1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389
|
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Crypto | Node.js v4.8.2 Manual & Documentation</title>
<link rel="stylesheet" href="https://fonts.googleapis.com/css?family=Lato:400,700,400italic">
<link rel="stylesheet" href="assets/style.css">
<link rel="stylesheet" href="assets/sh.css">
<link rel="canonical" href="https://nodejs.org/api/crypto.html">
</head>
<body class="alt apidoc" id="api-section-crypto">
<div id="content" class="clearfix">
<div id="column2" class="interior">
<div id="intro" class="interior">
<a href="/" title="Go back to the home page">
Node.js
</a>
</div>
<ul>
<li><a class="nav-documentation" href="documentation.html">About these Docs</a></li>
<li><a class="nav-synopsis" href="synopsis.html">Usage & Example</a></li>
</ul>
<div class="line"></div>
<ul>
<li><a class="nav-assert" href="assert.html">Assertion Testing</a></li>
<li><a class="nav-buffer" href="buffer.html">Buffer</a></li>
<li><a class="nav-addons" href="addons.html">C/C++ Addons</a></li>
<li><a class="nav-child_process" href="child_process.html">Child Processes</a></li>
<li><a class="nav-cluster" href="cluster.html">Cluster</a></li>
<li><a class="nav-cli" href="cli.html">Command Line Options</a></li>
<li><a class="nav-console" href="console.html">Console</a></li>
<li><a class="nav-crypto active" href="crypto.html">Crypto</a></li>
<li><a class="nav-debugger" href="debugger.html">Debugger</a></li>
<li><a class="nav-dns" href="dns.html">DNS</a></li>
<li><a class="nav-domain" href="domain.html">Domain</a></li>
<li><a class="nav-errors" href="errors.html">Errors</a></li>
<li><a class="nav-events" href="events.html">Events</a></li>
<li><a class="nav-fs" href="fs.html">File System</a></li>
<li><a class="nav-globals" href="globals.html">Globals</a></li>
<li><a class="nav-http" href="http.html">HTTP</a></li>
<li><a class="nav-https" href="https.html">HTTPS</a></li>
<li><a class="nav-modules" href="modules.html">Modules</a></li>
<li><a class="nav-net" href="net.html">Net</a></li>
<li><a class="nav-os" href="os.html">OS</a></li>
<li><a class="nav-path" href="path.html">Path</a></li>
<li><a class="nav-process" href="process.html">Process</a></li>
<li><a class="nav-punycode" href="punycode.html">Punycode</a></li>
<li><a class="nav-querystring" href="querystring.html">Query Strings</a></li>
<li><a class="nav-readline" href="readline.html">Readline</a></li>
<li><a class="nav-repl" href="repl.html">REPL</a></li>
<li><a class="nav-stream" href="stream.html">Stream</a></li>
<li><a class="nav-string_decoder" href="string_decoder.html">String Decoder</a></li>
<li><a class="nav-timers" href="timers.html">Timers</a></li>
<li><a class="nav-tls" href="tls.html">TLS/SSL</a></li>
<li><a class="nav-tty" href="tty.html">TTY</a></li>
<li><a class="nav-dgram" href="dgram.html">UDP/Datagram</a></li>
<li><a class="nav-url" href="url.html">URL</a></li>
<li><a class="nav-util" href="util.html">Utilities</a></li>
<li><a class="nav-v8" href="v8.html">V8</a></li>
<li><a class="nav-vm" href="vm.html">VM</a></li>
<li><a class="nav-zlib" href="zlib.html">ZLIB</a></li>
</ul>
<div class="line"></div>
<ul>
<li><a class="nav-https-github-com-nodejs-node" href="https://github.com/nodejs/node">GitHub Repo & Issue Tracker</a></li>
<li><a class="nav-http-groups-google-com-group-nodejs" href="http://groups.google.com/group/nodejs">Mailing List</a></li>
</ul>
</div>
<div id="column1" data-id="crypto" class="interior">
<header>
<h1>Node.js v4.8.2 Documentation</h1>
<div id="gtoc">
<p>
<a href="index.html" name="toc">Index</a> |
<a href="all.html">View on single page</a> |
<a href="crypto.json">View as JSON</a>
</p>
</div>
<hr>
</header>
<div id="toc">
<h2>Table of Contents</h2>
<ul>
<li><span class="stability_2"><a href="#crypto_crypto">Crypto</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_class_certificate">Class: Certificate</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_new_crypto_certificate">new crypto.Certificate()</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_certificate_exportchallenge_spkac">certificate.exportChallenge(spkac)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_certificate_exportpublickey_spkac">certificate.exportPublicKey(spkac)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_certificate_verifyspkac_spkac">certificate.verifySpkac(spkac)</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_cipher">Class: Cipher</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_cipher_final_output_encoding">cipher.final([output_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_cipher_setaad_buffer">cipher.setAAD(buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_cipher_getauthtag">cipher.getAuthTag()</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_cipher_setautopadding_auto_padding_true">cipher.setAutoPadding(auto_padding=true)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_cipher_update_data_input_encoding_output_encoding">cipher.update(data[, input_encoding][, output_encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_decipher">Class: Decipher</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_decipher_final_output_encoding">decipher.final([output_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_decipher_setaad_buffer">decipher.setAAD(buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_decipher_setauthtag_buffer">decipher.setAuthTag(buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_decipher_setautopadding_auto_padding_true">decipher.setAutoPadding(auto_padding=true)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_decipher_update_data_input_encoding_output_encoding">decipher.update(data[, input_encoding][, output_encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_diffiehellman">Class: DiffieHellman</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_computesecret_other_public_key_input_encoding_output_encoding">diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_generatekeys_encoding">diffieHellman.generateKeys([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_getgenerator_encoding">diffieHellman.getGenerator([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_getprime_encoding">diffieHellman.getPrime([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_getprivatekey_encoding">diffieHellman.getPrivateKey([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_getpublickey_encoding">diffieHellman.getPublicKey([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_setprivatekey_private_key_encoding">diffieHellman.setPrivateKey(private_key[, encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_setpublickey_public_key_encoding">diffieHellman.setPublicKey(public_key[, encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_diffiehellman_verifyerror">diffieHellman.verifyError</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_ecdh">Class: ECDH</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_ecdh_computesecret_other_public_key_input_encoding_output_encoding">ecdh.computeSecret(other_public_key[, input_encoding][, output_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_ecdh_generatekeys_encoding_format">ecdh.generateKeys([encoding[, format]])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_ecdh_getprivatekey_encoding">ecdh.getPrivateKey([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_ecdh_getpublickey_encoding_format">ecdh.getPublicKey([encoding[, format]])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_ecdh_setprivatekey_private_key_encoding">ecdh.setPrivateKey(private_key[, encoding])</a></span></li>
<li><span class="stability_0"><a href="#crypto_ecdh_setpublickey_public_key_encoding">ecdh.setPublicKey(public_key[, encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_hash">Class: Hash</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_hash_digest_encoding">hash.digest([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_hash_update_data_input_encoding">hash.update(data[, input_encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_hmac">Class: Hmac</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_hmac_digest_encoding">hmac.digest([encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_hmac_update_data_input_encoding">hmac.update(data[, input_encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_sign">Class: Sign</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_sign_sign_private_key_output_format">sign.sign(private_key[, output_format])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_sign_update_data_input_encoding">sign.update(data[, input_encoding])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_class_verify">Class: Verify</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_verifier_update_data_input_encoding">verifier.update(data[, input_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_verifier_verify_object_signature_signature_format">verifier.verify(object, signature[, signature_format])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_crypto_module_methods_and_properties"><code>crypto</code> module methods and properties</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_crypto_default_encoding">crypto.DEFAULT_ENCODING</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createcipher_algorithm_password">crypto.createCipher(algorithm, password)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createcipheriv_algorithm_key_iv">crypto.createCipheriv(algorithm, key, iv)</a></span></li>
<li><span class="stability_0"><a href="#crypto_crypto_createcredentials_details">crypto.createCredentials(details)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createdecipher_algorithm_password">crypto.createDecipher(algorithm, password)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createdecipheriv_algorithm_key_iv">crypto.createDecipheriv(algorithm, key, iv)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding">crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_creatediffiehellman_prime_length_generator">crypto.createDiffieHellman(prime_length[, generator])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createecdh_curve_name">crypto.createECDH(curve_name)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createhash_algorithm">crypto.createHash(algorithm)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createhmac_algorithm_key">crypto.createHmac(algorithm, key)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createsign_algorithm">crypto.createSign(algorithm)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_createverify_algorithm">crypto.createVerify(algorithm)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_getciphers">crypto.getCiphers()</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_getcurves">crypto.getCurves()</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_getdiffiehellman_group_name">crypto.getDiffieHellman(group_name)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_gethashes">crypto.getHashes()</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback">crypto.pbkdf2(password, salt, iterations, keylen[, digest], callback)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_pbkdf2sync_password_salt_iterations_keylen_digest">crypto.pbkdf2Sync(password, salt, iterations, keylen[, digest])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_privatedecrypt_private_key_buffer">crypto.privateDecrypt(private_key, buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_privateencrypt_private_key_buffer">crypto.privateEncrypt(private_key, buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_publicdecrypt_public_key_buffer">crypto.publicDecrypt(public_key, buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_publicencrypt_public_key_buffer">crypto.publicEncrypt(public_key, buffer)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_randombytes_size_callback">crypto.randomBytes(size[, callback])</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_crypto_setengine_engine_flags">crypto.setEngine(engine[, flags])</a></span></li>
</ul>
</li>
<li><span class="stability_undefined"><a href="#crypto_notes">Notes</a></span><ul>
<li><span class="stability_undefined"><a href="#crypto_legacy_streams_api_pre_node_js_v0_10">Legacy Streams API (pre Node.js v0.10)</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_recent_ecdh_changes">Recent ECDH Changes</a></span></li>
<li><span class="stability_undefined"><a href="#crypto_support_for_weak_or_compromised_algorithms">Support for weak or compromised algorithms</a></span></li>
</ul>
</li>
</ul>
</li>
</ul>
</div>
<div id="apicontent">
<h1>Crypto<span><a class="mark" href="#crypto_crypto" id="crypto_crypto">#</a></span></h1>
<pre class="api_stability api_stability_2">Stability: 2 - Stable</pre><p>The <code>crypto</code> module provides cryptographic functionality that includes a set of
wrappers for OpenSSL's hash, HMAC, cipher, decipher, sign and verify functions.</p>
<p>Use <code>require('crypto')</code> to access this module.</p>
<pre><code class="lang-js">const crypto = require('crypto');
const secret = 'abcdefg';
const hash = crypto.createHmac('sha256', secret)
.update('I love cupcakes')
.digest('hex');
console.log(hash);
// Prints:
// c0fa1bc00531bd78ef38c628449c5102aeabd49b5dc3a2a516ea6ea959d6658e
</code></pre>
<h2>Class: Certificate<span><a class="mark" href="#crypto_class_certificate" id="crypto_class_certificate">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.11.8</span>
</div><p>SPKAC is a Certificate Signing Request mechanism originally implemented by
Netscape and now specified formally as part of <a href="http://www.w3.org/TR/html5/forms.html#the-keygen-element">HTML5's <code>keygen</code> element</a>.</p>
<p>The <code>crypto</code> module provides the <code>Certificate</code> class for working with SPKAC
data. The most common usage is handling output generated by the HTML5
<code><keygen></code> element. Node.js uses <a href="https://www.openssl.org/docs/apps/spkac.html">OpenSSL's SPKAC implementation</a> internally.</p>
<h3>new crypto.Certificate()<span><a class="mark" href="#crypto_new_crypto_certificate" id="crypto_new_crypto_certificate">#</a></span></h3>
<p>Instances of the <code>Certificate</code> class can be created using the <code>new</code> keyword
or by calling <code>crypto.Certificate()</code> as a function:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const cert1 = new crypto.Certificate();
const cert2 = crypto.Certificate();
</code></pre>
<h3>certificate.exportChallenge(spkac)<span><a class="mark" href="#crypto_certificate_exportchallenge_spkac" id="crypto_certificate_exportchallenge_spkac">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.8</span>
</div><p>The <code>spkac</code> data structure includes a public key and a challenge. The
<code>certificate.exportChallenge()</code> returns the challenge component in the
form of a Node.js <a href="buffer.html"><code>Buffer</code></a>. The <code>spkac</code> argument can be either a string
or a <a href="buffer.html"><code>Buffer</code></a>.</p>
<pre><code class="lang-js">const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const challenge = cert.exportChallenge(spkac);
console.log(challenge.toString('utf8'));
// Prints the challenge as a UTF8 string
</code></pre>
<h3>certificate.exportPublicKey(spkac)<span><a class="mark" href="#crypto_certificate_exportpublickey_spkac" id="crypto_certificate_exportpublickey_spkac">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.8</span>
</div><p>The <code>spkac</code> data structure includes a public key and a challenge. The
<code>certificate.exportPublicKey()</code> returns the public key component in the
form of a Node.js <a href="buffer.html"><code>Buffer</code></a>. The <code>spkac</code> argument can be either a string
or a <a href="buffer.html"><code>Buffer</code></a>.</p>
<pre><code class="lang-js">const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
const publicKey = cert.exportPublicKey(spkac);
console.log(publicKey);
// Prints the public key as <Buffer ...>
</code></pre>
<h3>certificate.verifySpkac(spkac)<span><a class="mark" href="#crypto_certificate_verifyspkac_spkac" id="crypto_certificate_verifyspkac_spkac">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.8</span>
</div><p>Returns <code>true</code> if the given <code>spkac</code> data structure is valid, <code>false</code> otherwise.
The <code>spkac</code> argument must be a Node.js <a href="buffer.html"><code>Buffer</code></a>.</p>
<pre><code class="lang-js">const cert = require('crypto').Certificate();
const spkac = getSpkacSomehow();
console.log(cert.verifySpkac(new Buffer(spkac)));
// Prints true or false
</code></pre>
<h2>Class: Cipher<span><a class="mark" href="#crypto_class_cipher" id="crypto_class_cipher">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Instances of the <code>Cipher</code> class are used to encrypt data. The class can be
used in one of two ways:</p>
<ul>
<li>As a <a href="stream.html">stream</a> that is both readable and writable, where plain unencrypted
data is written to produce encrypted data on the readable side, or</li>
<li>Using the <a href="#crypto_cipher_update_data_input_encoding_output_encoding"><code>cipher.update()</code></a> and <a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> methods to produce
the encrypted data.</li>
</ul>
<p>The <a href="#crypto_crypto_createcipher_algorithm_password"><code>crypto.createCipher()</code></a> or <a href="#crypto_crypto_createcipheriv_algorithm_key_iv"><code>crypto.createCipheriv()</code></a> methods are
used to create <code>Cipher</code> instances. <code>Cipher</code> objects are not to be created
directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Cipher</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');
var encrypted = '';
cipher.on('readable', () => {
var data = cipher.read();
if (data)
encrypted += data.toString('hex');
});
cipher.on('end', () => {
console.log(encrypted);
// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504
});
cipher.write('some clear text data');
cipher.end();
</code></pre>
<p>Example: Using <code>Cipher</code> and piped streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const fs = require('fs');
const cipher = crypto.createCipher('aes192', 'a password');
const input = fs.createReadStream('test.js');
const output = fs.createWriteStream('test.enc');
input.pipe(cipher).pipe(output);
</code></pre>
<p>Example: Using the <a href="#crypto_cipher_update_data_input_encoding_output_encoding"><code>cipher.update()</code></a> and <a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const cipher = crypto.createCipher('aes192', 'a password');
var encrypted = cipher.update('some clear text data', 'utf8', 'hex');
encrypted += cipher.final('hex');
console.log(encrypted);
// Prints: ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504
</code></pre>
<h3>cipher.final([output_encoding])<span><a class="mark" href="#crypto_cipher_final_output_encoding" id="crypto_cipher_final_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Returns any remaining enciphered contents. If <code>output_encoding</code>
parameter is one of <code>'binary'</code>, <code>'base64'</code> or <code>'hex'</code>, a string is returned.
If an <code>output_encoding</code> is not provided, a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<p>Once the <code>cipher.final()</code> method has been called, the <code>Cipher</code> object can no
longer be used to encrypt data. Attempts to call <code>cipher.final()</code> more than
once will result in an error being thrown.</p>
<h3>cipher.setAAD(buffer)<span><a class="mark" href="#crypto_cipher_setaad_buffer" id="crypto_cipher_setaad_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.0.0</span>
</div><p>When using an authenticated encryption mode (only <code>GCM</code> is currently
supported), the <code>cipher.setAAD()</code> method sets the value used for the
<em>additional authenticated data</em> (AAD) input parameter.</p>
<h3>cipher.getAuthTag()<span><a class="mark" href="#crypto_cipher_getauthtag" id="crypto_cipher_getauthtag">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.0.0</span>
</div><p>When using an authenticated encryption mode (only <code>GCM</code> is currently
supported), the <code>cipher.getAuthTag()</code> method returns a <a href="buffer.html"><code>Buffer</code></a> containing
the <em>authentication tag</em> that has been computed from the given data.</p>
<p>The <code>cipher.getAuthTag()</code> method should only be called after encryption has
been completed using the <a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> method.</p>
<h3>cipher.setAutoPadding(auto_padding=true)<span><a class="mark" href="#crypto_cipher_setautopadding_auto_padding_true" id="crypto_cipher_setautopadding_auto_padding_true">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.7.1</span>
</div><p>When using block encryption algorithms, the <code>Cipher</code> class will automatically
add padding to the input data to the appropriate block size. To disable the
default padding call <code>cipher.setAutoPadding(false)</code>.</p>
<p>When <code>auto_padding</code> is <code>false</code>, the length of the entire input data must be a
multiple of the cipher's block size or <a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> will throw an Error.
Disabling automatic padding is useful for non-standard padding, for instance
using <code>0x0</code> instead of PKCS padding.</p>
<p>The <code>cipher.setAutoPadding()</code> method must be called before <a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a>.</p>
<h3>cipher.update(data[, input_encoding][, output_encoding])<span><a class="mark" href="#crypto_cipher_update_data_input_encoding_output_encoding" id="crypto_cipher_update_data_input_encoding_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Updates the cipher with <code>data</code>. If the <code>input_encoding</code> argument is given,
it's value must be one of <code>'utf8'</code>, <code>'ascii'</code>, or <code>'binary'</code> and the <code>data</code>
argument is a string using the specified encoding. If the <code>input_encoding</code>
argument is not given, <code>data</code> must be a <a href="buffer.html"><code>Buffer</code></a>. If <code>data</code> is a
<a href="buffer.html"><code>Buffer</code></a> then <code>input_encoding</code> is ignored.</p>
<p>The <code>output_encoding</code> specifies the output format of the enciphered
data, and can be <code>'binary'</code>, <code>'base64'</code> or <code>'hex'</code>. If the <code>output_encoding</code>
is specified, a string using the specified encoding is returned. If no
<code>output_encoding</code> is provided, a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<p>The <code>cipher.update()</code> method can be called multiple times with new data until
<a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> is called. Calling <code>cipher.update()</code> after
<a href="#crypto_cipher_final_output_encoding"><code>cipher.final()</code></a> will result in an error being thrown.</p>
<h2>Class: Decipher<span><a class="mark" href="#crypto_class_decipher" id="crypto_class_decipher">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Instances of the <code>Decipher</code> class are used to decrypt data. The class can be
used in one of two ways:</p>
<ul>
<li>As a <a href="stream.html">stream</a> that is both readable and writable, where plain encrypted
data is written to produce unencrypted data on the readable side, or</li>
<li>Using the <a href="#crypto_decipher_update_data_input_encoding_output_encoding"><code>decipher.update()</code></a> and <a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> methods to
produce the unencrypted data.</li>
</ul>
<p>The <a href="#crypto_crypto_createdecipher_algorithm_password"><code>crypto.createDecipher()</code></a> or <a href="#crypto_crypto_createdecipheriv_algorithm_key_iv"><code>crypto.createDecipheriv()</code></a> methods are
used to create <code>Decipher</code> instances. <code>Decipher</code> objects are not to be created
directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Decipher</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');
var decrypted = '';
decipher.on('readable', () => {
var data = decipher.read();
if (data)
decrypted += data.toString('utf8');
});
decipher.on('end', () => {
console.log(decrypted);
// Prints: some clear text data
});
var encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
decipher.write(encrypted, 'hex');
decipher.end();
</code></pre>
<p>Example: Using <code>Decipher</code> and piped streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const fs = require('fs');
const decipher = crypto.createDecipher('aes192', 'a password');
const input = fs.createReadStream('test.enc');
const output = fs.createWriteStream('test.js');
input.pipe(decipher).pipe(output);
</code></pre>
<p>Example: Using the <a href="#crypto_decipher_update_data_input_encoding_output_encoding"><code>decipher.update()</code></a> and <a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const decipher = crypto.createDecipher('aes192', 'a password');
var encrypted = 'ca981be48e90867604588e75d04feabb63cc007a8f8ad89b10616ed84d815504';
var decrypted = decipher.update(encrypted, 'hex', 'utf8');
decrypted += decipher.final('utf8');
console.log(decrypted);
// Prints: some clear text data
</code></pre>
<h3>decipher.final([output_encoding])<span><a class="mark" href="#crypto_decipher_final_output_encoding" id="crypto_decipher_final_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Returns any remaining deciphered contents. If <code>output_encoding</code>
parameter is one of <code>'binary'</code>, <code>'base64'</code> or <code>'hex'</code>, a string is returned.
If an <code>output_encoding</code> is not provided, a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<p>Once the <code>decipher.final()</code> method has been called, the <code>Decipher</code> object can
no longer be used to decrypt data. Attempts to call <code>decipher.final()</code> more
than once will result in an error being thrown.</p>
<h3>decipher.setAAD(buffer)<span><a class="mark" href="#crypto_decipher_setaad_buffer" id="crypto_decipher_setaad_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.0.0</span>
</div><p>When using an authenticated encryption mode (only <code>GCM</code> is currently
supported), the <code>decipher.setAAD()</code> method sets the value used for the
<em>additional authenticated data</em> (AAD) input parameter.</p>
<h3>decipher.setAuthTag(buffer)<span><a class="mark" href="#crypto_decipher_setauthtag_buffer" id="crypto_decipher_setauthtag_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.0.0</span>
</div><p>When using an authenticated encryption mode (only <code>GCM</code> is currently
supported), the <code>decipher.setAuthTag()</code> method is used to pass in the
received <em>authentication tag</em>. If no tag is provided, or if the cipher text
has been tampered with, <a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> with throw, indicating that the
cipher text should be discarded due to failed authentication.</p>
<h3>decipher.setAutoPadding(auto_padding=true)<span><a class="mark" href="#crypto_decipher_setautopadding_auto_padding_true" id="crypto_decipher_setautopadding_auto_padding_true">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.7.1</span>
</div><p>When data has been encrypted without standard block padding, calling
<code>decipher.setAutoPadding(false)</code> will disable automatic padding to prevent
<a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> from checking for and removing padding.</p>
<p>Turning auto padding off will only work if the input data's length is a
multiple of the ciphers block size.</p>
<p>The <code>decipher.setAutoPadding()</code> method must be called before
<a href="#crypto_decipher_update_data_input_encoding_output_encoding"><code>decipher.update()</code></a>.</p>
<h3>decipher.update(data[, input_encoding][, output_encoding])<span><a class="mark" href="#crypto_decipher_update_data_input_encoding_output_encoding" id="crypto_decipher_update_data_input_encoding_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Updates the decipher with <code>data</code>. If the <code>input_encoding</code> argument is given,
it's value must be one of <code>'binary'</code>, <code>'base64'</code>, or <code>'hex'</code> and the <code>data</code>
argument is a string using the specified encoding. If the <code>input_encoding</code>
argument is not given, <code>data</code> must be a <a href="buffer.html"><code>Buffer</code></a>. If <code>data</code> is a
<a href="buffer.html"><code>Buffer</code></a> then <code>input_encoding</code> is ignored.</p>
<p>The <code>output_encoding</code> specifies the output format of the enciphered
data, and can be <code>'binary'</code>, <code>'ascii'</code> or <code>'utf8'</code>. If the <code>output_encoding</code>
is specified, a string using the specified encoding is returned. If no
<code>output_encoding</code> is provided, a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<p>The <code>decipher.update()</code> method can be called multiple times with new data until
<a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> is called. Calling <code>decipher.update()</code> after
<a href="#crypto_decipher_final_output_encoding"><code>decipher.final()</code></a> will result in an error being thrown.</p>
<h2>Class: DiffieHellman<span><a class="mark" href="#crypto_class_diffiehellman" id="crypto_class_diffiehellman">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>The <code>DiffieHellman</code> class is a utility for creating Diffie-Hellman key
exchanges.</p>
<p>Instances of the <code>DiffieHellman</code> class can be created using the
<a href="#crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding"><code>crypto.createDiffieHellman()</code></a> function.</p>
<pre><code class="lang-js">const crypto = require('crypto');
const assert = require('assert');
// Generate Alice's keys...
const alice = crypto.createDiffieHellman(2048);
const alice_key = alice.generateKeys();
// Generate Bob's keys...
const bob = crypto.createDiffieHellman(alice.getPrime(), alice.getGenerator());
const bob_key = bob.generateKeys();
// Exchange and generate the secret...
const alice_secret = alice.computeSecret(bob_key);
const bob_secret = bob.computeSecret(alice_key);
// OK
assert.equal(alice_secret.toString('hex'), bob_secret.toString('hex'));
</code></pre>
<h3>diffieHellman.computeSecret(other_public_key[, input_encoding][, output_encoding])<span><a class="mark" href="#crypto_diffiehellman_computesecret_other_public_key_input_encoding_output_encoding" id="crypto_diffiehellman_computesecret_other_public_key_input_encoding_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Computes the shared secret using <code>other_public_key</code> as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using the specified <code>input_encoding</code>, and secret is
encoded using specified <code>output_encoding</code>. Encodings can be
<code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If the <code>input_encoding</code> is not
provided, <code>other_public_key</code> is expected to be a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>If <code>output_encoding</code> is given a string is returned; otherwise, a
<a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.generateKeys([encoding])<span><a class="mark" href="#crypto_diffiehellman_generatekeys_encoding" id="crypto_diffiehellman_generatekeys_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Generates private and public Diffie-Hellman key values, and returns
the public key in the specified <code>encoding</code>. This key should be
transferred to the other party. Encoding can be <code>'binary'</code>, <code>'hex'</code>,
or <code>'base64'</code>. If <code>encoding</code> is provided a string is returned; otherwise a
<a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.getGenerator([encoding])<span><a class="mark" href="#crypto_diffiehellman_getgenerator_encoding" id="crypto_diffiehellman_getgenerator_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Returns the Diffie-Hellman generator in the specified <code>encoding</code>, which can
be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If <code>encoding</code> is provided a string is
returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.getPrime([encoding])<span><a class="mark" href="#crypto_diffiehellman_getprime_encoding" id="crypto_diffiehellman_getprime_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Returns the Diffie-Hellman prime in the specified <code>encoding</code>, which can
be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If <code>encoding</code> is provided a string is
returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.getPrivateKey([encoding])<span><a class="mark" href="#crypto_diffiehellman_getprivatekey_encoding" id="crypto_diffiehellman_getprivatekey_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Returns the Diffie-Hellman private key in the specified <code>encoding</code>,
which can be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If <code>encoding</code> is provided a
string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.getPublicKey([encoding])<span><a class="mark" href="#crypto_diffiehellman_getpublickey_encoding" id="crypto_diffiehellman_getpublickey_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Returns the Diffie-Hellman public key in the specified <code>encoding</code>, which
can be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If <code>encoding</code> is provided a
string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>diffieHellman.setPrivateKey(private_key[, encoding])<span><a class="mark" href="#crypto_diffiehellman_setprivatekey_private_key_encoding" id="crypto_diffiehellman_setprivatekey_private_key_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Sets the Diffie-Hellman private key. If the <code>encoding</code> argument is provided
and is either <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>, <code>private_key</code> is expected
to be a string. If no <code>encoding</code> is provided, <code>private_key</code> is expected
to be a <a href="buffer.html"><code>Buffer</code></a>.</p>
<h3>diffieHellman.setPublicKey(public_key[, encoding])<span><a class="mark" href="#crypto_diffiehellman_setpublickey_public_key_encoding" id="crypto_diffiehellman_setpublickey_public_key_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Sets the Diffie-Hellman public key. If the <code>encoding</code> argument is provided
and is either <code>'binary'</code>, <code>'hex'</code> or <code>'base64'</code>, <code>public_key</code> is expected
to be a string. If no <code>encoding</code> is provided, <code>public_key</code> is expected
to be a <a href="buffer.html"><code>Buffer</code></a>.</p>
<h3>diffieHellman.verifyError<span><a class="mark" href="#crypto_diffiehellman_verifyerror" id="crypto_diffiehellman_verifyerror">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.12</span>
</div><p>A bit field containing any warnings and/or errors resulting from a check
performed during initialization of the <code>DiffieHellman</code> object.</p>
<p>The following values are valid for this property (as defined in <code>constants</code>
module):</p>
<ul>
<li><code>DH_CHECK_P_NOT_SAFE_PRIME</code></li>
<li><code>DH_CHECK_P_NOT_PRIME</code></li>
<li><code>DH_UNABLE_TO_CHECK_GENERATOR</code></li>
<li><code>DH_NOT_SUITABLE_GENERATOR</code></li>
</ul>
<h2>Class: ECDH<span><a class="mark" href="#crypto_class_ecdh" id="crypto_class_ecdh">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>The <code>ECDH</code> class is a utility for creating Elliptic Curve Diffie-Hellman (ECDH)
key exchanges.</p>
<p>Instances of the <code>ECDH</code> class can be created using the
<a href="#crypto_crypto_createecdh_curve_name"><code>crypto.createECDH()</code></a> function.</p>
<pre><code class="lang-js">const crypto = require('crypto');
const assert = require('assert');
// Generate Alice's keys...
const alice = crypto.createECDH('secp521r1');
const alice_key = alice.generateKeys();
// Generate Bob's keys...
const bob = crypto.createECDH('secp521r1');
const bob_key = bob.generateKeys();
// Exchange and generate the secret...
const alice_secret = alice.computeSecret(bob_key);
const bob_secret = bob.computeSecret(alice_key);
assert(alice_secret, bob_secret);
// OK
</code></pre>
<h3>ecdh.computeSecret(other_public_key[, input_encoding][, output_encoding])<span><a class="mark" href="#crypto_ecdh_computesecret_other_public_key_input_encoding_output_encoding" id="crypto_ecdh_computesecret_other_public_key_input_encoding_output_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Computes the shared secret using <code>other_public_key</code> as the other
party's public key and returns the computed shared secret. The supplied
key is interpreted using specified <code>input_encoding</code>, and the returned secret
is encoded using the specified <code>output_encoding</code>. Encodings can be
<code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If the <code>input_encoding</code> is not
provided, <code>other_public_key</code> is expected to be a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>If <code>output_encoding</code> is given a string will be returned; otherwise a
<a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>ecdh.generateKeys([encoding[, format]])<span><a class="mark" href="#crypto_ecdh_generatekeys_encoding_format" id="crypto_ecdh_generatekeys_encoding_format">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Generates private and public EC Diffie-Hellman key values, and returns
the public key in the specified <code>format</code> and <code>encoding</code>. This key should be
transferred to the other party.</p>
<p>The <code>format</code> arguments specifies point encoding and can be <code>'compressed'</code>,
<code>'uncompressed'</code>, or <code>'hybrid'</code>. If <code>format</code> is not specified, the point will
be returned in <code>'uncompressed'</code> format.</p>
<p>The <code>encoding</code> argument can be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If
<code>encoding</code> is provided a string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a>
is returned.</p>
<h3>ecdh.getPrivateKey([encoding])<span><a class="mark" href="#crypto_ecdh_getprivatekey_encoding" id="crypto_ecdh_getprivatekey_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Returns the EC Diffie-Hellman private key in the specified <code>encoding</code>,
which can be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If <code>encoding</code> is provided
a string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<h3>ecdh.getPublicKey([encoding[, format]])<span><a class="mark" href="#crypto_ecdh_getpublickey_encoding_format" id="crypto_ecdh_getpublickey_encoding_format">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Returns the EC Diffie-Hellman public key in the specified <code>encoding</code> and
<code>format</code>.</p>
<p>The <code>format</code> argument specifies point encoding and can be <code>'compressed'</code>,
<code>'uncompressed'</code>, or <code>'hybrid'</code>. If <code>format</code> is not specified the point will be
returned in <code>'uncompressed'</code> format.</p>
<p>The <code>encoding</code> argument can be <code>'binary'</code>, <code>'hex'</code>, or <code>'base64'</code>. If
<code>encoding</code> is specified, a string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is
returned.</p>
<h3>ecdh.setPrivateKey(private_key[, encoding])<span><a class="mark" href="#crypto_ecdh_setprivatekey_private_key_encoding" id="crypto_ecdh_setprivatekey_private_key_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Sets the EC Diffie-Hellman private key. The <code>encoding</code> can be <code>'binary'</code>,
<code>'hex'</code> or <code>'base64'</code>. If <code>encoding</code> is provided, <code>private_key</code> is expected
to be a string; otherwise <code>private_key</code> is expected to be a <a href="buffer.html"><code>Buffer</code></a>. If
<code>private_key</code> is not valid for the curve specified when the <code>ECDH</code> object was
created, an error is thrown. Upon setting the private key, the associated
public point (key) is also generated and set in the ECDH object.</p>
<h3>ecdh.setPublicKey(public_key[, encoding])<span><a class="mark" href="#crypto_ecdh_setpublickey_public_key_encoding" id="crypto_ecdh_setpublickey_public_key_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
<span>Deprecated since: v5.2.0 </span>
</div><pre class="api_stability api_stability_0">Stability: 0 - Deprecated</pre><p>Sets the EC Diffie-Hellman public key. Key encoding can be <code>'binary'</code>,
<code>'hex'</code> or <code>'base64'</code>. If <code>encoding</code> is provided <code>public_key</code> is expected to
be a string; otherwise a <a href="buffer.html"><code>Buffer</code></a> is expected.</p>
<p>Note that there is not normally a reason to call this method because <code>ECDH</code>
only requires a private key and the other party's public key to compute the
shared secret. Typically either <a href="#crypto_ecdh_generatekeys_encoding_format"><code>ecdh.generateKeys()</code></a> or
<a href="#crypto_ecdh_setprivatekey_private_key_encoding"><code>ecdh.setPrivateKey()</code></a> will be called. The <a href="#crypto_ecdh_setprivatekey_private_key_encoding"><code>ecdh.setPrivateKey()</code></a> method
attempts to generate the public point/key associated with the private key being
set.</p>
<p>Example (obtaining a shared secret):</p>
<pre><code class="lang-js">const crypto = require('crypto');
const alice = crypto.createECDH('secp256k1');
const bob = crypto.createECDH('secp256k1');
// Note: This is a shortcut way to specify one of Alice's previous private
// keys. It would be unwise to use such a predictable private key in a real
// application.
alice.setPrivateKey(
crypto.createHash('sha256').update('alice', 'utf8').digest()
);
// Bob uses a newly generated cryptographically strong
// pseudorandom key pair bob.generateKeys();
const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
// alice_secret and bob_secret should be the same shared secret value
console.log(alice_secret === bob_secret);
</code></pre>
<h2>Class: Hash<span><a class="mark" href="#crypto_class_hash" id="crypto_class_hash">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>The <code>Hash</code> class is a utility for creating hash digests of data. It can be
used in one of two ways:</p>
<ul>
<li>As a <a href="stream.html">stream</a> that is both readable and writable, where data is written
to produce a computed hash digest on the readable side, or</li>
<li>Using the <a href="#crypto_hash_update_data_input_encoding"><code>hash.update()</code></a> and <a href="#crypto_hash_digest_encoding"><code>hash.digest()</code></a> methods to produce the
computed hash.</li>
</ul>
<p>The <a href="#crypto_crypto_createhash_algorithm"><code>crypto.createHash()</code></a> method is used to create <code>Hash</code> instances. <code>Hash</code>
objects are not to be created directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Hash</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.on('readable', () => {
var data = hash.read();
if (data)
console.log(data.toString('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
});
hash.write('some data to hash');
hash.end();
</code></pre>
<p>Example: Using <code>Hash</code> and piped streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream('test.js');
input.pipe(hash).pipe(process.stdout);
</code></pre>
<p>Example: Using the <a href="#crypto_hash_update_data_input_encoding"><code>hash.update()</code></a> and <a href="#crypto_hash_digest_encoding"><code>hash.digest()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const hash = crypto.createHash('sha256');
hash.update('some data to hash');
console.log(hash.digest('hex'));
// Prints:
// 6a2da20943931e9834fc12cfe5bb47bbd9ae43489a30726962b576f4e3993e50
</code></pre>
<h3>hash.digest([encoding])<span><a class="mark" href="#crypto_hash_digest_encoding" id="crypto_hash_digest_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Calculates the digest of all of the data passed to be hashed (using the
<a href="#crypto_hash_update_data_input_encoding"><code>hash.update()</code></a> method). The <code>encoding</code> can be <code>'hex'</code>, <code>'binary'</code> or
<code>'base64'</code>. If <code>encoding</code> is provided a string will be returned; otherwise
a <a href="buffer.html"><code>Buffer</code></a> is returned.</p>
<p>The <code>Hash</code> object can not be used again after <code>hash.digest()</code> method has been
called. Multiple calls will cause an error to be thrown.</p>
<h3>hash.update(data[, input_encoding])<span><a class="mark" href="#crypto_hash_update_data_input_encoding" id="crypto_hash_update_data_input_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Updates the hash content with the given <code>data</code>, the encoding of which
is given in <code>input_encoding</code> and can be <code>'utf8'</code>, <code>'ascii'</code> or
<code>'binary'</code>. If <code>encoding</code> is not provided, and the <code>data</code> is a string, an
encoding of <code>'binary'</code> is enforced. If <code>data</code> is a <a href="buffer.html"><code>Buffer</code></a> then
<code>input_encoding</code> is ignored.</p>
<p>This can be called many times with new data as it is streamed.</p>
<h2>Class: Hmac<span><a class="mark" href="#crypto_class_hmac" id="crypto_class_hmac">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>The <code>Hmac</code> Class is a utility for creating cryptographic HMAC digests. It can
be used in one of two ways:</p>
<ul>
<li>As a <a href="stream.html">stream</a> that is both readable and writable, where data is written
to produce a computed HMAC digest on the readable side, or</li>
<li>Using the <a href="#crypto_hmac_update_data"><code>hmac.update()</code></a> and <a href="#crypto_hmac_digest_encoding"><code>hmac.digest()</code></a> methods to produce the
computed HMAC digest.</li>
</ul>
<p>The <a href="#crypto_crypto_createhmac_algorithm_key"><code>crypto.createHmac()</code></a> method is used to create <code>Hmac</code> instances. <code>Hmac</code>
objects are not to be created directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Hmac</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');
hmac.on('readable', () => {
var data = hmac.read();
if (data)
console.log(data.toString('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
});
hmac.write('some data to hash');
hmac.end();
</code></pre>
<p>Example: Using <code>Hmac</code> and piped streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', 'a secret');
const input = fs.createReadStream('test.js');
input.pipe(hmac).pipe(process.stdout);
</code></pre>
<p>Example: Using the <a href="#crypto_hmac_update_data"><code>hmac.update()</code></a> and <a href="#crypto_hmac_digest_encoding"><code>hmac.digest()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const hmac = crypto.createHmac('sha256', 'a secret');
hmac.update('some data to hash');
console.log(hmac.digest('hex'));
// Prints:
// 7fd04df92f636fd450bc841c9418e5825c17f33ad9c87c518115a45971f7f77e
</code></pre>
<h3>hmac.digest([encoding])<span><a class="mark" href="#crypto_hmac_digest_encoding" id="crypto_hmac_digest_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Calculates the HMAC digest of all of the data passed using <a href="#crypto_hmac_update_data"><code>hmac.update()</code></a>.
The <code>encoding</code> can be <code>'hex'</code>, <code>'binary'</code> or <code>'base64'</code>. If <code>encoding</code> is
provided a string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is returned;</p>
<p>The <code>Hmac</code> object can not be used again after <code>hmac.digest()</code> has been
called. Multiple calls to <code>hmac.digest()</code> will result in an error being thrown.</p>
<h3>hmac.update(data[, input_encoding])<span><a class="mark" href="#crypto_hmac_update_data_input_encoding" id="crypto_hmac_update_data_input_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Updates the <code>Hmac</code> content with the given <code>data</code>, the encoding of which
is given in <code>input_encoding</code> and can be <code>'utf8'</code>, <code>'ascii'</code> or
<code>'binary'</code>. If <code>encoding</code> is not provided, and the <code>data</code> is a string, an
encoding of <code>'utf8'</code> is enforced. If <code>data</code> is a <a href="buffer.html"><code>Buffer</code></a> then
<code>input_encoding</code> is ignored.</p>
<p>This can be called many times with new data as it is streamed.</p>
<h2>Class: Sign<span><a class="mark" href="#crypto_class_sign" id="crypto_class_sign">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>The <code>Sign</code> Class is a utility for generating signatures. It can be used in one
of two ways:</p>
<ul>
<li>As a writable <a href="stream.html">stream</a>, where data to be signed is written and the
<a href="#crypto_sign_sign_private_key_output_format"><code>sign.sign()</code></a> method is used to generate and return the signature, or</li>
<li>Using the <a href="#crypto_sign_update_data"><code>sign.update()</code></a> and <a href="#crypto_sign_sign_private_key_output_format"><code>sign.sign()</code></a> methods to produce the
signature.</li>
</ul>
<p>The <a href="#crypto_crypto_createsign_algorithm"><code>crypto.createSign()</code></a> method is used to create <code>Sign</code> instances. <code>Sign</code>
objects are not to be created directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Sign</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');
sign.write('some data to sign');
sign.end();
const private_key = getPrivateKeySomehow();
console.log(sign.sign(private_key, 'hex'));
// Prints the calculated signature
</code></pre>
<p>Example: Using the <a href="#crypto_sign_update_data"><code>sign.update()</code></a> and <a href="#crypto_sign_sign_private_key_output_format"><code>sign.sign()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const sign = crypto.createSign('RSA-SHA256');
sign.update('some data to sign');
const private_key = getPrivateKeySomehow();
console.log(sign.sign(private_key, 'hex'));
// Prints the calculated signature
</code></pre>
<p>A <code>Sign</code> instance can also be created by just passing in the digest
algorithm name, in which case OpenSSL will infer the full signature algorithm
from the type of the PEM-formatted private key, including algorithms that
do not have directly exposed name constants, e.g. 'ecdsa-with-SHA256'.</p>
<p>Example: signing using ECDSA with SHA256</p>
<pre><code class="lang-js">const crypto = require('crypto');
const sign = crypto.createSign('sha256');
sign.update('some data to sign');
const private_key = '-----BEGIN EC PRIVATE KEY-----\n' +
'MHcCAQEEIF+jnWY1D5kbVYDNvxxo/Y+ku2uJPDwS0r/VuPZQrjjVoAoGCCqGSM49\n' +
'AwEHoUQDQgAEurOxfSxmqIRYzJVagdZfMMSjRNNhB8i3mXyIMq704m2m52FdfKZ2\n' +
'pQhByd5eyj3lgZ7m7jbchtdgyOF8Io/1ng==\n' +
'-----END EC PRIVATE KEY-----\n';
console.log(sign.sign(private_key).toString('hex'));
</code></pre>
<h3>sign.sign(private_key[, output_format])<span><a class="mark" href="#crypto_sign_sign_private_key_output_format" id="crypto_sign_sign_private_key_output_format">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Calculates the signature on all the data passed through using either
<a href="#crypto_sign_update_data"><code>sign.update()</code></a> or <a href="stream.html#stream_writable_write_chunk_encoding_callback"><code>sign.write()</code></a>.</p>
<p>The <code>private_key</code> argument can be an object or a string. If <code>private_key</code> is a
string, it is treated as a raw key with no passphrase. If <code>private_key</code> is an
object, it is interpreted as a hash containing two properties:</p>
<ul>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded private key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - passphrase for the private key</li>
</ul>
<p>The <code>output_format</code> can specify one of <code>'binary'</code>, <code>'hex'</code> or <code>'base64'</code>. If
<code>output_format</code> is provided a string is returned; otherwise a <a href="buffer.html"><code>Buffer</code></a> is
returned.</p>
<p>The <code>Sign</code> object can not be again used after <code>sign.sign()</code> method has been
called. Multiple calls to <code>sign.sign()</code> will result in an error being thrown.</p>
<h3>sign.update(data[, input_encoding])<span><a class="mark" href="#crypto_sign_update_data_input_encoding" id="crypto_sign_update_data_input_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Updates the <code>Sign</code> content with the given <code>data</code>, the encoding of which
is given in <code>input_encoding</code> and can be <code>'utf8'</code>, <code>'ascii'</code> or
<code>'binary'</code>. If <code>encoding</code> is not provided, and the <code>data</code> is a string, an
encoding of <code>'utf8'</code> is enforced. If <code>data</code> is a <a href="buffer.html"><code>Buffer</code></a> then
<code>input_encoding</code> is ignored.</p>
<p>This can be called many times with new data as it is streamed.</p>
<h2>Class: Verify<span><a class="mark" href="#crypto_class_verify" id="crypto_class_verify">#</a></span></h2>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>The <code>Verify</code> class is a utility for verifying signatures. It can be used in one
of two ways:</p>
<ul>
<li>As a writable <a href="stream.html">stream</a> where written data is used to validate against the
supplied signature, or</li>
<li>Using the <a href="#crypto_verifier_update_data"><code>verify.update()</code></a> and <a href="#crypto_verifier_verify_object_signature_signature_format"><code>verify.verify()</code></a> methods to verify
the signature.</li>
</ul>
<p>The [<code>crypto.createVerify()</code>][] method is used to create <code>Verify</code> instances.
<code>Verify</code> objects are not to be created directly using the <code>new</code> keyword.</p>
<p>Example: Using <code>Verify</code> objects as streams:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');
verify.write('some data to sign');
verify.end();
const public_key = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(public_key, signature));
// Prints true or false
</code></pre>
<p>Example: Using the <a href="#crypto_verifier_update_data"><code>verify.update()</code></a> and <a href="#crypto_verifier_verify_object_signature_signature_format"><code>verify.verify()</code></a> methods:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const verify = crypto.createVerify('RSA-SHA256');
verify.update('some data to sign');
const public_key = getPublicKeySomehow();
const signature = getSignatureToVerify();
console.log(verify.verify(public_key, signature));
// Prints true or false
</code></pre>
<h3>verifier.update(data[, input_encoding])<span><a class="mark" href="#crypto_verifier_update_data_input_encoding" id="crypto_verifier_update_data_input_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Updates the <code>Verify</code> content with the given <code>data</code>, the encoding of which
is given in <code>input_encoding</code> and can be <code>'utf8'</code>, <code>'ascii'</code> or
<code>'binary'</code>. If <code>encoding</code> is not provided, and the <code>data</code> is a string, an
encoding of <code>'utf8'</code> is enforced. If <code>data</code> is a <a href="buffer.html"><code>Buffer</code></a> then
<code>input_encoding</code> is ignored.</p>
<p>This can be called many times with new data as it is streamed.</p>
<h3>verifier.verify(object, signature[, signature_format])<span><a class="mark" href="#crypto_verifier_verify_object_signature_signature_format" id="crypto_verifier_verify_object_signature_signature_format">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Verifies the provided data using the given <code>object</code> and <code>signature</code>.
The <code>object</code> argument is a string containing a PEM encoded object, which can be
one an RSA public key, a DSA public key, or an X.509 certificate.
The <code>signature</code> argument is the previously calculated signature for the data, in
the <code>signature_format</code> which can be <code>'binary'</code>, <code>'hex'</code> or <code>'base64'</code>.
If a <code>signature_format</code> is specified, the <code>signature</code> is expected to be a
string; otherwise <code>signature</code> is expected to be a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>Returns <code>true</code> or <code>false</code> depending on the validity of the signature for
the data and public key.</p>
<p>The <code>verifier</code> object can not be used again after <code>verify.verify()</code> has been
called. Multiple calls to <code>verify.verify()</code> will result in an error being
thrown.</p>
<h2><code>crypto</code> module methods and properties<span><a class="mark" href="#crypto_crypto_module_methods_and_properties" id="crypto_crypto_module_methods_and_properties">#</a></span></h2>
<h3>crypto.DEFAULT_ENCODING<span><a class="mark" href="#crypto_crypto_default_encoding" id="crypto_crypto_default_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.9.3</span>
</div><p>The default encoding to use for functions that can take either strings
or <a href="buffer.html">buffers</a>. The default value is <code>'buffer'</code>, which makes methods
default to <a href="buffer.html"><code>Buffer</code></a> objects.</p>
<p>The <code>crypto.DEFAULT_ENCODING</code> mechanism is provided for backwards compatibility
with legacy programs that expect <code>'binary'</code> to be the default encoding.</p>
<p>New applications should expect the default to be <code>'buffer'</code>. This property may
become deprecated in a future Node.js release.</p>
<h3>crypto.createCipher(algorithm, password)<span><a class="mark" href="#crypto_crypto_createcipher_algorithm_password" id="crypto_crypto_createcipher_algorithm_password">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Creates and returns a <code>Cipher</code> object that uses the given <code>algorithm</code> and
<code>password</code>.</p>
<p>The <code>algorithm</code> is dependent on OpenSSL, examples are <code>'aes192'</code>, etc. On
recent OpenSSL releases, <code>openssl list-cipher-algorithms</code> will display the
available cipher algorithms.</p>
<p>The <code>password</code> is used to derive the cipher key and initialization vector (IV).
The value must be either a <code>'binary'</code> encoded string or a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>The implementation of <code>crypto.createCipher()</code> derives keys using the OpenSSL
function <a href="https://www.openssl.org/docs/crypto/EVP_BytesToKey.html"><code>EVP_BytesToKey</code></a> with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.</p>
<p>In line with OpenSSL's recommendation to use pbkdf2 instead of
<a href="https://www.openssl.org/docs/crypto/EVP_BytesToKey.html"><code>EVP_BytesToKey</code></a> it is recommended that developers derive a key and IV on
their own using <a href="#crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback"><code>crypto.pbkdf2()</code></a> and to use <a href="#crypto_crypto_createcipheriv_algorithm_key_iv"><code>crypto.createCipheriv()</code></a>
to create the <code>Cipher</code> object.</p>
<h3>crypto.createCipheriv(algorithm, key, iv)<span><a class="mark" href="#crypto_crypto_createcipheriv_algorithm_key_iv" id="crypto_crypto_createcipheriv_algorithm_key_iv">#</a></span></h3>
<p>Creates and returns a <code>Cipher</code> object, with the given <code>algorithm</code>, <code>key</code> and
initialization vector (<code>iv</code>).</p>
<p>The <code>algorithm</code> is dependent on OpenSSL, examples are <code>'aes192'</code>, etc. On
recent OpenSSL releases, <code>openssl list-cipher-algorithms</code> will display the
available cipher algorithms.</p>
<p>The <code>key</code> is the raw key used by the <code>algorithm</code> and <code>iv</code> is an
<a href="https://en.wikipedia.org/wiki/Initialization_vector">initialization vector</a>. Both arguments must be <code>'binary'</code> encoded strings or
<a href="buffer.html">buffers</a>.</p>
<h3>crypto.createCredentials(details)<span><a class="mark" href="#crypto_crypto_createcredentials_details" id="crypto_crypto_createcredentials_details">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
<span>Deprecated since: v0.11.13 </span>
</div><pre class="api_stability api_stability_0">Stability: 0 - Deprecated: Use <a href="tls.html#tls_tls_createsecurecontext_details"><code>tls.createSecureContext()</code></a> instead.</pre><p>The <code>crypto.createCredentials()</code> method is a deprecated alias for creating
and returning a <code>tls.SecureContext</code> object. The <code>crypto.createCredentials()</code>
method should not be used.</p>
<p>The optional <code>details</code> argument is a hash object with keys:</p>
<ul>
<li><code>pfx</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> | <a href="buffer.html#buffer_class_buffer" class="type"><Buffer></a> - PFX or PKCS12 encoded private
key, certificate and CA certificates</li>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded private key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - passphrase for the private key or PFX</li>
<li><code>cert</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded certificate</li>
<li><code>ca</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> | <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array" class="type"><Array></a> - Either a string or array of strings of PEM encoded CA
certificates to trust.</li>
<li><code>crl</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> | <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference/Global_Objects/Array" class="type"><Array></a> - Either a string or array of strings of PEM encoded CRLs
(Certificate Revocation List)</li>
<li><code>ciphers</code>: <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> using the <a href="https://www.openssl.org/docs/apps/ciphers.html#CIPHER-LIST-FORMAT">OpenSSL cipher list format</a> describing the
cipher algorithms to use or exclude.</li>
</ul>
<p>If no 'ca' details are given, Node.js will use Mozilla's default
<a href="https://mxr.mozilla.org/mozilla/source/security/nss/lib/ckfw/builtins/certdata.txt">publicly trusted list of CAs</a>.</p>
<h3>crypto.createDecipher(algorithm, password)<span><a class="mark" href="#crypto_crypto_createdecipher_algorithm_password" id="crypto_crypto_createdecipher_algorithm_password">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Creates and returns a <code>Decipher</code> object that uses the given <code>algorithm</code> and
<code>password</code> (key).</p>
<p>The implementation of <code>crypto.createDecipher()</code> derives keys using the OpenSSL
function <a href="https://www.openssl.org/docs/crypto/EVP_BytesToKey.html"><code>EVP_BytesToKey</code></a> with the digest algorithm set to MD5, one
iteration, and no salt. The lack of salt allows dictionary attacks as the same
password always creates the same key. The low iteration count and
non-cryptographically secure hash algorithm allow passwords to be tested very
rapidly.</p>
<p>In line with OpenSSL's recommendation to use pbkdf2 instead of
<a href="https://www.openssl.org/docs/crypto/EVP_BytesToKey.html"><code>EVP_BytesToKey</code></a> it is recommended that developers derive a key and IV on
their own using <a href="#crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback"><code>crypto.pbkdf2()</code></a> and to use <a href="#crypto_crypto_createdecipheriv_algorithm_key_iv"><code>crypto.createDecipheriv()</code></a>
to create the <code>Decipher</code> object.</p>
<h3>crypto.createDecipheriv(algorithm, key, iv)<span><a class="mark" href="#crypto_crypto_createdecipheriv_algorithm_key_iv" id="crypto_crypto_createdecipheriv_algorithm_key_iv">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Creates and returns a <code>Decipher</code> object that uses the given <code>algorithm</code>, <code>key</code>
and initialization vector (<code>iv</code>).</p>
<p>The <code>algorithm</code> is dependent on OpenSSL, examples are <code>'aes192'</code>, etc. On
recent OpenSSL releases, <code>openssl list-cipher-algorithms</code> will display the
available cipher algorithms.</p>
<p>The <code>key</code> is the raw key used by the <code>algorithm</code> and <code>iv</code> is an
<a href="https://en.wikipedia.org/wiki/Initialization_vector">initialization vector</a>. Both arguments must be <code>'binary'</code> encoded strings or
<a href="buffer.html">buffers</a>.</p>
<h3>crypto.createDiffieHellman(prime[, prime_encoding][, generator][, generator_encoding])<span><a class="mark" href="#crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding" id="crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.12</span>
</div><p>Creates a <code>DiffieHellman</code> key exchange object using the supplied <code>prime</code> and an
optional specific <code>generator</code>.</p>
<p>The <code>generator</code> argument can be a number, string, or <a href="buffer.html"><code>Buffer</code></a>. If
<code>generator</code> is not specified, the value <code>2</code> is used.</p>
<p>The <code>prime_encoding</code> and <code>generator_encoding</code> arguments can be <code>'binary'</code>,
<code>'hex'</code>, or <code>'base64'</code>.</p>
<p>If <code>prime_encoding</code> is specified, <code>prime</code> is expected to be a string; otherwise
a <a href="buffer.html"><code>Buffer</code></a> is expected.</p>
<p>If <code>generator_encoding</code> is specified, <code>generator</code> is expected to be a string;
otherwise either a number or <a href="buffer.html"><code>Buffer</code></a> is expected.</p>
<h3>crypto.createDiffieHellman(prime_length[, generator])<span><a class="mark" href="#crypto_crypto_creatediffiehellman_prime_length_generator" id="crypto_crypto_creatediffiehellman_prime_length_generator">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.0</span>
</div><p>Creates a <code>DiffieHellman</code> key exchange object and generates a prime of
<code>prime_length</code> bits using an optional specific numeric <code>generator</code>.
If <code>generator</code> is not specified, the value <code>2</code> is used.</p>
<h3>crypto.createECDH(curve_name)<span><a class="mark" href="#crypto_crypto_createecdh_curve_name" id="crypto_crypto_createecdh_curve_name">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Creates an Elliptic Curve Diffie-Hellman (<code>ECDH</code>) key exchange object using a
predefined curve specified by the <code>curve_name</code> string. Use
<a href="#crypto_crypto_getcurves"><code>crypto.getCurves()</code></a> to obtain a list of available curve names. On recent
OpenSSL releases, <code>openssl ecparam -list_curves</code> will also display the name
and description of each available elliptic curve.</p>
<h3>crypto.createHash(algorithm)<span><a class="mark" href="#crypto_crypto_createhash_algorithm" id="crypto_crypto_createhash_algorithm">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Creates and returns a <code>Hash</code> object that can be used to generate hash digests
using the given <code>algorithm</code>.</p>
<p>The <code>algorithm</code> is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are <code>'sha256'</code>, <code>'sha512'</code>, etc.
On recent releases of OpenSSL, <code>openssl list-message-digest-algorithms</code> will
display the available digest algorithms.</p>
<p>Example: generating the sha256 sum of a file</p>
<pre><code class="lang-js">const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hash = crypto.createHash('sha256');
const input = fs.createReadStream(filename);
input.on('readable', () => {
var data = input.read();
if (data)
hash.update(data);
else {
console.log(`${hash.digest('hex')} ${filename}`);
}
});
</code></pre>
<h3>crypto.createHmac(algorithm, key)<span><a class="mark" href="#crypto_crypto_createhmac_algorithm_key" id="crypto_crypto_createhmac_algorithm_key">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.94</span>
</div><p>Creates and returns an <code>Hmac</code> object that uses the given <code>algorithm</code> and <code>key</code>.</p>
<p>The <code>algorithm</code> is dependent on the available algorithms supported by the
version of OpenSSL on the platform. Examples are <code>'sha256'</code>, <code>'sha512'</code>, etc.
On recent releases of OpenSSL, <code>openssl list-message-digest-algorithms</code> will
display the available digest algorithms.</p>
<p>The <code>key</code> is the HMAC key used to generate the cryptographic HMAC hash.</p>
<p>Example: generating the sha256 HMAC of a file</p>
<pre><code class="lang-js">const filename = process.argv[2];
const crypto = require('crypto');
const fs = require('fs');
const hmac = crypto.createHmac('sha256', 'a secret');
const input = fs.createReadStream(filename);
input.on('readable', () => {
var data = input.read();
if (data)
hmac.update(data);
else {
console.log(`${hmac.digest('hex')} ${filename}`);
}
});
</code></pre>
<h3>crypto.createSign(algorithm)<span><a class="mark" href="#crypto_crypto_createsign_algorithm" id="crypto_crypto_createsign_algorithm">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Creates and returns a <code>Sign</code> object that uses the given <code>algorithm</code>.
Use <a href="#crypto_crypto_gethashes"><code>crypto.getHashes()</code></a> to obtain an array of names of the available
signing algorithms.</p>
<h3>crypto.createVerify(algorithm)<span><a class="mark" href="#crypto_crypto_createverify_algorithm" id="crypto_crypto_createverify_algorithm">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.1.92</span>
</div><p>Creates and returns a <code>Verify</code> object that uses the given algorithm.
Use <a href="#crypto_crypto_gethashes"><code>crypto.getHashes()</code></a> to obtain an array of names of the available
signing algorithms.</p>
<h3>crypto.getCiphers()<span><a class="mark" href="#crypto_crypto_getciphers" id="crypto_crypto_getciphers">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.9.3</span>
</div><p>Returns an array with the names of the supported cipher algorithms.</p>
<p>Example:</p>
<pre><code class="lang-js">const ciphers = crypto.getCiphers();
console.log(ciphers); // ['aes-128-cbc', 'aes-128-ccm', ...]
</code></pre>
<h3>crypto.getCurves()<span><a class="mark" href="#crypto_crypto_getcurves" id="crypto_crypto_getcurves">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v2.3.0</span>
</div><p>Returns an array with the names of the supported elliptic curves.</p>
<p>Example:</p>
<pre><code class="lang-js">const curves = crypto.getCurves();
console.log(curves); // ['secp256k1', 'secp384r1', ...]
</code></pre>
<h3>crypto.getDiffieHellman(group_name)<span><a class="mark" href="#crypto_crypto_getdiffiehellman_group_name" id="crypto_crypto_getdiffiehellman_group_name">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.7.5</span>
</div><p>Creates a predefined <code>DiffieHellman</code> key exchange object. The
supported groups are: <code>'modp1'</code>, <code>'modp2'</code>, <code>'modp5'</code> (defined in
<a href="https://www.rfc-editor.org/rfc/rfc2412.txt">RFC 2412</a>, but see <a href="#crypto_support_for_weak_or_compromised_algorithms">Caveats</a>) and <code>'modp14'</code>, <code>'modp15'</code>,
<code>'modp16'</code>, <code>'modp17'</code>, <code>'modp18'</code> (defined in <a href="https://www.rfc-editor.org/rfc/rfc3526.txt">RFC 3526</a>). The
returned object mimics the interface of objects created by
<a href="#crypto_crypto_creatediffiehellman_prime_prime_encoding_generator_generator_encoding"><code>crypto.createDiffieHellman()</code></a>, but will not allow changing
the keys (with <a href="#crypto_diffiehellman_setpublickey_public_key_encoding"><code>diffieHellman.setPublicKey()</code></a> for example). The
advantage of using this method is that the parties do not have to
generate nor exchange a group modulus beforehand, saving both processor
and communication time.</p>
<p>Example (obtaining a shared secret):</p>
<pre><code class="lang-js">const crypto = require('crypto');
const alice = crypto.getDiffieHellman('modp14');
const bob = crypto.getDiffieHellman('modp14');
alice.generateKeys();
bob.generateKeys();
const alice_secret = alice.computeSecret(bob.getPublicKey(), null, 'hex');
const bob_secret = bob.computeSecret(alice.getPublicKey(), null, 'hex');
/* alice_secret and bob_secret should be the same */
console.log(alice_secret == bob_secret);
</code></pre>
<h3>crypto.getHashes()<span><a class="mark" href="#crypto_crypto_gethashes" id="crypto_crypto_gethashes">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.9.3</span>
</div><p>Returns an array of the names of the supported hash algorithms,
such as <code>RSA-SHA256</code>.</p>
<p>Example:</p>
<pre><code class="lang-js">const hashes = crypto.getHashes();
console.log(hashes); // ['sha', 'sha1', 'sha1WithRSAEncryption', ...]
</code></pre>
<h3>crypto.pbkdf2(password, salt, iterations, keylen[, digest], callback)<span><a class="mark" href="#crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback" id="crypto_crypto_pbkdf2_password_salt_iterations_keylen_digest_callback">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.5</span>
</div><p>Provides an asynchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by <code>digest</code> is
applied to derive a key of the requested byte length (<code>keylen</code>) from the
<code>password</code>, <code>salt</code> and <code>iterations</code>. If the <code>digest</code> algorithm is not specified,
a default of <code>'sha1'</code> is used.</p>
<p>The supplied <code>callback</code> function is called with two arguments: <code>err</code> and
<code>derivedKey</code>. If an error occurs, <code>err</code> will be set; otherwise <code>err</code> will be
null. The successfully generated <code>derivedKey</code> will be passed as a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>The <code>iterations</code> argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.</p>
<p>The <code>salt</code> should also be as unique as possible. It is recommended that the
salts are random and their lengths are greater than 16 bytes. See
<a href="http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf">NIST SP 800-132</a> for details.</p>
<p>Example:</p>
<pre><code class="lang-js">const crypto = require('crypto');
crypto.pbkdf2('secret', 'salt', 100000, 512, 'sha512', (err, key) => {
if (err) throw err;
console.log(key.toString('hex')); // 'c5e478d...1469e50'
});
</code></pre>
<p>An array of supported digest functions can be retrieved using
<a href="#crypto_crypto_gethashes"><code>crypto.getHashes()</code></a>.</p>
<h3>crypto.pbkdf2Sync(password, salt, iterations, keylen[, digest])<span><a class="mark" href="#crypto_crypto_pbkdf2sync_password_salt_iterations_keylen_digest" id="crypto_crypto_pbkdf2sync_password_salt_iterations_keylen_digest">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.9.3</span>
</div><p>Provides a synchronous Password-Based Key Derivation Function 2 (PBKDF2)
implementation. A selected HMAC digest algorithm specified by <code>digest</code> is
applied to derive a key of the requested byte length (<code>keylen</code>) from the
<code>password</code>, <code>salt</code> and <code>iterations</code>. If the <code>digest</code> algorithm is not specified,
a default of <code>'sha1'</code> is used.</p>
<p>If an error occurs an Error will be thrown, otherwise the derived key will be
returned as a <a href="buffer.html"><code>Buffer</code></a>.</p>
<p>The <code>iterations</code> argument must be a number set as high as possible. The
higher the number of iterations, the more secure the derived key will be,
but will take a longer amount of time to complete.</p>
<p>The <code>salt</code> should also be as unique as possible. It is recommended that the
salts are random and their lengths are greater than 16 bytes. See
<a href="http://csrc.nist.gov/publications/nistpubs/800-132/nist-sp800-132.pdf">NIST SP 800-132</a> for details.</p>
<p>Example:</p>
<pre><code class="lang-js">const crypto = require('crypto');
const key = crypto.pbkdf2Sync('secret', 'salt', 100000, 512, 'sha512');
console.log(key.toString('hex')); // 'c5e478d...1469e50'
</code></pre>
<p>An array of supported digest functions can be retrieved using
<a href="#crypto_crypto_gethashes"><code>crypto.getHashes()</code></a>.</p>
<h3>crypto.privateDecrypt(private_key, buffer)<span><a class="mark" href="#crypto_crypto_privatedecrypt_private_key_buffer" id="crypto_crypto_privatedecrypt_private_key_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Decrypts <code>buffer</code> with <code>private_key</code>.</p>
<p><code>private_key</code> can be an object or a string. If <code>private_key</code> is a string, it is
treated as the key with no passphrase and will use <code>RSA_PKCS1_OAEP_PADDING</code>.
If <code>private_key</code> is an object, it is interpreted as a hash object with the
keys:</p>
<ul>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded private key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - Optional passphrase for the private key</li>
<li><code>padding</code> : An optional padding value, one of the following:<ul>
<li><code>constants.RSA_NO_PADDING</code></li>
<li><code>constants.RSA_PKCS1_PADDING</code></li>
<li><code>constants.RSA_PKCS1_OAEP_PADDING</code></li>
</ul>
</li>
</ul>
<p>All paddings are defined in the <code>constants</code> module.</p>
<h3>crypto.privateEncrypt(private_key, buffer)<span><a class="mark" href="#crypto_crypto_privateencrypt_private_key_buffer" id="crypto_crypto_privateencrypt_private_key_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.1.0</span>
</div><p>Encrypts <code>buffer</code> with <code>private_key</code>.</p>
<p><code>private_key</code> can be an object or a string. If <code>private_key</code> is a string, it is
treated as the key with no passphrase and will use <code>RSA_PKCS1_PADDING</code>.
If <code>private_key</code> is an object, it is interpreted as a hash object with the
keys:</p>
<ul>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded private key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - Optional passphrase for the private key</li>
<li><code>padding</code> : An optional padding value, one of the following:<ul>
<li><code>constants.RSA_NO_PADDING</code></li>
<li><code>constants.RSA_PKCS1_PADDING</code></li>
</ul>
</li>
</ul>
<p>All paddings are defined in the <code>constants</code> module.</p>
<h3>crypto.publicDecrypt(public_key, buffer)<span><a class="mark" href="#crypto_crypto_publicdecrypt_public_key_buffer" id="crypto_crypto_publicdecrypt_public_key_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v1.1.0</span>
</div><p>Decrypts <code>buffer</code> with <code>public_key</code>.</p>
<p><code>public_key</code> can be an object or a string. If <code>public_key</code> is a string, it is
treated as the key with no passphrase and will use <code>RSA_PKCS1_PADDING</code>.
If <code>public_key</code> is an object, it is interpreted as a hash object with the
keys:</p>
<ul>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded public key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - Optional passphrase for the private key</li>
<li><code>padding</code> : An optional padding value, one of the following:<ul>
<li><code>constants.RSA_NO_PADDING</code></li>
<li><code>constants.RSA_PKCS1_PADDING</code></li>
<li><code>constants.RSA_PKCS1_OAEP_PADDING</code></li>
</ul>
</li>
</ul>
<p>Because RSA public keys can be derived from private keys, a private key may
be passed instead of a public key.</p>
<p>All paddings are defined in the <code>constants</code> module.</p>
<h3>crypto.publicEncrypt(public_key, buffer)<span><a class="mark" href="#crypto_crypto_publicencrypt_public_key_buffer" id="crypto_crypto_publicencrypt_public_key_buffer">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.14</span>
</div><p>Encrypts <code>buffer</code> with <code>public_key</code>.</p>
<p><code>public_key</code> can be an object or a string. If <code>public_key</code> is a string, it is
treated as the key with no passphrase and will use <code>RSA_PKCS1_OAEP_PADDING</code>.
If <code>public_key</code> is an object, it is interpreted as a hash object with the
keys:</p>
<ul>
<li><code>key</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - PEM encoded public key</li>
<li><code>passphrase</code> : <a href="https://developer.mozilla.org/en-US/docs/Web/JavaScript/Data_structures#String_type" class="type"><String></a> - Optional passphrase for the private key</li>
<li><code>padding</code> : An optional padding value, one of the following:<ul>
<li><code>constants.RSA_NO_PADDING</code></li>
<li><code>constants.RSA_PKCS1_PADDING</code></li>
<li><code>constants.RSA_PKCS1_OAEP_PADDING</code></li>
</ul>
</li>
</ul>
<p>Because RSA public keys can be derived from private keys, a private key may
be passed instead of a public key.</p>
<p>All paddings are defined in the <code>constants</code> module.</p>
<h3>crypto.randomBytes(size[, callback])<span><a class="mark" href="#crypto_crypto_randombytes_size_callback" id="crypto_crypto_randombytes_size_callback">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.5.8</span>
</div><p>Generates cryptographically strong pseudo-random data. The <code>size</code> argument
is a number indicating the number of bytes to generate.</p>
<p>If a <code>callback</code> function is provided, the bytes are generated asynchronously
and the <code>callback</code> function is invoked with two arguments: <code>err</code> and <code>buf</code>.
If an error occurs, <code>err</code> will be an Error object; otherwise it is null. The
<code>buf</code> argument is a <a href="buffer.html"><code>Buffer</code></a> containing the generated bytes.</p>
<pre><code class="lang-js">// Asynchronous
const crypto = require('crypto');
crypto.randomBytes(256, (err, buf) => {
if (err) throw err;
console.log(`${buf.length} bytes of random data: ${buf.toString('hex')}`);
});
</code></pre>
<p>If the <code>callback</code> function is not provided, the random bytes are generated
synchronously and returned as a <a href="buffer.html"><code>Buffer</code></a>. An error will be thrown if
there is a problem generating the bytes.</p>
<pre><code class="lang-js">// Synchronous
const buf = crypto.randomBytes(256);
console.log(
`${buf.length} bytes of random data: ${buf.toString('hex')}`);
</code></pre>
<p>The <code>crypto.randomBytes()</code> method will block until there is sufficient entropy.
This should normally never take longer than a few milliseconds. The only time
when generating the random bytes may conceivably block for a longer period of
time is right after boot, when the whole system is still low on entropy.</p>
<h3>crypto.setEngine(engine[, flags])<span><a class="mark" href="#crypto_crypto_setengine_engine_flags" id="crypto_crypto_setengine_engine_flags">#</a></span></h3>
<div class="api_metadata">
<span>Added in: v0.11.11</span>
</div><p>Load and set the <code>engine</code> for some or all OpenSSL functions (selected by flags).</p>
<p><code>engine</code> could be either an id or a path to the engine's shared library.</p>
<p>The optional <code>flags</code> argument uses <code>ENGINE_METHOD_ALL</code> by default. The <code>flags</code>
is a bit field taking one of or a mix of the following flags (defined in the
<code>constants</code> module):</p>
<ul>
<li><code>ENGINE_METHOD_RSA</code></li>
<li><code>ENGINE_METHOD_DSA</code></li>
<li><code>ENGINE_METHOD_DH</code></li>
<li><code>ENGINE_METHOD_RAND</code></li>
<li><code>ENGINE_METHOD_ECDH</code></li>
<li><code>ENGINE_METHOD_ECDSA</code></li>
<li><code>ENGINE_METHOD_CIPHERS</code></li>
<li><code>ENGINE_METHOD_DIGESTS</code></li>
<li><code>ENGINE_METHOD_STORE</code></li>
<li><code>ENGINE_METHOD_PKEY_METH</code></li>
<li><code>ENGINE_METHOD_PKEY_ASN1_METH</code></li>
<li><code>ENGINE_METHOD_ALL</code></li>
<li><code>ENGINE_METHOD_NONE</code></li>
</ul>
<h2>Notes<span><a class="mark" href="#crypto_notes" id="crypto_notes">#</a></span></h2>
<h3>Legacy Streams API (pre Node.js v0.10)<span><a class="mark" href="#crypto_legacy_streams_api_pre_node_js_v0_10" id="crypto_legacy_streams_api_pre_node_js_v0_10">#</a></span></h3>
<p>The Crypto module was added to Node.js before there was the concept of a
unified Stream API, and before there were <a href="buffer.html"><code>Buffer</code></a> objects for handling
binary data. As such, the many of the <code>crypto</code> defined classes have methods not
typically found on other Node.js classes that implement the <a href="stream.html">streams</a>
API (e.g. <code>update()</code>, <code>final()</code>, or <code>digest()</code>). Also, many methods accepted
and returned <code>'binary'</code> encoded strings by default rather than Buffers. This
default was changed after Node.js v0.8 to use <a href="buffer.html"><code>Buffer</code></a> objects by default
instead.</p>
<h3>Recent ECDH Changes<span><a class="mark" href="#crypto_recent_ecdh_changes" id="crypto_recent_ecdh_changes">#</a></span></h3>
<p>Usage of <code>ECDH</code> with non-dynamically generated key pairs has been simplified.
Now, <a href="#crypto_ecdh_setprivatekey_private_key_encoding"><code>ecdh.setPrivateKey()</code></a> can be called with a preselected private key
and the associated public point (key) will be computed and stored in the object.
This allows code to only store and provide the private part of the EC key pair.
<a href="#crypto_ecdh_setprivatekey_private_key_encoding"><code>ecdh.setPrivateKey()</code></a> now also validates that the private key is valid for
the selected curve.</p>
<p>The <a href="#crypto_ecdh_setpublickey_public_key_encoding"><code>ecdh.setPublicKey()</code></a> method is now deprecated as its inclusion in the
API is not useful. Either a previously stored private key should be set, which
automatically generates the associated public key, or <a href="#crypto_ecdh_generatekeys_encoding_format"><code>ecdh.generateKeys()</code></a>
should be called. The main drawback of using <a href="#crypto_ecdh_setpublickey_public_key_encoding"><code>ecdh.setPublicKey()</code></a> is that
it can be used to put the ECDH key pair into an inconsistent state.</p>
<h3>Support for weak or compromised algorithms<span><a class="mark" href="#crypto_support_for_weak_or_compromised_algorithms" id="crypto_support_for_weak_or_compromised_algorithms">#</a></span></h3>
<p>The <code>crypto</code> module still supports some algorithms which are already
compromised and are not currently recommended for use. The API also allows
the use of ciphers and hashes with a small key size that are considered to be
too weak for safe use.</p>
<p>Users should take full responsibility for selecting the crypto
algorithm and key size according to their security requirements.</p>
<p>Based on the recommendations of <a href="http://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-131Ar1.pdf">NIST SP 800-131A</a>:</p>
<ul>
<li>MD5 and SHA-1 are no longer acceptable where collision resistance is
required such as digital signatures.</li>
<li>The key used with RSA, DSA and DH algorithms is recommended to have
at least 2048 bits and that of the curve of ECDSA and ECDH at least
224 bits, to be safe to use for several years.</li>
<li>The DH groups of <code>modp1</code>, <code>modp2</code> and <code>modp5</code> have a key size
smaller than 2048 bits and are not recommended.</li>
</ul>
<p>See the reference for other recommendations and details.</p>
</div>
</div>
</div>
<script src="assets/sh_main.js"></script>
<script src="assets/sh_javascript.min.js"></script>
<script>highlight(undefined, undefined, 'pre');</script>
<!-- __TRACKING__ -->
</body>
</html>
|