table code, which isn't possible at deserialization time.
  HandleScope scope(isolate);
  for (int entry = 0; entry < kDeoptTableSerializeEntryCount; ++entry) {
    Address address = Deoptimizer::GetDeoptimizationEntry(
        isolate,
        entry,
        Deoptimizer::LAZY,
        Deoptimizer::CALCULATE_ENTRY_ADDRESS);
    Add(address, "lazy_deopt");
  }
}


ExternalReferenceEncoder::ExternalReferenceEncoder(Isolate* isolate) {
  map_ = isolate->external_reference_map();
  if (map_ != NULL) return;
  map_ = new HashMap(HashMap::PointersMatch);
  ExternalReferenceTable* table = ExternalReferenceTable::instance(isolate);
  for (int i = 0; i < table->size(); ++i) {
    Address addr = table->address(i);
    if (addr == ExternalReferenceTable::NotAvailable()) continue;
    // We expect no duplicate external references entries in the table.
    DCHECK_NULL(map_->Lookup(addr, Hash(addr)));
    map_->LookupOrInsert(addr, Hash(addr))->value = reinterpret_cast<void*>(i);
  }
  isolate->set_external_reference_map(map_);
}


uint32_t ExternalReferenceEncoder::Encode(Address address) const {
  DCHECK_NOT_NULL(address);
  HashMap::Entry* entry =
      const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
  DCHECK_NOT_NULL(entry);
  return static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
}


const char* ExternalReferenceEncoder::NameOfAddress(Isolate* isolate,
                                                    Address address) const {
  HashMap::Entry* entry =
      const_cast<HashMap*>(map_)->Lookup(address, Hash(address));
  if (entry == NULL) return "<unknown>";
  uint32_t i = static_cast<uint32_t>(reinterpret_cast<intptr_t>(entry->value));
  return ExternalReferenceTable::instance(isolate)->name(i);
}


RootIndexMap::RootIndexMap(Isolate* isolate) {
  map_ = isolate->root_index_map();
  if (map_ != NULL) return;
  map_ = new HashMap(HashMap::PointersMatch);
  Object** root_array = isolate->heap()->roots_array_start();
  for (uint32_t i = 0; i < Heap::kStrongRootListLength; i++) {
    Heap::RootListIndex root_index = static_cast<Heap::RootListIndex>(i);
    Object* root = root_array[root_index];
    // Omit root entries that can be written after initialization. They must
    // not be referenced through the root list in the snapshot.
    if (root->IsHeapObject() &&
        isolate->heap()->RootCanBeTreatedAsConstant(root_index)) {
      HeapObject* heap_object = HeapObject::cast(root);
      HashMap::Entry* entry = LookupEntry(map_, heap_object, false);
      if (entry != NULL) {
        // Some are initialized to a previous value in the root list.
        DCHECK_LT(GetValue(entry), i);
      } else {
        SetValue(LookupEntry(map_, heap_object, true), i);
      }
    }
  }
  isolate->set_root_index_map(map_);
}


class CodeAddressMap: public CodeEventLogger {
 public:
  explicit CodeAddressMap(Isolate* isolate)
      : isolate_(isolate) {
    isolate->logger()->addCodeEventListener(this);
  }

  virtual ~CodeAddressMap() {
    isolate_->logger()->removeCodeEventListener(this);
  }

  virtual void CodeMoveEvent(Address from, Address to) {
    address_to_name_map_.Move(from, to);
  }

  virtual void CodeDisableOptEvent(Code* code, SharedFunctionInfo* shared) {
  }

  virtual void CodeDeleteEvent(Address from) {
    address_to_name_map_.Remove(from);
  }

  const char* Lookup(Address address) {
    return address_to_name_map_.Lookup(address);
  }

 private:
  class NameMap {
   public:
    NameMap() : impl_(HashMap::PointersMatch) {}

    ~NameMap() {
      for (HashMap::Entry* p = impl_.Start(); p != NULL; p = impl_.Next(p)) {
        DeleteArray(static_cast<const char*>(p->value));
      }
    }

    void Insert(Address code_address, const char* name, int name_size) {
      HashMap::Entry* entry = FindOrCreateEntry(code_address);
      if (entry->value == NULL) {
        entry->value = CopyName(name, name_size);
      }
    }

    const char* Lookup(Address code_address) {
      HashMap::Entry* entry = FindEntry(code_address);
      return (entry != NULL) ? static_cast<const char*>(entry->value) : NULL;
    }

    void Remove(Address code_address) {
      HashMap::Entry* entry = FindEntry(code_address);
      if (entry != NULL) {
        DeleteArray(static_cast<char*>(entry->value));
        RemoveEntry(entry);
      }
    }

    void Move(Address from, Address to) {
      if (from == to) return;
      HashMap::Entry* from_entry = FindEntry(from);
      DCHECK(from_entry != NULL);
      void* value = from_entry->value;
      RemoveEntry(from_entry);
      HashMap::Entry* to_entry = FindOrCreateEntry(to);
      DCHECK(to_entry->value == NULL);
      to_entry->value = value;
    }

   private:
    static char* CopyName(const char* name, int name_size) {
      char* result = NewArray<char>(name_size + 1);
      for (int i = 0; i < name_size; ++i) {
        char c = name[i];
        if (c == '\0') c = ' ';
        result[i] = c;
      }
      result[name_size] = '\0';
      return result;
    }

    HashMap::Entry* FindOrCreateEntry(Address code_address) {
      return impl_.LookupOrInsert(code_address,
                                  ComputePointerHash(code_address));
    }

    HashMap::Entry* FindEntry(Address code_address) {
      return impl_.Lookup(code_address, ComputePointerHash(code_address));
    }

    void RemoveEntry(HashMap::Entry* entry) {
      impl_.Remove(entry->key, entry->hash);
    }

    HashMap impl_;

    DISALLOW_COPY_AND_ASSIGN(NameMap);
  };

  virtual void LogRecordedBuffer(Code* code,
                                 SharedFunctionInfo*,
                                 const char* name,
                                 int length) {
    address_to_name_map_.Insert(code->address(), name, length);
  }

  NameMap address_to_name_map_;
  Isolate* isolate_;
};


void Deserializer::DecodeReservation(
    Vector<const SerializedData::Reservation> res) {
  DCHECK_EQ(0, reservations_[NEW_SPACE].length());
  STATIC_ASSERT(NEW_SPACE == 0);
  int current_space = NEW_SPACE;
  for (auto& r : res) {
    reservations_[current_space].Add({r.chunk_size(), NULL, NULL});
    if (r.is_last()) current_space++;
  }
  DCHECK_EQ(kNumberOfSpaces, current_space);
  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) current_chunk_[i] = 0;
}


void Deserializer::FlushICacheForNewCodeObjects() {
  if (!deserializing_user_code_) {
    // The entire isolate is newly deserialized. Simply flush all code pages.
    PageIterator it(isolate_->heap()->code_space());
    while (it.has_next()) {
      Page* p = it.next();
      CpuFeatures::FlushICache(p->area_start(),
                               p->area_end() - p->area_start());
    }
  }
  for (Code* code : new_code_objects_) {
    CpuFeatures::FlushICache(code->instruction_start(),
                             code->instruction_size());
  }
}


bool Deserializer::ReserveSpace() {
#ifdef DEBUG
  for (int i = NEW_SPACE; i < kNumberOfSpaces; ++i) {
    CHECK(reservations_[i].length() > 0);
  }
#endif  // DEBUG
  if (!isolate_->heap()->ReserveSpace(reservations_)) return false;
  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
    high_water_[i] = reservations_[i][0].start;
  }
  return true;
}


void Deserializer::Initialize(Isolate* isolate) {
  DCHECK_NULL(isolate_);
  DCHECK_NOT_NULL(isolate);
  isolate_ = isolate;
  DCHECK_NULL(external_reference_table_);
  external_reference_table_ = ExternalReferenceTable::instance(isolate);
  CHECK_EQ(magic_number_,
           SerializedData::ComputeMagicNumber(external_reference_table_));
}


void Deserializer::Deserialize(Isolate* isolate) {
  Initialize(isolate);
  if (!ReserveSpace()) V8::FatalProcessOutOfMemory("deserializing context");
  // No active threads.
  DCHECK_NULL(isolate_->thread_manager()->FirstThreadStateInUse());
  // No active handles.
  DCHECK(isolate_->handle_scope_implementer()->blocks()->is_empty());

  {
    DisallowHeapAllocation no_gc;
    isolate_->heap()->IterateSmiRoots(this);
    isolate_->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
    isolate_->heap()->RepairFreeListsAfterDeserialization();
    isolate_->heap()->IterateWeakRoots(this, VISIT_ALL);
    DeserializeDeferredObjects();
  }

  isolate_->heap()->set_native_contexts_list(
      isolate_->heap()->undefined_value());

  // The allocation site list is build during root iteration, but if no sites
  // were encountered then it needs to be initialized to undefined.
  if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
    isolate_->heap()->set_allocation_sites_list(
        isolate_->heap()->undefined_value());
  }

  // Update data pointers to the external strings containing natives sources.
  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
    Object* source = isolate_->heap()->natives_source_cache()->get(i);
    if (!source->IsUndefined()) {
      ExternalOneByteString::cast(source)->update_data_cache();
    }
  }

  FlushICacheForNewCodeObjects();

  // Issue code events for newly deserialized code objects.
  LOG_CODE_EVENT(isolate_, LogCodeObjects());
  LOG_CODE_EVENT(isolate_, LogCompiledFunctions());
}


MaybeHandle<Object> Deserializer::DeserializePartial(
    Isolate* isolate, Handle<JSGlobalProxy> global_proxy,
    Handle<FixedArray>* outdated_contexts_out) {
  Initialize(isolate);
  if (!ReserveSpace()) {
    V8::FatalProcessOutOfMemory("deserialize context");
    return MaybeHandle<Object>();
  }

  Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(1);
  attached_objects[kGlobalProxyReference] = global_proxy;
  SetAttachedObjects(attached_objects);

  DisallowHeapAllocation no_gc;
  // Keep track of the code space start and end pointers in case new
  // code objects were unserialized
  OldSpace* code_space = isolate_->heap()->code_space();
  Address start_address = code_space->top();
  Object* root;
  Object* outdated_contexts;
  VisitPointer(&root);
  DeserializeDeferredObjects();
  VisitPointer(&outdated_contexts);

  // There's no code deserialized here. If this assert fires then that's
  // changed and logging should be added to notify the profiler et al of the
  // new code, which also has to be flushed from instruction cache.
  CHECK_EQ(start_address, code_space->top());
  CHECK(outdated_contexts->IsFixedArray());
  *outdated_contexts_out =
      Handle<FixedArray>(FixedArray::cast(outdated_contexts), isolate);
  return Handle<Object>(root, isolate);
}


MaybeHandle<SharedFunctionInfo> Deserializer::DeserializeCode(
    Isolate* isolate) {
  Initialize(isolate);
  if (!ReserveSpace()) {
    return Handle<SharedFunctionInfo>();
  } else {
    deserializing_user_code_ = true;
    HandleScope scope(isolate);
    Handle<SharedFunctionInfo> result;
    {
      DisallowHeapAllocation no_gc;
      Object* root;
      VisitPointer(&root);
      DeserializeDeferredObjects();
      result = Handle<SharedFunctionInfo>(SharedFunctionInfo::cast(root));
    }
    CommitNewInternalizedStrings(isolate);
    return scope.CloseAndEscape(result);
  }
}


Deserializer::~Deserializer() {
  // TODO(svenpanne) Re-enable this assertion when v8 initialization is fixed.
  // DCHECK(source_.AtEOF());
  attached_objects_.Dispose();
}


// This is called on the roots.  It is the driver of the deserialization
// process.  It is also called on the body of each function.
void Deserializer::VisitPointers(Object** start, Object** end) {
  // The space must be new space.  Any other space would cause ReadChunk to try
  // to update the remembered using NULL as the address.
  ReadData(start, end, NEW_SPACE, NULL);
}


void Deserializer::DeserializeDeferredObjects() {
  for (int code = source_.Get(); code != kSynchronize; code = source_.Get()) {
    int space = code & kSpaceMask;
    DCHECK(space <= kNumberOfSpaces);
    DCHECK(code - space == kNewObject);
    HeapObject* object = GetBackReferencedObject(space);
    int size = source_.GetInt() << kPointerSizeLog2;
    Address obj_address = object->address();
    Object** start = reinterpret_cast<Object**>(obj_address + kPointerSize);
    Object** end = reinterpret_cast<Object**>(obj_address + size);
    bool filled = ReadData(start, end, space, obj_address);
    CHECK(filled);
    DCHECK(CanBeDeferred(object));
    PostProcessNewObject(object, space);
  }
}


// Used to insert a deserialized internalized string into the string table.
class StringTableInsertionKey : public HashTableKey {
 public:
  explicit StringTableInsertionKey(String* string)
      : string_(string), hash_(HashForObject(string)) {
    DCHECK(string->IsInternalizedString());
  }

  bool IsMatch(Object* string) override {
    // We know that all entries in a hash table had their hash keys created.
    // Use that knowledge to have fast failure.
    if (hash_ != HashForObject(string)) return false;
    // We want to compare the content of two internalized strings here.
    return string_->SlowEquals(String::cast(string));
  }

  uint32_t Hash() override { return hash_; }

  uint32_t HashForObject(Object* key) override {
    return String::cast(key)->Hash();
  }

  MUST_USE_RESULT virtual Handle<Object> AsHandle(Isolate* isolate) override {
    return handle(string_, isolate);
  }

 private:
  String* string_;
  uint32_t hash_;
  DisallowHeapAllocation no_gc;
};


HeapObject* Deserializer::PostProcessNewObject(HeapObject* obj, int space) {
  if (deserializing_user_code()) {
    if (obj->IsString()) {
      String* string = String::cast(obj);
      // Uninitialize hash field as the hash seed may have changed.
      string->set_hash_field(String::kEmptyHashField);
      if (string->IsInternalizedString()) {
        // Canonicalize the internalized string. If it already exists in the
        // string table, set it to forward to the existing one.
        StringTableInsertionKey key(string);
        String* canonical = StringTable::LookupKeyIfExists(isolate_, &key);
        if (canonical == NULL) {
          new_internalized_strings_.Add(handle(string));
          return string;
        } else {
          string->SetForwardedInternalizedString(canonical);
          return canonical;
        }
      }
    } else if (obj->IsScript()) {
      // Assign a new script id to avoid collision.
      Script::cast(obj)->set_id(isolate_->heap()->NextScriptId());
    } else {
      DCHECK(CanBeDeferred(obj));
    }
  }
  if (obj->IsAllocationSite()) {
    DCHECK(obj->IsAllocationSite());
    // Allocation sites are present in the snapshot, and must be linked into
    // a list at deserialization time.
    AllocationSite* site = AllocationSite::cast(obj);
    // TODO(mvstanton): consider treating the heap()->allocation_sites_list()
    // as a (weak) root. If this root is relocated correctly, this becomes
    // unnecessary.
    if (isolate_->heap()->allocation_sites_list() == Smi::FromInt(0)) {
      site->set_weak_next(isolate_->heap()->undefined_value());
    } else {
      site->set_weak_next(isolate_->heap()->allocation_sites_list());
    }
    isolate_->heap()->set_allocation_sites_list(site);
  } else if (obj->IsCode()) {
    // We flush all code pages after deserializing the startup snapshot. In that
    // case, we only need to remember code objects in the large object space.
    // When deserializing user code, remember each individual code object.
    if (deserializing_user_code() || space == LO_SPACE) {
      new_code_objects_.Add(Code::cast(obj));
    }
  }
  // Check alignment.
  DCHECK_EQ(0, Heap::GetFillToAlign(obj->address(), obj->RequiredAlignment()));
  return obj;
}


void Deserializer::CommitNewInternalizedStrings(Isolate* isolate) {
  StringTable::EnsureCapacityForDeserialization(
      isolate, new_internalized_strings_.length());
  for (Handle<String> string : new_internalized_strings_) {
    StringTableInsertionKey key(*string);
    DCHECK_NULL(StringTable::LookupKeyIfExists(isolate, &key));
    StringTable::LookupKey(isolate, &key);
  }
}


HeapObject* Deserializer::GetBackReferencedObject(int space) {
  HeapObject* obj;
  BackReference back_reference(source_.GetInt());
  if (space == LO_SPACE) {
    CHECK(back_reference.chunk_index() == 0);
    uint32_t index = back_reference.large_object_index();
    obj = deserialized_large_objects_[index];
  } else {
    DCHECK(space < kNumberOfPreallocatedSpaces);
    uint32_t chunk_index = back_reference.chunk_index();
    DCHECK_LE(chunk_index, current_chunk_[space]);
    uint32_t chunk_offset = back_reference.chunk_offset();
    Address address = reservations_[space][chunk_index].start + chunk_offset;
    if (next_alignment_ != kWordAligned) {
      int padding = Heap::GetFillToAlign(address, next_alignment_);
      next_alignment_ = kWordAligned;
      DCHECK(padding == 0 || HeapObject::FromAddress(address)->IsFiller());
      address += padding;
    }
    obj = HeapObject::FromAddress(address);
  }
  if (deserializing_user_code() && obj->IsInternalizedString()) {
    obj = String::cast(obj)->GetForwardedInternalizedString();
  }
  hot_objects_.Add(obj);
  return obj;
}


// This routine writes the new object into the pointer provided and then
// returns true if the new object was in young space and false otherwise.
// The reason for this strange interface is that otherwise the object is
// written very late, which means the FreeSpace map is not set up by the
// time we need to use it to mark the space at the end of a page free.
void Deserializer::ReadObject(int space_number, Object** write_back) {
  Address address;
  HeapObject* obj;
  int size = source_.GetInt() << kObjectAlignmentBits;

  if (next_alignment_ != kWordAligned) {
    int reserved = size + Heap::GetMaximumFillToAlign(next_alignment_);
    address = Allocate(space_number, reserved);
    obj = HeapObject::FromAddress(address);
    // If one of the following assertions fails, then we are deserializing an
    // aligned object when the filler maps have not been deserialized yet.
    // We require filler maps as padding to align the object.
    Heap* heap = isolate_->heap();
    DCHECK(heap->free_space_map()->IsMap());
    DCHECK(heap->one_pointer_filler_map()->IsMap());
    DCHECK(heap->two_pointer_filler_map()->IsMap());
    obj = heap->AlignWithFiller(obj, size, reserved, next_alignment_);
    address = obj->address();
    next_alignment_ = kWordAligned;
  } else {
    address = Allocate(space_number, size);
    obj = HeapObject::FromAddress(address);
  }

  isolate_->heap()->OnAllocationEvent(obj, size);
  Object** current = reinterpret_cast<Object**>(address);
  Object** limit = current + (size >> kPointerSizeLog2);
  if (FLAG_log_snapshot_positions) {
    LOG(isolate_, SnapshotPositionEvent(address, source_.position()));
  }

  if (ReadData(current, limit, space_number, address)) {
    // Only post process if object content has not been deferred.
    obj = PostProcessNewObject(obj, space_number);
  }

  Object* write_back_obj = obj;
  UnalignedCopy(write_back, &write_back_obj);
#ifdef DEBUG
  if (obj->IsCode()) {
    DCHECK(space_number == CODE_SPACE || space_number == LO_SPACE);
  } else {
    DCHECK(space_number != CODE_SPACE);
  }
#endif  // DEBUG
}


// We know the space requirements before deserialization and can
// pre-allocate that reserved space. During deserialization, all we need
// to do is to bump up the pointer for each space in the reserved
// space. This is also used for fixing back references.
// We may have to split up the pre-allocation into several chunks
// because it would not fit onto a single page. We do not have to keep
// track of when to move to the next chunk. An opcode will signal this.
// Since multiple large objects cannot be folded into one large object
// space allocation, we have to do an actual allocation when deserializing
// each large object. Instead of tracking offset for back references, we
// reference large objects by index.
Address Deserializer::Allocate(int space_index, int size) {
  if (space_index == LO_SPACE) {
    AlwaysAllocateScope scope(isolate_);
    LargeObjectSpace* lo_space = isolate_->heap()->lo_space();
    Executability exec = static_cast<Executability>(source_.Get());
    AllocationResult result = lo_space->AllocateRaw(size, exec);
    HeapObject* obj = HeapObject::cast(result.ToObjectChecked());
    deserialized_large_objects_.Add(obj);
    return obj->address();
  } else {
    DCHECK(space_index < kNumberOfPreallocatedSpaces);
    Address address = high_water_[space_index];
    DCHECK_NOT_NULL(address);
    high_water_[space_index] += size;
#ifdef DEBUG
    // Assert that the current reserved chunk is still big enough.
    const Heap::Reservation& reservation = reservations_[space_index];
    int chunk_index = current_chunk_[space_index];
    CHECK_LE(high_water_[space_index], reservation[chunk_index].end);
#endif
    return address;
  }
}


bool Deserializer::ReadData(Object** current, Object** limit, int source_space,
                            Address current_object_address) {
  Isolate* const isolate = isolate_;
  // Write barrier support costs around 1% in startup time.  In fact there
  // are no new space objects in current boot snapshots, so it's not needed,
  // but that may change.
  bool write_barrier_needed =
      (current_object_address != NULL && source_space != NEW_SPACE &&
       source_space != CODE_SPACE);
  while (current < limit) {
    byte data = source_.Get();
    switch (data) {
#define CASE_STATEMENT(where, how, within, space_number) \
  case where + how + within + space_number:              \
    STATIC_ASSERT((where & ~kWhereMask) == 0);           \
    STATIC_ASSERT((how & ~kHowToCodeMask) == 0);         \
    STATIC_ASSERT((within & ~kWhereToPointMask) == 0);   \
    STATIC_ASSERT((space_number & ~kSpaceMask) == 0);

#define CASE_BODY(where, how, within, space_number_if_any)                     \
  {                                                                            \
    bool emit_write_barrier = false;                                           \
    bool current_was_incremented = false;                                      \
    int space_number = space_number_if_any == kAnyOldSpace                     \
                           ? (data & kSpaceMask)                               \
                           : space_number_if_any;                              \
    if (where == kNewObject && how == kPlain && within == kStartOfObject) {    \
      ReadObject(space_number, current);                                       \
      emit_write_barrier = (space_number == NEW_SPACE);                        \
    } else {                                                                   \
      Object* new_object = NULL; /* May not be a real Object pointer. */       \
      if (where == kNewObject) {                                               \
        ReadObject(space_number, &new_object);                                 \
      } else if (where == kBackref) {                                          \
        emit_write_barrier = (space_number == NEW_SPACE);                      \
        new_object = GetBackReferencedObject(data & kSpaceMask);               \
      } else if (where == kBackrefWithSkip) {                                  \
        int skip = source_.GetInt();                                           \
        current = reinterpret_cast<Object**>(                                  \
            reinterpret_cast<Address>(current) + skip);                        \
        emit_write_barrier = (space_number == NEW_SPACE);                      \
        new_object = GetBackReferencedObject(data & kSpaceMask);               \
      } else if (where == kRootArray) {                                        \
        int root_id = source_.GetInt();                                        \
        new_object = isolate->heap()->roots_array_start()[root_id];            \
        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
      } else if (where == kPartialSnapshotCache) {                             \
        int cache_index = source_.GetInt();                                    \
        new_object = isolate->partial_snapshot_cache()->at(cache_index);       \
        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
      } else if (where == kExternalReference) {                                \
        int skip = source_.GetInt();                                           \
        current = reinterpret_cast<Object**>(                                  \
            reinterpret_cast<Address>(current) + skip);                        \
        int reference_id = source_.GetInt();                                   \
        Address address = external_reference_table_->address(reference_id);    \
        new_object = reinterpret_cast<Object*>(address);                       \
      } else if (where == kAttachedReference) {                                \
        int index = source_.GetInt();                                          \
        DCHECK(deserializing_user_code() || index == kGlobalProxyReference);   \
        new_object = *attached_objects_[index];                                \
        emit_write_barrier = isolate->heap()->InNewSpace(new_object);          \
      } else {                                                                 \
        DCHECK(where == kBuiltin);                                             \
        DCHECK(deserializing_user_code());                                     \
        int builtin_id = source_.GetInt();                                     \
        DCHECK_LE(0, builtin_id);                                              \
        DCHECK_LT(builtin_id, Builtins::builtin_count);                        \
        Builtins::Name name = static_cast<Builtins::Name>(builtin_id);         \
        new_object = isolate->builtins()->builtin(name);                       \
        emit_write_barrier = false;                                            \
      }                                                                        \
      if (within == kInnerPointer) {                                           \
        if (space_number != CODE_SPACE || new_object->IsCode()) {              \
          Code* new_code_object = reinterpret_cast<Code*>(new_object);         \
          new_object =                                                         \
              reinterpret_cast<Object*>(new_code_object->instruction_start()); \
        } else {                                                               \
          DCHECK(space_number == CODE_SPACE);                                  \
          Cell* cell = Cell::cast(new_object);                                 \
          new_object = reinterpret_cast<Object*>(cell->ValueAddress());        \
        }                                                                      \
      }                                                                        \
      if (how == kFromCode) {                                                  \
        Address location_of_branch_data = reinterpret_cast<Address>(current);  \
        Assembler::deserialization_set_special_target_at(                      \
            location_of_branch_data,                                           \
            Code::cast(HeapObject::FromAddress(current_object_address)),       \
            reinterpret_cast<Address>(new_object));                            \
        location_of_branch_data += Assembler::kSpecialTargetSize;              \
        current = reinterpret_cast<Object**>(location_of_branch_data);         \
        current_was_incremented = true;                                        \
      } else {                                                                 \
        UnalignedCopy(current, &new_object);                                   \
      }                                                                        \
    }                                                                          \
    if (emit_write_barrier && write_barrier_needed) {                          \
      Address current_address = reinterpret_cast<Address>(current);            \
      isolate->heap()->RecordWrite(                                            \
          current_object_address,                                              \
          static_cast<int>(current_address - current_object_address));         \
    }                                                                          \
    if (!current_was_incremented) {                                            \
      current++;                                                               \
    }                                                                          \
    break;                                                                     \
  }

// This generates a case and a body for the new space (which has to do extra
// write barrier handling) and handles the other spaces with fall-through cases
// and one body.
#define ALL_SPACES(where, how, within)           \
  CASE_STATEMENT(where, how, within, NEW_SPACE)  \
  CASE_BODY(where, how, within, NEW_SPACE)       \
  CASE_STATEMENT(where, how, within, OLD_SPACE)  \
  CASE_STATEMENT(where, how, within, CODE_SPACE) \
  CASE_STATEMENT(where, how, within, MAP_SPACE)  \
  CASE_STATEMENT(where, how, within, LO_SPACE)   \
  CASE_BODY(where, how, within, kAnyOldSpace)

#define FOUR_CASES(byte_code)             \
  case byte_code:                         \
  case byte_code + 1:                     \
  case byte_code + 2:                     \
  case byte_code + 3:

#define SIXTEEN_CASES(byte_code)          \
  FOUR_CASES(byte_code)                   \
  FOUR_CASES(byte_code + 4)               \
  FOUR_CASES(byte_code + 8)               \
  FOUR_CASES(byte_code + 12)

#define SINGLE_CASE(where, how, within, space) \
  CASE_STATEMENT(where, how, within, space)    \
  CASE_BODY(where, how, within, space)

      // Deserialize a new object and write a pointer to it to the current
      // object.
      ALL_SPACES(kNewObject, kPlain, kStartOfObject)
      // Support for direct instruction pointers in functions.  It's an inner
      // pointer because it points at the entry point, not at the start of the
      // code object.
      SINGLE_CASE(kNewObject, kPlain, kInnerPointer, CODE_SPACE)
      // Deserialize a new code object and write a pointer to its first
      // instruction to the current code object.
      ALL_SPACES(kNewObject, kFromCode, kInnerPointer)
      // Find a recently deserialized object using its offset from the current
      // allocation point and write a pointer to it to the current object.
      ALL_SPACES(kBackref, kPlain, kStartOfObject)
      ALL_SPACES(kBackrefWithSkip, kPlain, kStartOfObject)
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
    defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || V8_EMBEDDED_CONSTANT_POOL
      // Deserialize a new object from pointer found in code and write
      // a pointer to it to the current object. Required only for MIPS, PPC or
      // ARM with embedded constant pool, and omitted on the other architectures
      // because it is fully unrolled and would cause bloat.
      ALL_SPACES(kNewObject, kFromCode, kStartOfObject)
      // Find a recently deserialized code object using its offset from the
      // current allocation point and write a pointer to it to the current
      // object. Required only for MIPS, PPC or ARM with embedded constant pool.
      ALL_SPACES(kBackref, kFromCode, kStartOfObject)
      ALL_SPACES(kBackrefWithSkip, kFromCode, kStartOfObject)
#endif
      // Find a recently deserialized code object using its offset from the
      // current allocation point and write a pointer to its first instruction
      // to the current code object or the instruction pointer in a function
      // object.
      ALL_SPACES(kBackref, kFromCode, kInnerPointer)
      ALL_SPACES(kBackrefWithSkip, kFromCode, kInnerPointer)
      ALL_SPACES(kBackref, kPlain, kInnerPointer)
      ALL_SPACES(kBackrefWithSkip, kPlain, kInnerPointer)
      // Find an object in the roots array and write a pointer to it to the
      // current object.
      SINGLE_CASE(kRootArray, kPlain, kStartOfObject, 0)
#if defined(V8_TARGET_ARCH_MIPS) || defined(V8_TARGET_ARCH_MIPS64) || \
    defined(V8_TARGET_ARCH_PPC) || defined(V8_TARGET_ARCH_S390) || V8_EMBEDDED_CONSTANT_POOL
      // Find an object in the roots array and write a pointer to it to in code.
      SINGLE_CASE(kRootArray, kFromCode, kStartOfObject, 0)
#endif
      // Find an object in the partial snapshots cache and write a pointer to it
      // to the current object.
      SINGLE_CASE(kPartialSnapshotCache, kPlain, kStartOfObject, 0)
      // Find an code entry in the partial snapshots cache and
      // write a pointer to it to the current object.
      SINGLE_CASE(kPartialSnapshotCache, kPlain, kInnerPointer, 0)
      // Find an external reference and write a pointer to it to the current
      // object.
      SINGLE_CASE(kExternalReference, kPlain, kStartOfObject, 0)
      // Find an external reference and write a pointer to it in the current
      // code object.
      SINGLE_CASE(kExternalReference, kFromCode, kStartOfObject, 0)
      // Find an object in the attached references and write a pointer to it to
      // the current object.
      SINGLE_CASE(kAttachedReference, kPlain, kStartOfObject, 0)
      SINGLE_CASE(kAttachedReference, kPlain, kInnerPointer, 0)
      SINGLE_CASE(kAttachedReference, kFromCode, kInnerPointer, 0)
      // Find a builtin and write a pointer to it to the current object.
      SINGLE_CASE(kBuiltin, kPlain, kStartOfObject, 0)
      SINGLE_CASE(kBuiltin, kPlain, kInnerPointer, 0)
      SINGLE_CASE(kBuiltin, kFromCode, kInnerPointer, 0)

#undef CASE_STATEMENT
#undef CASE_BODY
#undef ALL_SPACES

      case kSkip: {
        int size = source_.GetInt();
        current = reinterpret_cast<Object**>(
            reinterpret_cast<intptr_t>(current) + size);
        break;
      }

      case kInternalReferenceEncoded:
      case kInternalReference: {
        // Internal reference address is not encoded via skip, but by offset
        // from code entry.
        int pc_offset = source_.GetInt();
        int target_offset = source_.GetInt();
        Code* code =
            Code::cast(HeapObject::FromAddress(current_object_address));
        DCHECK(0 <= pc_offset && pc_offset <= code->instruction_size());
        DCHECK(0 <= target_offset && target_offset <= code->instruction_size());
        Address pc = code->entry() + pc_offset;
        Address target = code->entry() + target_offset;
        Assembler::deserialization_set_target_internal_reference_at(
            pc, target, data == kInternalReference
                            ? RelocInfo::INTERNAL_REFERENCE
                            : RelocInfo::INTERNAL_REFERENCE_ENCODED);
        break;
      }

      case kNop:
        break;

      case kNextChunk: {
        int space = source_.Get();
        DCHECK(space < kNumberOfPreallocatedSpaces);
        int chunk_index = current_chunk_[space];
        const Heap::Reservation& reservation = reservations_[space];
        // Make sure the current chunk is indeed exhausted.
        CHECK_EQ(reservation[chunk_index].end, high_water_[space]);
        // Move to next reserved chunk.
        chunk_index = ++current_chunk_[space];
        CHECK_LT(chunk_index, reservation.length());
        high_water_[space] = reservation[chunk_index].start;
        break;
      }

      case kDeferred: {
        // Deferred can only occur right after the heap object header.
        DCHECK(current == reinterpret_cast<Object**>(current_object_address +
                                                     kPointerSize));
        HeapObject* obj = HeapObject::FromAddress(current_object_address);
        // If the deferred object is a map, its instance type may be used
        // during deserialization. Initialize it with a temporary value.
        if (obj->IsMap()) Map::cast(obj)->set_instance_type(FILLER_TYPE);
        current = limit;
        return false;
      }

      case kSynchronize:
        // If we get here then that indicates that you have a mismatch between
        // the number of GC roots when serializing and deserializing.
        CHECK(false);
        break;

      case kNativesStringResource: {
        DCHECK(!isolate_->heap()->deserialization_complete());
        int index = source_.Get();
        Vector<const char> source_vector = Natives::GetScriptSource(index);
        NativesExternalStringResource* resource =
            new NativesExternalStringResource(source_vector.start(),
                                              source_vector.length());
        Object* resource_obj = reinterpret_cast<Object*>(resource);
        UnalignedCopy(current++, &resource_obj);
        break;
      }

      // Deserialize raw data of variable length.
      case kVariableRawData: {
        int size_in_bytes = source_.GetInt();
        byte* raw_data_out = reinterpret_cast<byte*>(current);
        source_.CopyRaw(raw_data_out, size_in_bytes);
        break;
      }

      case kVariableRepeat: {
        int repeats = source_.GetInt();
        Object* object = current[-1];
        DCHECK(!isolate->heap()->InNewSpace(object));
        for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
        break;
      }

      case kAlignmentPrefix:
      case kAlignmentPrefix + 1:
      case kAlignmentPrefix + 2: {
        DCHECK_EQ(kWordAligned, next_alignment_);
        next_alignment_ =
            static_cast<AllocationAlignment>(data - (kAlignmentPrefix - 1));
        break;
      }

      STATIC_ASSERT(kNumberOfRootArrayConstants == Heap::kOldSpaceRoots);
      STATIC_ASSERT(kNumberOfRootArrayConstants == 32);
      SIXTEEN_CASES(kRootArrayConstantsWithSkip)
      SIXTEEN_CASES(kRootArrayConstantsWithSkip + 16) {
        int skip = source_.GetInt();
        current = reinterpret_cast<Object**>(
            reinterpret_cast<intptr_t>(current) + skip);
        // Fall through.
      }

      SIXTEEN_CASES(kRootArrayConstants)
      SIXTEEN_CASES(kRootArrayConstants + 16) {
        int root_id = data & kRootArrayConstantsMask;
        Object* object = isolate->heap()->roots_array_start()[root_id];
        DCHECK(!isolate->heap()->InNewSpace(object));
        UnalignedCopy(current++, &object);
        break;
      }

      STATIC_ASSERT(kNumberOfHotObjects == 8);
      FOUR_CASES(kHotObjectWithSkip)
      FOUR_CASES(kHotObjectWithSkip + 4) {
        int skip = source_.GetInt();
        current = reinterpret_cast<Object**>(
            reinterpret_cast<Address>(current) + skip);
        // Fall through.
      }

      FOUR_CASES(kHotObject)
      FOUR_CASES(kHotObject + 4) {
        int index = data & kHotObjectMask;
        Object* hot_object = hot_objects_.Get(index);
        UnalignedCopy(current, &hot_object);
        if (write_barrier_needed && isolate->heap()->InNewSpace(hot_object)) {
          Address current_address = reinterpret_cast<Address>(current);
          isolate->heap()->RecordWrite(
              current_object_address,
              static_cast<int>(current_address - current_object_address));
        }
        current++;
        break;
      }

      // Deserialize raw data of fixed length from 1 to 32 words.
      STATIC_ASSERT(kNumberOfFixedRawData == 32);
      SIXTEEN_CASES(kFixedRawData)
      SIXTEEN_CASES(kFixedRawData + 16) {
        byte* raw_data_out = reinterpret_cast<byte*>(current);
        int size_in_bytes = (data - kFixedRawDataStart) << kPointerSizeLog2;
        source_.CopyRaw(raw_data_out, size_in_bytes);
        current = reinterpret_cast<Object**>(raw_data_out + size_in_bytes);
        break;
      }

      STATIC_ASSERT(kNumberOfFixedRepeat == 16);
      SIXTEEN_CASES(kFixedRepeat) {
        int repeats = data - kFixedRepeatStart;
        Object* object;
        UnalignedCopy(&object, current - 1);
        DCHECK(!isolate->heap()->InNewSpace(object));
        for (int i = 0; i < repeats; i++) UnalignedCopy(current++, &object);
        break;
      }

#undef SIXTEEN_CASES
#undef FOUR_CASES
#undef SINGLE_CASE

      default:
        CHECK(false);
    }
  }
  CHECK_EQ(limit, current);
  return true;
}


Serializer::Serializer(Isolate* isolate, SnapshotByteSink* sink)
    : isolate_(isolate),
      sink_(sink),
      external_reference_encoder_(isolate),
      root_index_map_(isolate),
      recursion_depth_(0),
      code_address_map_(NULL),
      large_objects_total_size_(0),
      seen_large_objects_index_(0) {
  // The serializer is meant to be used only to generate initial heap images
  // from a context in which there is only one isolate.
  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
    pending_chunk_[i] = 0;
    max_chunk_size_[i] = static_cast<uint32_t>(
        MemoryAllocator::PageAreaSize(static_cast<AllocationSpace>(i)));
  }

#ifdef OBJECT_PRINT
  if (FLAG_serialization_statistics) {
    instance_type_count_ = NewArray<int>(kInstanceTypes);
    instance_type_size_ = NewArray<size_t>(kInstanceTypes);
    for (int i = 0; i < kInstanceTypes; i++) {
      instance_type_count_[i] = 0;
      instance_type_size_[i] = 0;
    }
  } else {
    instance_type_count_ = NULL;
    instance_type_size_ = NULL;
  }
#endif  // OBJECT_PRINT
}


Serializer::~Serializer() {
  if (code_address_map_ != NULL) delete code_address_map_;
#ifdef OBJECT_PRINT
  if (instance_type_count_ != NULL) {
    DeleteArray(instance_type_count_);
    DeleteArray(instance_type_size_);
  }
#endif  // OBJECT_PRINT
}


#ifdef OBJECT_PRINT
void Serializer::CountInstanceType(Map* map, int size) {
  int instance_type = map->instance_type();
  instance_type_count_[instance_type]++;
  instance_type_size_[instance_type] += size;
}
#endif  // OBJECT_PRINT


void Serializer::OutputStatistics(const char* name) {
  if (!FLAG_serialization_statistics) return;
  PrintF("%s:\n", name);
  PrintF("  Spaces (bytes):\n");
  for (int space = 0; space < kNumberOfSpaces; space++) {
    PrintF("%16s", AllocationSpaceName(static_cast<AllocationSpace>(space)));
  }
  PrintF("\n");
  for (int space = 0; space < kNumberOfPreallocatedSpaces; space++) {
    size_t s = pending_chunk_[space];
    for (uint32_t chunk_size : completed_chunks_[space]) s += chunk_size;
    PrintF("%16" V8_PTR_PREFIX "d", s);
  }
  PrintF("%16d\n", large_objects_total_size_);
#ifdef OBJECT_PRINT
  PrintF("  Instance types (count and bytes):\n");
#define PRINT_INSTANCE_TYPE(Name)                                          \
  if (instance_type_count_[Name]) {                                        \
    PrintF("%10d %10" V8_PTR_PREFIX "d  %s\n", instance_type_count_[Name], \
           instance_type_size_[Name], #Name);                              \
  }
  INSTANCE_TYPE_LIST(PRINT_INSTANCE_TYPE)
#undef PRINT_INSTANCE_TYPE
  PrintF("\n");
#endif  // OBJECT_PRINT
}


void Serializer::SerializeDeferredObjects() {
  while (deferred_objects_.length() > 0) {
    HeapObject* obj = deferred_objects_.RemoveLast();
    ObjectSerializer obj_serializer(this, obj, sink_, kPlain, kStartOfObject);
    obj_serializer.SerializeDeferred();
  }
  sink_->Put(kSynchronize, "Finished with deferred objects");
}


void StartupSerializer::SerializeStrongReferences() {
  Isolate* isolate = this->isolate();
  // No active threads.
  CHECK_NULL(isolate->thread_manager()->FirstThreadStateInUse());
  // No active or weak handles.
  CHECK(isolate->handle_scope_implementer()->blocks()->is_empty());
  CHECK_EQ(0, isolate->global_handles()->NumberOfWeakHandles());
  CHECK_EQ(0, isolate->eternal_handles()->NumberOfHandles());
  // We don't support serializing installed extensions.
  CHECK(!isolate->has_installed_extensions());
  isolate->heap()->IterateSmiRoots(this);
  isolate->heap()->IterateStrongRoots(this, VISIT_ONLY_STRONG);
}


void StartupSerializer::VisitPointers(Object** start, Object** end) {
  for (Object** current = start; current < end; current++) {
    if (start == isolate()->heap()->roots_array_start()) {
      root_index_wave_front_ =
          Max(root_index_wave_front_, static_cast<intptr_t>(current - start));
    }
    if (ShouldBeSkipped(current)) {
      sink_->Put(kSkip, "Skip");
      sink_->PutInt(kPointerSize, "SkipOneWord");
    } else if ((*current)->IsSmi()) {
      sink_->Put(kOnePointerRawData, "Smi");
      for (int i = 0; i < kPointerSize; i++) {
        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
      }
    } else {
      SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
    }
  }
}


void PartialSerializer::Serialize(Object** o) {
  if ((*o)->IsContext()) {
    Context* context = Context::cast(*o);
    global_object_ = context->global_object();
    back_reference_map()->AddGlobalProxy(context->global_proxy());
  }
  VisitPointer(o);
  SerializeDeferredObjects();
  SerializeOutdatedContextsAsFixedArray();
  Pad();
}


void PartialSerializer::SerializeOutdatedContextsAsFixedArray() {
  int length = outdated_contexts_.length();
  if (length == 0) {
    FixedArray* empty = isolate_->heap()->empty_fixed_array();
    SerializeObject(empty, kPlain, kStartOfObject, 0);
  } else {
    // Serialize an imaginary fixed array containing outdated contexts.
    int size = FixedArray::SizeFor(length);
    Allocate(NEW_SPACE, size);
    sink_->Put(kNewObject + NEW_SPACE, "emulated FixedArray");
    sink_->PutInt(size >> kObjectAlignmentBits, "FixedArray size in words");
    Map* map = isolate_->heap()->fixed_array_map();
    SerializeObject(map, kPlain, kStartOfObject, 0);
    Smi* length_smi = Smi::FromInt(length);
    sink_->Put(kOnePointerRawData, "Smi");
    for (int i = 0; i < kPointerSize; i++) {
      sink_->Put(reinterpret_cast<byte*>(&length_smi)[i], "Byte");
    }
    for (int i = 0; i < length; i++) {
      Context* context = outdated_contexts_[i];
      BackReference back_reference = back_reference_map_.Lookup(context);
      sink_->Put(kBackref + back_reference.space(), "BackRef");
      PutBackReference(context, back_reference);
    }
  }
}


bool Serializer::ShouldBeSkipped(Object** current) {
  Object** roots = isolate()->heap()->roots_array_start();
  return current == &roots[Heap::kStoreBufferTopRootIndex]
      || current == &roots[Heap::kStackLimitRootIndex]
      || current == &roots[Heap::kRealStackLimitRootIndex];
}


void Serializer::VisitPointers(Object** start, Object** end) {
  for (Object** current = start; current < end; current++) {
    if ((*current)->IsSmi()) {
      sink_->Put(kOnePointerRawData, "Smi");
      for (int i = 0; i < kPointerSize; i++) {
        sink_->Put(reinterpret_cast<byte*>(current)[i], "Byte");
      }
    } else {
      SerializeObject(HeapObject::cast(*current), kPlain, kStartOfObject, 0);
    }
  }
}


void Serializer::EncodeReservations(
    List<SerializedData::Reservation>* out) const {
  for (int i = 0; i < kNumberOfPreallocatedSpaces; i++) {
    for (int j = 0; j < completed_chunks_[i].length(); j++) {
      out->Add(SerializedData::Reservation(completed_chunks_[i][j]));
    }

    if (pending_chunk_[i] > 0 || completed_chunks_[i].length() == 0) {
      out->Add(SerializedData::Reservation(pending_chunk_[i]));
    }
    out->last().mark_as_last();
  }

  out->Add(SerializedData::Reservation(large_objects_total_size_));
  out->last().mark_as_last();
}


// This ensures that the partial snapshot cache keeps things alive during GC and
// tracks their movement.  When it is called during serialization of the startup
// snapshot nothing happens.  When the partial (context) snapshot is created,
// this array is populated with the pointers that the partial snapshot will
// need. As that happens we emit serialized objects to the startup snapshot
// that correspond to the elements of this cache array.  On deserialization we
// therefore need to visit the cache array.  This fills it up with pointers to
// deserialized objects.
void SerializerDeserializer::Iterate(Isolate* isolate,
                                     ObjectVisitor* visitor) {
  if (isolate->serializer_enabled()) return;
  List<Object*>* cache = isolate->partial_snapshot_cache();
  for (int i = 0;; ++i) {
    // Extend the array ready to get a value when deserializing.
    if (cache->length() <= i) cache->Add(Smi::FromInt(0));
    visitor->VisitPointer(&cache->at(i));
    // Sentinel is the undefined object, which is a root so it will not normally
    // be found in the cache.
    if (cache->at(i)->IsUndefined()) break;
  }
}


int PartialSerializer::PartialSnapshotCacheIndex(HeapObject* heap_object) {
  Isolate* isolate = this->isolate();
  List<Object*>* cache = isolate->partial_snapshot_cache();
  int new_index = cache->length();

  int index = partial_cache_index_map_.LookupOrInsert(heap_object, new_index);
  if (index == PartialCacheIndexMap::kInvalidIndex) {
    // We didn't find the object in the cache.  So we add it to the cache and
    // then visit the pointer so that it becomes part of the startup snapshot
    // and we can refer to it from the partial snapshot.
    cache->Add(heap_object);
    startup_serializer_->VisitPointer(reinterpret_cast<Object**>(&heap_object));
    // We don't recurse from the startup snapshot generator into the partial
    // snapshot generator.
    return new_index;
  }
  return index;
}


#ifdef DEBUG
bool Serializer::BackReferenceIsAlreadyAllocated(BackReference reference) {
  DCHECK(reference.is_valid());
  DCHECK(!reference.is_source());
  DCHECK(!reference.is_global_proxy());
  AllocationSpace space = reference.space();
  int chunk_index = reference.chunk_index();
  if (space == LO_SPACE) {
    return chunk_index == 0 &&
           reference.large_object_index() < seen_large_objects_index_;
  } else if (chunk_index == completed_chunks_[space].length()) {
    return reference.chunk_offset() < pending_chunk_[space];
  } else {
    return chunk_index < completed_chunks_[space].length() &&
           reference.chunk_offset() < completed_chunks_[space][chunk_index];
  }
}
#endif  // DEBUG


bool Serializer::SerializeKnownObject(HeapObject* obj, HowToCode how_to_code,
                                      WhereToPoint where_to_point, int skip) {
  if (how_to_code == kPlain && where_to_point == kStartOfObject) {
    // Encode a reference to a hot object by its index in the working set.
    int index = hot_objects_.Find(obj);
    if (index != HotObjectsList::kNotFound) {
      DCHECK(index >= 0 && index < kNumberOfHotObjects);
      if (FLAG_trace_serializer) {
        PrintF(" Encoding hot object %d:", index);
        obj->ShortPrint();
        PrintF("\n");
      }
      if (skip != 0) {
        sink_->Put(kHotObjectWithSkip + index, "HotObjectWithSkip");
        sink_->PutInt(skip, "HotObjectSkipDistance");
      } else {
        sink_->Put(kHotObject + index, "HotObject");
      }
      return true;
    }
  }
  BackReference back_reference = back_reference_map_.Lookup(obj);
  if (back_reference.is_valid()) {
    // Encode the location of an already deserialized object in order to write
    // its location into a later object.  We can encode the location as an
    // offset fromthe start of the deserialized objects or as an offset
    // backwards from thecurrent allocation pointer.
    if (back_reference.is_source()) {
      FlushSkip(skip);
      if (FLAG_trace_serializer) PrintF(" Encoding source object\n");
      DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
      sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Source");
      sink_->PutInt(kSourceObjectReference, "kSourceObjectReference");
    } else if (back_reference.is_global_proxy()) {
      FlushSkip(skip);
      if (FLAG_trace_serializer) PrintF(" Encoding global proxy\n");
      DCHECK(how_to_code == kPlain && where_to_point == kStartOfObject);
      sink_->Put(kAttachedReference + kPlain + kStartOfObject, "Global Proxy");
      sink_->PutInt(kGlobalProxyReference, "kGlobalProxyReference");
    } else {
      if (FLAG_trace_serializer) {
        PrintF(" Encoding back reference to: ");
        obj->ShortPrint();
        PrintF("\n");
      }

      PutAlignmentPrefix(obj);
      AllocationSpace space = back_reference.space();
      if (skip == 0) {
        sink_->Put(kBackref + how_to_code + where_to_point + space, "BackRef");
      } else {
        sink_->Put(kBackrefWithSkip + how_to_code + where_to_point + space,
                   "BackRefWithSkip");
        sink_->PutInt(skip, "BackRefSkipDistance");
      }
      PutBackReference(obj, back_reference);
    }
    return true;
  }
  return false;
}


void StartupSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
                                        WhereToPoint where_to_point, int skip) {
  DCHECK(!obj->IsJSFunction());

  int root_index = root_index_map_.Lookup(obj);
  // We can only encode roots as such if it has already been serialized.
  // That applies to root indices below the wave front.
  if (root_index != RootIndexMap::kInvalidRootIndex &&
      root_index < root_index_wave_front_) {
    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
    return;
  }

  if (obj->IsCode() && Code::cast(obj)->kind() == Code::FUNCTION) {
    obj = isolate()->builtins()->builtin(Builtins::kCompileLazy);
  }

  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;

  FlushSkip(skip);

  // Object has not yet been serialized.  Serialize it here.
  ObjectSerializer object_serializer(this, obj, sink_, how_to_code,
                                     where_to_point);
  object_serializer.Serialize();
}


void StartupSerializer::SerializeWeakReferencesAndDeferred() {
  // This phase comes right after the serialization (of the snapshot).
  // After we have done the partial serialization the partial snapshot cache
  // will contain some references needed to decode the partial snapshot.  We
  // add one entry with 'undefined' which is the sentinel that the deserializer
  // uses to know it is done deserializing the array.
  Object* undefined = isolate()->heap()->undefined_value();
  VisitPointer(&undefined);
  isolate()->heap()->IterateWeakRoots(this, VISIT_ALL);
  SerializeDeferredObjects();
  Pad();
}


void Serializer::PutRoot(int root_index,
                         HeapObject* object,
                         SerializerDeserializer::HowToCode how_to_code,
                         SerializerDeserializer::WhereToPoint where_to_point,
                         int skip) {
  if (FLAG_trace_serializer) {
    PrintF(" Encoding root %d:", root_index);
    object->ShortPrint();
    PrintF("\n");
  }

  if (how_to_code == kPlain && where_to_point == kStartOfObject &&
      root_index < kNumberOfRootArrayConstants &&
      !isolate()->heap()->InNewSpace(object)) {
    if (skip == 0) {
      sink_->Put(kRootArrayConstants + root_index, "RootConstant");
    } else {
      sink_->Put(kRootArrayConstantsWithSkip + root_index, "RootConstant");
      sink_->PutInt(skip, "SkipInPutRoot");
    }
  } else {
    FlushSkip(skip);
    sink_->Put(kRootArray + how_to_code + where_to_point, "RootSerialization");
    sink_->PutInt(root_index, "root_index");
  }
}


void Serializer::PutBackReference(HeapObject* object, BackReference reference) {
  DCHECK(BackReferenceIsAlreadyAllocated(reference));
  sink_->PutInt(reference.reference(), "BackRefValue");
  hot_objects_.Add(object);
}


int Serializer::PutAlignmentPrefix(HeapObject* object) {
  AllocationAlignment alignment = object->RequiredAlignment();
  if (alignment != kWordAligned) {
    DCHECK(1 <= alignment && alignment <= 3);
    byte prefix = (kAlignmentPrefix - 1) + alignment;
    sink_->Put(prefix, "Alignment");
    return Heap::GetMaximumFillToAlign(alignment);
  }
  return 0;
}


void PartialSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
                                        WhereToPoint where_to_point, int skip) {
  if (obj->IsMap()) {
    // The code-caches link to context-specific code objects, which
    // the startup and context serializes cannot currently handle.
    DCHECK(Map::cast(obj)->code_cache() == obj->GetHeap()->empty_fixed_array());
  }

  // Replace typed arrays by undefined.
  if (obj->IsJSTypedArray()) obj = isolate_->heap()->undefined_value();

  int root_index = root_index_map_.Lookup(obj);
  if (root_index != RootIndexMap::kInvalidRootIndex) {
    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
    return;
  }

  if (ShouldBeInThePartialSnapshotCache(obj)) {
    FlushSkip(skip);

    int cache_index = PartialSnapshotCacheIndex(obj);
    sink_->Put(kPartialSnapshotCache + how_to_code + where_to_point,
               "PartialSnapshotCache");
    sink_->PutInt(cache_index, "partial_snapshot_cache_index");
    return;
  }

  // Pointers from the partial snapshot to the objects in the startup snapshot
  // should go through the root array or through the partial snapshot cache.
  // If this is not the case you may have to add something to the root array.
  DCHECK(!startup_serializer_->back_reference_map()->Lookup(obj).is_valid());
  // All the internalized strings that the partial snapshot needs should be
  // either in the root table or in the partial snapshot cache.
  DCHECK(!obj->IsInternalizedString());

  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;

  FlushSkip(skip);

  // Clear literal boilerplates.
  if (obj->IsJSFunction() && !JSFunction::cast(obj)->shared()->bound()) {
    FixedArray* literals = JSFunction::cast(obj)->literals();
    for (int i = 0; i < literals->length(); i++) literals->set_undefined(i);
  }

  // Object has not yet been serialized.  Serialize it here.
  ObjectSerializer serializer(this, obj, sink_, how_to_code, where_to_point);
  serializer.Serialize();

  if (obj->IsContext() &&
      Context::cast(obj)->global_object() == global_object_) {
    // Context refers to the current global object. This reference will
    // become outdated after deserialization.
    outdated_contexts_.Add(Context::cast(obj));
  }
}


void Serializer::ObjectSerializer::SerializePrologue(AllocationSpace space,
                                                     int size, Map* map) {
  if (serializer_->code_address_map_) {
    const char* code_name =
        serializer_->code_address_map_->Lookup(object_->address());
    LOG(serializer_->isolate_,
        CodeNameEvent(object_->address(), sink_->Position(), code_name));
    LOG(serializer_->isolate_,
        SnapshotPositionEvent(object_->address(), sink_->Position()));
  }

  BackReference back_reference;
  if (space == LO_SPACE) {
    sink_->Put(kNewObject + reference_representation_ + space,
               "NewLargeObject");
    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
    if (object_->IsCode()) {
      sink_->Put(EXECUTABLE, "executable large object");
    } else {
      sink_->Put(NOT_EXECUTABLE, "not executable large object");
    }
    back_reference = serializer_->AllocateLargeObject(size);
  } else {
    int fill = serializer_->PutAlignmentPrefix(object_);
    back_reference = serializer_->Allocate(space, size + fill);
    sink_->Put(kNewObject + reference_representation_ + space, "NewObject");
    sink_->PutInt(size >> kObjectAlignmentBits, "ObjectSizeInWords");
  }

#ifdef OBJECT_PRINT
  if (FLAG_serialization_statistics) {
    serializer_->CountInstanceType(map, size);
  }
#endif  // OBJECT_PRINT

  // Mark this object as already serialized.
  serializer_->back_reference_map()->Add(object_, back_reference);

  // Serialize the map (first word of the object).
  serializer_->SerializeObject(map, kPlain, kStartOfObject, 0);
}


void Serializer::ObjectSerializer::SerializeExternalString() {
  // Instead of serializing this as an external string, we serialize
  // an imaginary sequential string with the same content.
  Isolate* isolate = serializer_->isolate();
  DCHECK(object_->IsExternalString());
  DCHECK(object_->map() != isolate->heap()->native_source_string_map());
  ExternalString* string = ExternalString::cast(object_);
  int length = string->length();
  Map* map;
  int content_size;
  int allocation_size;
  const byte* resource;
  // Find the map and size for the imaginary sequential string.
  bool internalized = object_->IsInternalizedString();
  if (object_->IsExternalOneByteString()) {
    map = internalized ? isolate->heap()->one_byte_internalized_string_map()
                       : isolate->heap()->one_byte_string_map();
    allocation_size = SeqOneByteString::SizeFor(length);
    content_size = length * kCharSize;
    resource = reinterpret_cast<const byte*>(
        ExternalOneByteString::cast(string)->resource()->data());
  } else {
    map = internalized ? isolate->heap()->internalized_string_map()
                       : isolate->heap()->string_map();
    allocation_size = SeqTwoByteString::SizeFor(length);
    content_size = length * kShortSize;
    resource = reinterpret_cast<const byte*>(
        ExternalTwoByteString::cast(string)->resource()->data());
  }

  AllocationSpace space = (allocation_size > Page::kMaxRegularHeapObjectSize)
                              ? LO_SPACE
                              : OLD_SPACE;
  SerializePrologue(space, allocation_size, map);

  // Output the rest of the imaginary string.
  int bytes_to_output = allocation_size - HeapObject::kHeaderSize;

  // Output raw data header. Do not bother with common raw length cases here.
  sink_->Put(kVariableRawData, "RawDataForString");
  sink_->PutInt(bytes_to_output, "length");

  // Serialize string header (except for map).
  Address string_start = string->address();
  for (int i = HeapObject::kHeaderSize; i < SeqString::kHeaderSize; i++) {
    sink_->PutSection(string_start[i], "StringHeader");
  }

  // Serialize string content.
  sink_->PutRaw(resource, content_size, "StringContent");

  // Since the allocation size is rounded up to object alignment, there
  // maybe left-over bytes that need to be padded.
  int padding_size = allocation_size - SeqString::kHeaderSize - content_size;
  DCHECK(0 <= padding_size && padding_size < kObjectAlignment);
  for (int i = 0; i < padding_size; i++) sink_->PutSection(0, "StringPadding");

  sink_->Put(kSkip, "SkipAfterString");
  sink_->PutInt(bytes_to_output, "SkipDistance");
}


// Clear and later restore the next link in the weak cell, if the object is one.
class UnlinkWeakCellScope {
 public:
  explicit UnlinkWeakCellScope(HeapObject* object) : weak_cell_(NULL) {
    if (object->IsWeakCell()) {
      weak_cell_ = WeakCell::cast(object);
      next_ = weak_cell_->next();
      weak_cell_->clear_next(object->GetHeap());
    }
  }

  ~UnlinkWeakCellScope() {
    if (weak_cell_) weak_cell_->set_next(next_, UPDATE_WEAK_WRITE_BARRIER);
  }

 private:
  WeakCell* weak_cell_;
  Object* next_;
  DisallowHeapAllocation no_gc_;
};


void Serializer::ObjectSerializer::Serialize() {
  if (FLAG_trace_serializer) {
    PrintF(" Encoding heap object: ");
    object_->ShortPrint();
    PrintF("\n");
  }

  // We cannot serialize typed array objects correctly.
  DCHECK(!object_->IsJSTypedArray());

  // We don't expect fillers.
  DCHECK(!object_->IsFiller());

  if (object_->IsPrototypeInfo()) {
    Object* prototype_users = PrototypeInfo::cast(object_)->prototype_users();
    if (prototype_users->IsWeakFixedArray()) {
      WeakFixedArray* array = WeakFixedArray::cast(prototype_users);
      array->Compact<JSObject::PrototypeRegistryCompactionCallback>();
    }
  }
  // Compaction of a prototype users list can require the registered users
  // to update their remembered slots. That doesn't work if those users
  // have already been serialized themselves. So if this object is a
  // registered user, compact its prototype's user list now.
  if (object_->IsMap()) {
    Map* map = Map::cast(object_);
    if (map->is_prototype_map() && map->prototype_info()->IsPrototypeInfo() &&
        PrototypeInfo::cast(map->prototype_info())->registry_slot() !=
            PrototypeInfo::UNREGISTERED) {
      JSObject* proto = JSObject::cast(map->prototype());
      PrototypeInfo* info = PrototypeInfo::cast(proto->map()->prototype_info());
      WeakFixedArray* array = WeakFixedArray::cast(info->prototype_users());
      array->Compact<JSObject::PrototypeRegistryCompactionCallback>();
    }
  }

  if (object_->IsScript()) {
    // Clear cached line ends.
    Object* undefined = serializer_->isolate()->heap()->undefined_value();
    Script::cast(object_)->set_line_ends(undefined);
    Object* shared_list = Script::cast(object_)->shared_function_infos();
    if (shared_list->IsWeakFixedArray()) {
      WeakFixedArray::cast(shared_list)
          ->Compact<WeakFixedArray::NullCallback>();
    }
  }

  if (object_->IsExternalString()) {
    Heap* heap = serializer_->isolate()->heap();
    if (object_->map() != heap->native_source_string_map()) {
      // Usually we cannot recreate resources for external strings. To work
      // around this, external strings are serialized to look like ordinary
      // sequential strings.
      // The exception are native source code strings, since we can recreate
      // their resources. In that case we fall through and leave it to
      // VisitExternalOneByteString further down.
      SerializeExternalString();
      return;
    }
  }

  int size = object_->Size();
  Map* map = object_->map();
  AllocationSpace space =
      MemoryChunk::FromAddress(object_->address())->owner()->identity();
  SerializePrologue(space, size, map);

  // Serialize the rest of the object.
  CHECK_EQ(0, bytes_processed_so_far_);
  bytes_processed_so_far_ = kPointerSize;

  RecursionScope recursion(serializer_);
  // Objects that are immediately post processed during deserialization
  // cannot be deferred, since post processing requires the object content.
  if (recursion.ExceedsMaximum() && CanBeDeferred(object_)) {
    serializer_->QueueDeferredObject(object_);
    sink_->Put(kDeferred, "Deferring object content");
    return;
  }

  UnlinkWeakCellScope unlink_weak_cell(object_);

  object_->IterateBody(map->instance_type(), size, this);
  OutputRawData(object_->address() + size);
}


void Serializer::ObjectSerializer::SerializeDeferred() {
  if (FLAG_trace_serializer) {
    PrintF(" Encoding deferred heap object: ");
    object_->ShortPrint();
    PrintF("\n");
  }

  int size = object_->Size();
  Map* map = object_->map();
  BackReference reference = serializer_->back_reference_map()->Lookup(object_);

  // Serialize the rest of the object.
  CHECK_EQ(0, bytes_processed_so_far_);
  bytes_processed_so_far_ = kPointerSize;

  sink_->Put(kNewObject + reference.space(), "deferred object");
  serializer_->PutBackReference(object_, reference);
  sink_->PutInt(size >> kPointerSizeLog2, "deferred object size");

  UnlinkWeakCellScope unlink_weak_cell(object_);

  object_->IterateBody(map->instance_type(), size, this);
  OutputRawData(object_->address() + size);
}


void Serializer::ObjectSerializer::VisitPointers(Object** start,
                                                 Object** end) {
  Object** current = start;
  while (current < end) {
    while (current < end && (*current)->IsSmi()) current++;
    if (current < end) OutputRawData(reinterpret_cast<Address>(current));

    while (current < end && !(*current)->IsSmi()) {
      HeapObject* current_contents = HeapObject::cast(*current);
      int root_index = serializer_->root_index_map()->Lookup(current_contents);
      // Repeats are not subject to the write barrier so we can only use
      // immortal immovable root members. They are never in new space.
      if (current != start && root_index != RootIndexMap::kInvalidRootIndex &&
          Heap::RootIsImmortalImmovable(root_index) &&
          current_contents == current[-1]) {
        DCHECK(!serializer_->isolate()->heap()->InNewSpace(current_contents));
        int repeat_count = 1;
        while (&current[repeat_count] < end - 1 &&
               current[repeat_count] == current_contents) {
          repeat_count++;
        }
        current += repeat_count;
        bytes_processed_so_far_ += repeat_count * kPointerSize;
        if (repeat_count > kNumberOfFixedRepeat) {
          sink_->Put(kVariableRepeat, "VariableRepeat");
          sink_->PutInt(repeat_count, "repeat count");
        } else {
          sink_->Put(kFixedRepeatStart + repeat_count, "FixedRepeat");
        }
      } else {
        serializer_->SerializeObject(
                current_contents, kPlain, kStartOfObject, 0);
        bytes_processed_so_far_ += kPointerSize;
        current++;
      }
    }
  }
}


void Serializer::ObjectSerializer::VisitEmbeddedPointer(RelocInfo* rinfo) {
  int skip = OutputRawData(rinfo->target_address_address(),
                           kCanReturnSkipInsteadOfSkipping);
  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
  Object* object = rinfo->target_object();
  serializer_->SerializeObject(HeapObject::cast(object), how_to_code,
                               kStartOfObject, skip);
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitExternalReference(Address* p) {
  int skip = OutputRawData(reinterpret_cast<Address>(p),
                           kCanReturnSkipInsteadOfSkipping);
  sink_->Put(kExternalReference + kPlain + kStartOfObject, "ExternalRef");
  sink_->PutInt(skip, "SkipB4ExternalRef");
  Address target = *p;
  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
  bytes_processed_so_far_ += kPointerSize;
}


void Serializer::ObjectSerializer::VisitExternalReference(RelocInfo* rinfo) {
  int skip = OutputRawData(rinfo->target_address_address(),
                           kCanReturnSkipInsteadOfSkipping);
  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
  sink_->PutInt(skip, "SkipB4ExternalRef");
  Address target = rinfo->target_external_reference();
  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitInternalReference(RelocInfo* rinfo) {
  // We can only reference to internal references of code that has been output.
  DCHECK(is_code_object_ && code_has_been_output_);
  // We do not use skip from last patched pc to find the pc to patch, since
  // target_address_address may not return addresses in ascending order when
  // used for internal references. External references may be stored at the
  // end of the code in the constant pool, whereas internal references are
  // inline. That would cause the skip to be negative. Instead, we store the
  // offset from code entry.
  Address entry = Code::cast(object_)->entry();
  intptr_t pc_offset = rinfo->target_internal_reference_address() - entry;
  intptr_t target_offset = rinfo->target_internal_reference() - entry;
  DCHECK(0 <= pc_offset &&
         pc_offset <= Code::cast(object_)->instruction_size());
  DCHECK(0 <= target_offset &&
         target_offset <= Code::cast(object_)->instruction_size());
  sink_->Put(rinfo->rmode() == RelocInfo::INTERNAL_REFERENCE
                 ? kInternalReference
                 : kInternalReferenceEncoded,
             "InternalRef");
  sink_->PutInt(static_cast<uintptr_t>(pc_offset), "internal ref address");
  sink_->PutInt(static_cast<uintptr_t>(target_offset), "internal ref value");
}


void Serializer::ObjectSerializer::VisitRuntimeEntry(RelocInfo* rinfo) {
  int skip = OutputRawData(rinfo->target_address_address(),
                           kCanReturnSkipInsteadOfSkipping);
  HowToCode how_to_code = rinfo->IsCodedSpecially() ? kFromCode : kPlain;
  sink_->Put(kExternalReference + how_to_code + kStartOfObject, "ExternalRef");
  sink_->PutInt(skip, "SkipB4ExternalRef");
  Address target = rinfo->target_address();
  sink_->PutInt(serializer_->EncodeExternalReference(target), "reference id");
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitCodeTarget(RelocInfo* rinfo) {
  int skip = OutputRawData(rinfo->target_address_address(),
                           kCanReturnSkipInsteadOfSkipping);
  Code* object = Code::GetCodeFromTargetAddress(rinfo->target_address());
  serializer_->SerializeObject(object, kFromCode, kInnerPointer, skip);
  bytes_processed_so_far_ += rinfo->target_address_size();
}


void Serializer::ObjectSerializer::VisitCodeEntry(Address entry_address) {
  int skip = OutputRawData(entry_address, kCanReturnSkipInsteadOfSkipping);
  Code* object = Code::cast(Code::GetObjectFromEntryAddress(entry_address));
  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
  bytes_processed_so_far_ += kPointerSize;
}


void Serializer::ObjectSerializer::VisitCell(RelocInfo* rinfo) {
  int skip = OutputRawData(rinfo->pc(), kCanReturnSkipInsteadOfSkipping);
  Cell* object = Cell::cast(rinfo->target_cell());
  serializer_->SerializeObject(object, kPlain, kInnerPointer, skip);
  bytes_processed_so_far_ += kPointerSize;
}


void Serializer::ObjectSerializer::VisitExternalOneByteString(
    v8::String::ExternalOneByteStringResource** resource_pointer) {
  Address references_start = reinterpret_cast<Address>(resource_pointer);
  OutputRawData(references_start);
  for (int i = 0; i < Natives::GetBuiltinsCount(); i++) {
    Object* source =
        serializer_->isolate()->heap()->natives_source_cache()->get(i);
    if (!source->IsUndefined()) {
      ExternalOneByteString* string = ExternalOneByteString::cast(source);
      typedef v8::String::ExternalOneByteStringResource Resource;
      const Resource* resource = string->resource();
      if (resource == *resource_pointer) {
        sink_->Put(kNativesStringResource, "NativesStringResource");
        sink_->PutSection(i, "NativesStringResourceEnd");
        bytes_processed_so_far_ += sizeof(resource);
        return;
      }
    }
  }
  // One of the strings in the natives cache should match the resource.  We
  // don't expect any other kinds of external strings here.
  UNREACHABLE();
}


Address Serializer::ObjectSerializer::PrepareCode() {
  // To make snapshots reproducible, we make a copy of the code object
  // and wipe all pointers in the copy, which we then serialize.
  Code* original = Code::cast(object_);
  Code* code = serializer_->CopyCode(original);
  // Code age headers are not serializable.
  code->MakeYoung(serializer_->isolate());
  int mode_mask = RelocInfo::kCodeTargetMask |
                  RelocInfo::ModeMask(RelocInfo::EMBEDDED_OBJECT) |
                  RelocInfo::ModeMask(RelocInfo::EXTERNAL_REFERENCE) |
                  RelocInfo::ModeMask(RelocInfo::RUNTIME_ENTRY) |
                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE) |
                  RelocInfo::ModeMask(RelocInfo::INTERNAL_REFERENCE_ENCODED);
  for (RelocIterator it(code, mode_mask); !it.done(); it.next()) {
    RelocInfo* rinfo = it.rinfo();
    rinfo->WipeOut();
  }
  // We need to wipe out the header fields *after* wiping out the
  // relocations, because some of these fields are needed for the latter.
  code->WipeOutHeader();
  return code->address();
}


int Serializer::ObjectSerializer::OutputRawData(
    Address up_to, Serializer::ObjectSerializer::ReturnSkip return_skip) {
  Address object_start = object_->address();
  int base = bytes_processed_so_far_;
  int up_to_offset = static_cast<int>(up_to - object_start);
  int to_skip = up_to_offset - bytes_processed_so_far_;
  int bytes_to_output = to_skip;
  bytes_processed_so_far_ += to_skip;
  // This assert will fail if the reloc info gives us the target_address_address
  // locations in a non-ascending order.  Luckily that doesn't happen.
  DCHECK(to_skip >= 0);
  bool outputting_code = false;
  if (to_skip != 0 && is_code_object_ && !code_has_been_output_) {
    // Output the code all at once and fix later.
    bytes_to_output = object_->Size() + to_skip - bytes_processed_so_far_;
    outputting_code = true;
    code_has_been_output_ = true;
  }
  if (bytes_to_output != 0 && (!is_code_object_ || outputting_code)) {
    if (!outputting_code && bytes_to_output == to_skip &&
        IsAligned(bytes_to_output, kPointerAlignment) &&
        bytes_to_output <= kNumberOfFixedRawData * kPointerSize) {
      int size_in_words = bytes_to_output >> kPointerSizeLog2;
      sink_->PutSection(kFixedRawDataStart + size_in_words, "FixedRawData");
      to_skip = 0;  // This instruction includes skip.
    } else {
      // We always end up here if we are outputting the code of a code object.
      sink_->Put(kVariableRawData, "VariableRawData");
      sink_->PutInt(bytes_to_output, "length");
    }

    if (is_code_object_) object_start = PrepareCode();

    const char* description = is_code_object_ ? "Code" : "Byte";
    sink_->PutRaw(object_start + base, bytes_to_output, description);
  }
  if (to_skip != 0 && return_skip == kIgnoringReturn) {
    sink_->Put(kSkip, "Skip");
    sink_->PutInt(to_skip, "SkipDistance");
    to_skip = 0;
  }
  return to_skip;
}


BackReference Serializer::AllocateLargeObject(int size) {
  // Large objects are allocated one-by-one when deserializing. We do not
  // have to keep track of multiple chunks.
  large_objects_total_size_ += size;
  return BackReference::LargeObjectReference(seen_large_objects_index_++);
}


BackReference Serializer::Allocate(AllocationSpace space, int size) {
  DCHECK(space >= 0 && space < kNumberOfPreallocatedSpaces);
  DCHECK(size > 0 && size <= static_cast<int>(max_chunk_size(space)));
  uint32_t new_chunk_size = pending_chunk_[space] + size;
  if (new_chunk_size > max_chunk_size(space)) {
    // The new chunk size would not fit onto a single page. Complete the
    // current chunk and start a new one.
    sink_->Put(kNextChunk, "NextChunk");
    sink_->Put(space, "NextChunkSpace");
    completed_chunks_[space].Add(pending_chunk_[space]);
    DCHECK_LE(completed_chunks_[space].length(), BackReference::kMaxChunkIndex);
    pending_chunk_[space] = 0;
    new_chunk_size = size;
  }
  uint32_t offset = pending_chunk_[space];
  pending_chunk_[space] = new_chunk_size;
  return BackReference::Reference(space, completed_chunks_[space].length(),
                                  offset);
}


void Serializer::Pad() {
  // The non-branching GetInt will read up to 3 bytes too far, so we need
  // to pad the snapshot to make sure we don't read over the end.
  for (unsigned i = 0; i < sizeof(int32_t) - 1; i++) {
    sink_->Put(kNop, "Padding");
  }
  // Pad up to pointer size for checksum.
  while (!IsAligned(sink_->Position(), kPointerAlignment)) {
    sink_->Put(kNop, "Padding");
  }
}


void Serializer::InitializeCodeAddressMap() {
  isolate_->InitializeLoggingAndCounters();
  code_address_map_ = new CodeAddressMap(isolate_);
}


Code* Serializer::CopyCode(Code* code) {
  code_buffer_.Rewind(0);  // Clear buffer without deleting backing store.
  int size = code->CodeSize();
  code_buffer_.AddAll(Vector<byte>(code->address(), size));
  return Code::cast(HeapObject::FromAddress(&code_buffer_.first()));
}


ScriptData* CodeSerializer::Serialize(Isolate* isolate,
                                      Handle<SharedFunctionInfo> info,
                                      Handle<String> source) {
  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();
  if (FLAG_trace_serializer) {
    PrintF("[Serializing from");
    Object* script = info->script();
    if (script->IsScript()) Script::cast(script)->name()->ShortPrint();
    PrintF("]\n");
  }

  // Serialize code object.
  SnapshotByteSink sink(info->code()->CodeSize() * 2);
  CodeSerializer cs(isolate, &sink, *source, info->code());
  DisallowHeapAllocation no_gc;
  Object** location = Handle<Object>::cast(info).location();
  cs.VisitPointer(location);
  cs.SerializeDeferredObjects();
  cs.Pad();

  SerializedCodeData data(sink.data(), cs);
  ScriptData* script_data = data.GetScriptData();

  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int length = script_data->length();
    PrintF("[Serializing to %d bytes took %0.3f ms]\n", length, ms);
  }

  return script_data;
}


void CodeSerializer::SerializeObject(HeapObject* obj, HowToCode how_to_code,
                                     WhereToPoint where_to_point, int skip) {
  int root_index = root_index_map_.Lookup(obj);
  if (root_index != RootIndexMap::kInvalidRootIndex) {
    PutRoot(root_index, obj, how_to_code, where_to_point, skip);
    return;
  }

  if (SerializeKnownObject(obj, how_to_code, where_to_point, skip)) return;

  FlushSkip(skip);

  if (obj->IsCode()) {
    Code* code_object = Code::cast(obj);
    switch (code_object->kind()) {
      case Code::OPTIMIZED_FUNCTION:  // No optimized code compiled yet.
      case Code::HANDLER:             // No handlers patched in yet.
      case Code::REGEXP:              // No regexp literals initialized yet.
      case Code::NUMBER_OF_KINDS:     // Pseudo enum value.
        CHECK(false);
      case Code::BUILTIN:
        SerializeBuiltin(code_object->builtin_index(), how_to_code,
                         where_to_point);
        return;
      case Code::STUB:
        SerializeCodeStub(code_object->stub_key(), how_to_code, where_to_point);
        return;
#define IC_KIND_CASE(KIND) case Code::KIND:
        IC_KIND_LIST(IC_KIND_CASE)
#undef IC_KIND_CASE
        SerializeIC(code_object, how_to_code, where_to_point);
        return;
      case Code::FUNCTION:
        DCHECK(code_object->has_reloc_info_for_serialization());
        // Only serialize the code for the toplevel function unless specified
        // by flag. Replace code of inner functions by the lazy compile builtin.
        // This is safe, as checked in Compiler::GetSharedFunctionInfo.
        if (code_object != main_code_ && !FLAG_serialize_inner) {
          SerializeBuiltin(Builtins::kCompileLazy, how_to_code, where_to_point);
        } else {
          SerializeGeneric(code_object, how_to_code, where_to_point);
        }
        return;
    }
    UNREACHABLE();
  }

  // Past this point we should not see any (context-specific) maps anymore.
  CHECK(!obj->IsMap());
  // There should be no references to the global object embedded.
  CHECK(!obj->IsJSGlobalProxy() && !obj->IsGlobalObject());
  // There should be no hash table embedded. They would require rehashing.
  CHECK(!obj->IsHashTable());
  // We expect no instantiated function objects or contexts.
  CHECK(!obj->IsJSFunction() && !obj->IsContext());

  SerializeGeneric(obj, how_to_code, where_to_point);
}


void CodeSerializer::SerializeGeneric(HeapObject* heap_object,
                                      HowToCode how_to_code,
                                      WhereToPoint where_to_point) {
  // Object has not yet been serialized.  Serialize it here.
  ObjectSerializer serializer(this, heap_object, sink_, how_to_code,
                              where_to_point);
  serializer.Serialize();
}


void CodeSerializer::SerializeBuiltin(int builtin_index, HowToCode how_to_code,
                                      WhereToPoint where_to_point) {
  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
         (how_to_code == kFromCode && where_to_point == kInnerPointer));
  DCHECK_LT(builtin_index, Builtins::builtin_count);
  DCHECK_LE(0, builtin_index);

  if (FLAG_trace_serializer) {
    PrintF(" Encoding builtin: %s\n",
           isolate()->builtins()->name(builtin_index));
  }

  sink_->Put(kBuiltin + how_to_code + where_to_point, "Builtin");
  sink_->PutInt(builtin_index, "builtin_index");
}


void CodeSerializer::SerializeCodeStub(uint32_t stub_key, HowToCode how_to_code,
                                       WhereToPoint where_to_point) {
  DCHECK((how_to_code == kPlain && where_to_point == kStartOfObject) ||
         (how_to_code == kPlain && where_to_point == kInnerPointer) ||
         (how_to_code == kFromCode && where_to_point == kInnerPointer));
  DCHECK(CodeStub::MajorKeyFromKey(stub_key) != CodeStub::NoCache);
  DCHECK(!CodeStub::GetCode(isolate(), stub_key).is_null());

  int index = AddCodeStubKey(stub_key) + kCodeStubsBaseIndex;

  if (FLAG_trace_serializer) {
    PrintF(" Encoding code stub %s as %d\n",
           CodeStub::MajorName(CodeStub::MajorKeyFromKey(stub_key), false),
           index);
  }

  sink_->Put(kAttachedReference + how_to_code + where_to_point, "CodeStub");
  sink_->PutInt(index, "CodeStub key");
}


void CodeSerializer::SerializeIC(Code* ic, HowToCode how_to_code,
                                 WhereToPoint where_to_point) {
  // The IC may be implemented as a stub.
  uint32_t stub_key = ic->stub_key();
  if (stub_key != CodeStub::NoCacheKey()) {
    if (FLAG_trace_serializer) {
      PrintF(" %s is a code stub\n", Code::Kind2String(ic->kind()));
    }
    SerializeCodeStub(stub_key, how_to_code, where_to_point);
    return;
  }
  // The IC may be implemented as builtin. Only real builtins have an
  // actual builtin_index value attached (otherwise it's just garbage).
  // Compare to make sure we are really dealing with a builtin.
  int builtin_index = ic->builtin_index();
  if (builtin_index < Builtins::builtin_count) {
    Builtins::Name name = static_cast<Builtins::Name>(builtin_index);
    Code* builtin = isolate()->builtins()->builtin(name);
    if (builtin == ic) {
      if (FLAG_trace_serializer) {
        PrintF(" %s is a builtin\n", Code::Kind2String(ic->kind()));
      }
      DCHECK(ic->kind() == Code::KEYED_LOAD_IC ||
             ic->kind() == Code::KEYED_STORE_IC);
      SerializeBuiltin(builtin_index, how_to_code, where_to_point);
      return;
    }
  }
  // The IC may also just be a piece of code kept in the non_monomorphic_cache.
  // In that case, just serialize as a normal code object.
  if (FLAG_trace_serializer) {
    PrintF(" %s has no special handling\n", Code::Kind2String(ic->kind()));
  }
  DCHECK(ic->kind() == Code::LOAD_IC || ic->kind() == Code::STORE_IC);
  SerializeGeneric(ic, how_to_code, where_to_point);
}


int CodeSerializer::AddCodeStubKey(uint32_t stub_key) {
  // TODO(yangguo) Maybe we need a hash table for a faster lookup than O(n^2).
  int index = 0;
  while (index < stub_keys_.length()) {
    if (stub_keys_[index] == stub_key) return index;
    index++;
  }
  stub_keys_.Add(stub_key);
  return index;
}


MaybeHandle<SharedFunctionInfo> CodeSerializer::Deserialize(
    Isolate* isolate, ScriptData* cached_data, Handle<String> source) {
  base::ElapsedTimer timer;
  if (FLAG_profile_deserialization) timer.Start();

  HandleScope scope(isolate);

  SmartPointer<SerializedCodeData> scd(
      SerializedCodeData::FromCachedData(isolate, cached_data, *source));
  if (scd.is_empty()) {
    if (FLAG_profile_deserialization) PrintF("[Cached code failed check]\n");
    DCHECK(cached_data->rejected());
    return MaybeHandle<SharedFunctionInfo>();
  }

  // Prepare and register list of attached objects.
  Vector<const uint32_t> code_stub_keys = scd->CodeStubKeys();
  Vector<Handle<Object> > attached_objects = Vector<Handle<Object> >::New(
      code_stub_keys.length() + kCodeStubsBaseIndex);
  attached_objects[kSourceObjectIndex] = source;
  for (int i = 0; i < code_stub_keys.length(); i++) {
    attached_objects[i + kCodeStubsBaseIndex] =
        CodeStub::GetCode(isolate, code_stub_keys[i]).ToHandleChecked();
  }

  Deserializer deserializer(scd.get());
  deserializer.SetAttachedObjects(attached_objects);

  // Deserialize.
  Handle<SharedFunctionInfo> result;
  if (!deserializer.DeserializeCode(isolate).ToHandle(&result)) {
    // Deserializing may fail if the reservations cannot be fulfilled.
    if (FLAG_profile_deserialization) PrintF("[Deserializing failed]\n");
    return MaybeHandle<SharedFunctionInfo>();
  }
  deserializer.FlushICacheForNewCodeObjects();

  if (FLAG_profile_deserialization) {
    double ms = timer.Elapsed().InMillisecondsF();
    int length = cached_data->length();
    PrintF("[Deserializing from %d bytes took %0.3f ms]\n", length, ms);
  }
  result->set_deserialized(true);

  if (isolate->logger()->is_logging_code_events() ||
      isolate->cpu_profiler()->is_profiling()) {
    String* name = isolate->heap()->empty_string();
    if (result->script()->IsScript()) {
      Script* script = Script::cast(result->script());
      if (script->name()->IsString()) name = String::cast(script->name());
    }
    isolate->logger()->CodeCreateEvent(Logger::SCRIPT_TAG, result->code(),
                                       *result, NULL, name);
  }
  return scope.CloseAndEscape(result);
}


void SerializedData::AllocateData(int size) {
  DCHECK(!owns_data_);
  data_ = NewArray<byte>(size);
  size_ = size;
  owns_data_ = true;
  DCHECK(IsAligned(reinterpret_cast<intptr_t>(data_), kPointerAlignment));
}


SnapshotData::SnapshotData(const Serializer& ser) {
  DisallowHeapAllocation no_gc;
  List<Reservation> reservations;
  ser.EncodeReservations(&reservations);
  const List<byte>& payload = ser.sink()->data();

  // Calculate sizes.
  int reservation_size = reservations.length() * kInt32Size;
  int size = kHeaderSize + reservation_size + payload.length();

  // Allocate backing store and create result data.
  AllocateData(size);

  // Set header values.
  SetMagicNumber(ser.isolate());
  SetHeaderValue(kCheckSumOffset, Version::Hash());
  SetHeaderValue(kNumReservationsOffset, reservations.length());
  SetHeaderValue(kPayloadLengthOffset, payload.length());

  // Copy reservation chunk sizes.
  CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
            reservation_size);

  // Copy serialized data.
  CopyBytes(data_ + kHeaderSize + reservation_size, payload.begin(),
            static_cast<size_t>(payload.length()));
}


bool SnapshotData::IsSane() {
  return GetHeaderValue(kCheckSumOffset) == Version::Hash();
}


Vector<const SerializedData::Reservation> SnapshotData::Reservations() const {
  return Vector<const Reservation>(
      reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
      GetHeaderValue(kNumReservationsOffset));
}


Vector<const byte> SnapshotData::Payload() const {
  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
  const byte* payload = data_ + kHeaderSize + reservations_size;
  int length = GetHeaderValue(kPayloadLengthOffset);
  DCHECK_EQ(data_ + size_, payload + length);
  return Vector<const byte>(payload, length);
}


class Checksum {
 public:
  explicit Checksum(Vector<const byte> payload) {
#ifdef MEMORY_SANITIZER
    // Computing the checksum includes padding bytes for objects like strings.
    // Mark every object as initialized in the code serializer.
    MSAN_MEMORY_IS_INITIALIZED(payload.start(), payload.length());
#endif  // MEMORY_SANITIZER
    // Fletcher's checksum. Modified to reduce 64-bit sums to 32-bit.
    uintptr_t a = 1;
    uintptr_t b = 0;
    const uintptr_t* cur = reinterpret_cast<const uintptr_t*>(payload.start());
    DCHECK(IsAligned(payload.length(), kIntptrSize));
    const uintptr_t* end = cur + payload.length() / kIntptrSize;
    while (cur < end) {
      // Unsigned overflow expected and intended.
      a += *cur++;
      b += a;
    }
#if V8_HOST_ARCH_64_BIT
    a ^= a >> 32;
    b ^= b >> 32;
#endif  // V8_HOST_ARCH_64_BIT
    a_ = static_cast<uint32_t>(a);
    b_ = static_cast<uint32_t>(b);
  }

  bool Check(uint32_t a, uint32_t b) const { return a == a_ && b == b_; }

  uint32_t a() const { return a_; }
  uint32_t b() const { return b_; }

 private:
  uint32_t a_;
  uint32_t b_;

  DISALLOW_COPY_AND_ASSIGN(Checksum);
};


SerializedCodeData::SerializedCodeData(const List<byte>& payload,
                                       const CodeSerializer& cs) {
  DisallowHeapAllocation no_gc;
  const List<uint32_t>* stub_keys = cs.stub_keys();

  List<Reservation> reservations;
  cs.EncodeReservations(&reservations);

  // Calculate sizes.
  int reservation_size = reservations.length() * kInt32Size;
  int num_stub_keys = stub_keys->length();
  int stub_keys_size = stub_keys->length() * kInt32Size;
  int payload_offset = kHeaderSize + reservation_size + stub_keys_size;
  int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
  int size = padded_payload_offset + payload.length();

  // Allocate backing store and create result data.
  AllocateData(size);

  // Set header values.
  SetMagicNumber(cs.isolate());
  SetHeaderValue(kVersionHashOffset, Version::Hash());
  SetHeaderValue(kSourceHashOffset, SourceHash(cs.source()));
  SetHeaderValue(kCpuFeaturesOffset,
                 static_cast<uint32_t>(CpuFeatures::SupportedFeatures()));
  SetHeaderValue(kFlagHashOffset, FlagList::Hash());
  SetHeaderValue(kNumReservationsOffset, reservations.length());
  SetHeaderValue(kNumCodeStubKeysOffset, num_stub_keys);
  SetHeaderValue(kPayloadLengthOffset, payload.length());

  Checksum checksum(payload.ToConstVector());
  SetHeaderValue(kChecksum1Offset, checksum.a());
  SetHeaderValue(kChecksum2Offset, checksum.b());

  // Copy reservation chunk sizes.
  CopyBytes(data_ + kHeaderSize, reinterpret_cast<byte*>(reservations.begin()),
            reservation_size);

  // Copy code stub keys.
  CopyBytes(data_ + kHeaderSize + reservation_size,
            reinterpret_cast<byte*>(stub_keys->begin()), stub_keys_size);

  memset(data_ + payload_offset, 0, padded_payload_offset - payload_offset);

  // Copy serialized data.
  CopyBytes(data_ + padded_payload_offset, payload.begin(),
            static_cast<size_t>(payload.length()));
}


SerializedCodeData::SanityCheckResult SerializedCodeData::SanityCheck(
    Isolate* isolate, String* source) const {
  uint32_t magic_number = GetMagicNumber();
  if (magic_number != ComputeMagicNumber(isolate)) return MAGIC_NUMBER_MISMATCH;
  uint32_t version_hash = GetHeaderValue(kVersionHashOffset);
  uint32_t source_hash = GetHeaderValue(kSourceHashOffset);
  uint32_t cpu_features = GetHeaderValue(kCpuFeaturesOffset);
  uint32_t flags_hash = GetHeaderValue(kFlagHashOffset);
  uint32_t c1 = GetHeaderValue(kChecksum1Offset);
  uint32_t c2 = GetHeaderValue(kChecksum2Offset);
  if (version_hash != Version::Hash()) return VERSION_MISMATCH;
  if (source_hash != SourceHash(source)) return SOURCE_MISMATCH;
  if (cpu_features != static_cast<uint32_t>(CpuFeatures::SupportedFeatures())) {
    return CPU_FEATURES_MISMATCH;
  }
  if (flags_hash != FlagList::Hash()) return FLAGS_MISMATCH;
  if (!Checksum(Payload()).Check(c1, c2)) return CHECKSUM_MISMATCH;
  return CHECK_SUCCESS;
}


// Return ScriptData object and relinquish ownership over it to the caller.
ScriptData* SerializedCodeData::GetScriptData() {
  DCHECK(owns_data_);
  ScriptData* result = new ScriptData(data_, size_);
  result->AcquireDataOwnership();
  owns_data_ = false;
  data_ = NULL;
  return result;
}


Vector<const SerializedData::Reservation> SerializedCodeData::Reservations()
    const {
  return Vector<const Reservation>(
      reinterpret_cast<const Reservation*>(data_ + kHeaderSize),
      GetHeaderValue(kNumReservationsOffset));
}


Vector<const byte> SerializedCodeData::Payload() const {
  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
  int code_stubs_size = GetHeaderValue(kNumCodeStubKeysOffset) * kInt32Size;
  int payload_offset = kHeaderSize + reservations_size + code_stubs_size;
  int padded_payload_offset = POINTER_SIZE_ALIGN(payload_offset);
  const byte* payload = data_ + padded_payload_offset;
  DCHECK(IsAligned(reinterpret_cast<intptr_t>(payload), kPointerAlignment));
  int length = GetHeaderValue(kPayloadLengthOffset);
  DCHECK_EQ(data_ + size_, payload + length);
  return Vector<const byte>(payload, length);
}


Vector<const uint32_t> SerializedCodeData::CodeStubKeys() const {
  int reservations_size = GetHeaderValue(kNumReservationsOffset) * kInt32Size;
  const byte* start = data_ + kHeaderSize + reservations_size;
  return Vector<const uint32_t>(reinterpret_cast<const uint32_t*>(start),
                                GetHeaderValue(kNumCodeStubKeysOffset));
}


SerializedCodeData::SerializedCodeData(ScriptData* data)
    : SerializedData(const_cast<byte*>(data->data()), data->length()) {}


SerializedCodeData* SerializedCodeData::FromCachedData(Isolate* isolate,
                                                       ScriptData* cached_data,
                                                       String* source) {
  DisallowHeapAllocation no_gc;
  SerializedCodeData* scd = new SerializedCodeData(cached_data);
  SanityCheckResult r = scd->SanityCheck(isolate, source);
  if (r == CHECK_SUCCESS) return scd;
  cached_data->Reject();
  source->GetIsolate()->counters()->code_cache_reject_reason()->AddSample(r);
  delete scd;
  return NULL;
}
}  // namespace internal
}  // namespace v8