
NORDUGRID

NORDUGRID-MANUAL-13

10/3/2010

ARC Clients

User’s Manual

2

Contents

1 Introduction 5

2 Commands 7

2.1 Proxy utilities . 7

2.1.1 arcproxy . 7

2.1.2 arcslcs . 9

2.2 Job submission and management . 9

2.2.1 arcsub . 9

2.2.2 arcstat . 12

2.2.3 arccat . 13

2.2.4 arcget . 14

2.2.5 arcsync . 15

2.2.6 arcinfo . 16

2.2.7 arckill . 16

2.2.8 arcclean . 17

2.2.9 arcrenew . 18

2.2.10 arcresume . 19

2.2.11 arcresub . 19

2.2.12 arcmigrate . 20

2.3 Data manipulation . 21

2.3.1 arcls . 21

2.3.2 arccp . 22

2.3.3 arcrm . 23

2.3.4 arcsrmping . 24

2.3.5 chelonia . 24

3 URLs 33

4 ARC Client Configuration 37

4.1 Block [common] . 37

defaultservices . 37

rejectservices . 38

verbosity . 38

timeout . 38

3

4 CONTENTS

brokername . 38

brokerarguments . 38

joblist . 39

bartender . 39

proxypath . 39

keypath . 39

certificatepath . 39

cacertificatesdirectory . 39

cacertificatepath . 40

vomsserverpath . 40

username . 40

password . 40

keypassword . 40

keysize . 40

certificatelifetime . 40

slcs . 41

storedirectory . 41

idpname . 41

4.2 Block [alias] . 41

4.3 srms.conf . 42

4.4 Deprecated configuration files . 42

Chapter 1

Introduction

The command line user interface of ARC consists of a set of commands necessary for job submission and
manipulation and data management. This manual replaces the older version in NORDUGRID-MANUAL-1 and
is valid for ARC versions 0.9 and above. Command line tools semantics is the same as in earlier versions
of ARC, roughly following that of basic Linux commands and most common batch system commands.
One obvious difference is change of the legacy prefix from “ng” to the more appropriate “arc”. This is not
only a cosmetic change: behaviour of the commands also have changed, as did their functionalities
and options.

Users are strongly discouraged from modifying their old scripts by simply replacing “ng” with “arc”
– results may be unpredictable.

5

6 CHAPTER 1. INTRODUCTION

Chapter 2

Commands

2.1 Proxy utilities

ARC now comes complete with a set of utilities to create temporary user credentials (proxies) used to
access Grid services.

2.1.1 arcproxy

In order to contact Grid services (submit jobs, copy data, check information etc), one has to present valid
credentials. These are commonly formalized as so-called “proxy” certificates. There are many different
types of proxy certificates, with different Grids and different services having own preferences. arcproxy
is a powerful tool that can be used to generate most commonly used proxies. It supports the following
types:

• pre-RFC GSI proxy

• RFC-compliant proxy (default)

• VOMS-extended proxy

• MyProxy delegation

arcproxy requires presence of user’s private key and public certificate, as well as the public certificate of
their issuer CA.

arcproxy [options]

(ARC 0.9)

Options:

-P, --proxy path path to the proxy file

-C, --cert path path to the certificate file

-K, --key path path to the key file

-T, --cadir path path to the trusted certificate directory, only needed
for VOMS client functionality

-V, --vomses path path to the VOMS server configuration file

-S, --voms voms[:command] Specify VOMS server (more than one VOMS server
can be specified like this:

–voms VOa:command1 –voms VOb:command2)

7

8 CHAPTER 2. COMMANDS

:command is optional, and is used to ask for specific
attributes(e.g. roles). Command options are:

all – put all of this DN’s attributes into AC;

list – list all of the DN’s attribute,will not create AC
extension;

/Role=yourRole – specify the role, if this DN has
such a role, the role will be put into AC

/voname/groupname/Role=yourRole – specify the
VO,group and role; if this DN has such a role, the
role will be put into AC

-G, --gsicom use GSI communication protocol for contacting
VOMS services

-O, --old use GSI proxy (default is RFC 3820 compliant proxy)

-I, --info print all information about this proxy. In order
to show the Identity (DN without CN as suffix
for proxy) of the certificate, the ’trusted certdir’ is
needed.

-U, --user string username for MyProxy server

-L, --myproxysrv URL URL of MyProxy server

-M, --myproxycmd PUT|GET command to MyProxy server. The command can be
PUT and GET.

PUT/put – put a delegated credential to MyProxy
server;

GET/get – get a delegated credential from MyProxy
server, credential (certificate and key) is not needed
in this case.

-c, --constraint string proxy constraints

-t, --timeout seconds timeout in seconds (default 20 seconds)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Supported constraints are:

• validityStart=time – e.g. 2008-05-29T10:20:30Z; time when certificate becomes valid. Default is
now.

• validityEnd=time – time when certificate becomes invalid. Default is 43200 (12 hours) from start.

• validityPeriod=time – e.g. 43200 or 12h or 12H; for how long certificate is valid. If neither
validityPeriod nor validityEnd are specified, default is 12 hours

• vomsACvalidityPeriod=time – e.g. 43200 or 12h or 12H; for how long the AC is valid. Default is
the same as validityPeriod.

• proxyPolicy=policy content – assigns specified string to proxy prolicy to limit it’s functionality.

• proxyPolicyFile=policy file

MyProxy functionality can be used together with VOMS functionality.

2.2. JOB SUBMISSION AND MANAGEMENT 9

2.1.2 arcslcs

This utility generates short-lived credential based on the credential to IdP in SAML2SSO profile (normally
the username/password to Shibboleth IdP).

arcslcs [options]

(ARC 0.9)

Options:

-S, --ur; URL URL of SLCS Service (e.g.
https://127.0.0.1:60000/slcs)

-I, --idp URL the name of IdP (e.g.
https://idp.testshib.org/idp/shibboleth)

-U, --user string User account to IdP

-P, --password string password for user accoutn to IdP

-Z, --keysize integer size of the private key, default is 1024

-K, --keypass passphrase for protecting the private key; if not set,
the private key file will not be protected by the
passphrase.

-L, --lifetime hours life time of the credential (hours)), starting with cur-
rent time

-D, --storedir path store directory of the credential

-t, --timeout seconds timeout in seconds (default 20 seconds)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-c, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

2.2 Job submission and management

The following commands are used for job submission and management, such as status check, results
retrieval, cancellation, re-submission and such. The jobs must be described using a job description
language. ARC supports the following languages: JSDL [2], xRSL [8] and JDL [6].

2.2.1 arcsub

The arcsub command is the most essential one, as it is used for submitting jobs to the Grid resources.
arcsub matches user’s job description to the information collected from the Grid, and the optimal site
is being selected for job submission. The job description is then being forwarded to that site, in order to
be submitted to the Local Resource Management System (LRMS), which can be, e.g., PBS or Condor or
SGE etc.

arcsub [options] [filename ...]

(ARC 0.9)

Options:

10 CHAPTER 2. COMMANDS

-c, --cluster [-]url explicitly select or reject (-) a specific site

-i, --index [-]url explicitly select or reject (-) a specific index server

-e, --jobdescrstring filename string describing the job to be submitted

-f, --jobdescrfile filename file describing the job to be submitted

-j, --joblist filename file where user’s job information will be stored

-x, --dumpdescription do not submit – dump transformed job description
to stdout

-b, --broker string select broker method (default is Random)

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

filename ... file(s) describing the job(s) to be submitted

The -c and -i arguments accept meta-URLs of the format GRID:URL, where GRID indicates a Grid
middleware flavour. Possible flavours are ARC0, ARC1, CREAM and UNICORE. For example, for index
servers:

ARC0:ldap://index.ng.org:2135/mds-vo-name=sweden,O=grid

CREAM:ldap://cream.glite.org:2170/o=grid

or clusters:

ARC0:ldap://ce.ng.eu:2135/nordugrid-cluster-name=ce.ng.eu,Mds-Vo-name=local,o=grid

It is strongly recommended to use aliases for these long URLs. Aliases are specified in the configu-
ration file (see Section 4).

As a shorthand -f can be omitted if the job description file is put last on the commandline.

A simple ”Hello World” job can look like:

arcsub -c my-test-site job.jsdl

The -c option can be repeated several times, for example:

arcsub -c alias1 -c alias2 job.xrsl

This will submit a job to either alias1 or alias2. To submit a job to any site except badsite, use -
sign in front of the name:

arcsub -c -badsite job.xrsl

If option -c is not given, the arcsub command locates the available sites by querying the Information
System. Default index services for the Information System are specified in the configuration template
distributed with the middleware, and can be overwritten both in the user’s configuration (see Section 4)
and from the command line using option -i. Different Grids use different notation for such index services.

A user has to have valid credentials (see Section 2.1) and be authorised at the specified site. A test file
job.jsdl is shown below.

2.2. JOB SUBMISSION AND MANAGEMENT 11

<?xml version="1.0" encoding="UTF -8"?>

<JobDefinition

xmlns="http:// schemas.ggf.org/jsdl /2005/11/ jsdl"

xmlns:posix="http: // schemas.ggf.org/jsdl /2005/11/ jsdl -posix">

<JobDescription >

<JobIdentification >

<JobName >Hello World job</JobName >

</JobIdentification >

<Application >

<posix:POSIXApplication >

<posix:Executable >/bin/echo</posix:Executable >

<posix:Argument >’Hello World ’</posix:Argument >

<posix:Output >out.txt</posix:Output >

<posix:Error >err.txt</posix:Error >

</posix:POSIXApplication >

</Application >

</JobDescription >

</JobDefinition >

If a job is successfully submitted, a job identifier (job ID) is printed to standard output.

The job ID uniquely identifies the job while it is being executed. Job IDs differ strongly between Grid
flavours, but basically they have a form of a URL. You should use Job ID as a handle to refer to the
job when doing other job manipulations, such as querying job status (arcstat), killing it (arckill),
re-submitting (arcresub), or retrieving the result (arcget).

Every job ID is a valid URL for the job session directory. You can always use it to access the files
related to the job, by using data management tools (see Chapter 2.3).

The job description in one of the supported languages can be given, either as an argument on the command
line, or can be read from a file. Several jobs can be requested at the same time by giving more than one
filename argument, or by repeating the -f or -e options. It is possible to mix -e and -f options in the
same arcsub command.

In order to keep track of submitted jobs, ARC client stores information in a dedicated file, by default
located in $HOME/.arc/jobs.xml. It is sometimes convenient to keep separate lists (e.g., for different
kinds of jobs), to be used later with e.g. arcstat. This is achieved with the help of -j command line
option.

The user interface transforms input job description into a format that can be understood by the Grid
services to which it is being submitted. By specifying the --dumpdescription option, such transformed
description is written to stdout instead of being submitted to the remote site.

Possible broker values for the arcsub command line option -b are:

– Random – ranks targets randomly (default)

– FastestQueue – ranks targets according to their queue length

– Benchmark[:name] – ranks targets according to a given benchmark, as specified by the name. If no
benchmark is specified, CINT2000 ∗ is used

– Data – ranks targets according the amount of megabytes of the requested input files that are already
in the computing resources cache.

– Python:<module>.<class>[:arguments] – ranks targets using any user-supplied custom Python
broker module, optionally with broker arguments. Such module can reside anywhere in user’s
PYTHONPATH

∗http://www.spec.org/cpu2000/CINT2000/

12 CHAPTER 2. COMMANDS

– <otherbroker>[:arguments] – ranks targets using any user-supplied custom C++ broker plugin,
optionally with broker arguments. Default location for broker plugins is /usr/lib/arc (may depend
on the operating system), or the one specified by the ARC PLUGIN PATH.

To write a custom broker in C++ one has to write a new specialization of the Broker base class and
implement the SortTargets method in the new class. The class should be compiled as a loadable module
that has the proper ARC plugin descriptor for the new broker. For example, to build a broker plugin
“MyBroker” one executes:

g++ -I /arc -install/include \

-L /arc -install/lib \

‘pkg -config --cflags glibmm -2.4 libxml -2.0‘ \

-o libaccmybroker.so -shared MyBroker.cpp

For more details, refer to libarclib documentation [4].

It often happens that some sites that arcsub has to contact are slow to answer, or are down altogether.
This will not prevent you from submitting a job, but will slow down the submission. To speed it up, you
may want to specify a shorter timeout (default is 20 seconds) with the -t option:

arcsub -t 5 myjob.jsdl

Default value for the timeout can be set in the user’s configuration file.

If you would like to get diagnostics of the process of resource discovery and requirements matching, a
very useful option is -d. The following command:

arcsub -d VERBOSE myjob.xrsl

will print out the steps taken by the ARC client to find the best cluster satisfying your job requirements.
Possible diagnostics degrees, in the order of increasing verbosity, are: FATAL, ERROR, WARNING, INFO,
VERBOSE and DEBUG. Default is WARNING, and it can be set to another value in the user’s configuration
file.

Default configuration file is $HOME/.arc/client.conf. However, a user can choose any other pre-defined
configuration through option -z.

Command line option -v prints out version of the installed ARC client, and option -h provides a short
help text.

2.2.2 arcstat

arcstat [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site

-s, --status statusstr only select jobs whose status is statusstr

-l, --long long format (extended information)

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

2.2. JOB SUBMISSION AND MANAGEMENT 13

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

The arcstat command returns the status of jobs in the Grid, and is typically issued with a job ID (as
returned by arcsub) as an argument. It is also possible to use job name instead of ID, but if several
jobs have identical names, information will be collected about all of them. More than one job ID and/or
name can be given.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
returns information for ALL jobs that match either of the criteria (logical OR).

For example, arcstat -s Finished -c mycluster <jobid> will return information about all fin-
ished jobs on the Grid, plus about all jobs (in any state) on the cluster mycluster, plus about the
job <jobid>.

If the -l option is given, extended information is printed.

Options -a, -c, -s and -j do not use job ID or names. By specifying the -a option, the status of all
active jobs will be shown. If the -j option is used, the list of jobs is read from a file with the specified
filename, instead of the default one ($HOME/.arc/jobs.xml).

Option -c accepts arguments in the GRID:URL notation, as explained in the description of arcsub, or
their aliases as specified in the configuration file.

Different sites may report different job states, depending on the installed grid middleware version. Typical
values can be e.g. “Accepted”, “Preparing”, “Running”, “Finished” or “Deleted”. Please refer to the
respective middleware documentation for job state model description.

Command line option -s will instruct the client to display information of only those jobs which status
matches the instruction. This option must be given together with either -a or -c ones, e.g.:

arcstat -as Finished

Other command line options are identical to those of arcsub.

2.2.3 arccat

It is often useful to monitor the job progress by checking what it prints on the standard output or error.
The command arccat assists here, extracting the corresponding information from the execution cluster
and dumping it on the user’s screen. It works both for running tasks and for the finished ones. This
allows a user to check the output of the finished task without actually retreiving it.

arccat [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of job IDs

-c, --cluster [-]url explicitly select or reject (-) a specific site

-s, --status statusstr only select jobs whose status is statusstr

-o, --stdout show the stdout of the job (default)

-e, --stderr show the stderr of the job

-l, --gmlog show the grid manager’s error log of the job

14 CHAPTER 2. COMMANDS

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

The arccat command returns the standard output of a job (-o option), the standard error (-e option)
or errors reported by either Grid Manager or A-REX (-l option).

Other command line options have the same meaning as in arcstat.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
prints logs for ALL jobs that match either of the criteria (logical OR).

For example, arccat -s Finished -c mycluster <jobid> will print logs of all finished jobs on the
Grid, plus of all jobs (in any state) on the cluster mycluster, plus of the job <jobid>.

2.2.4 arcget

To retrieve the results of a finished job, the arcget command should be used. It will transfer the files
specified for download in job description to the user’s computer.

arcget [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site (cluster)

-s, --status statusstr only select jobs whose status is statusstr

-D, --dir dirname download path (the job directory will be created in
that location)

-k, --keep keep files in the Grid (do not clean)

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Only the results of jobs that have finished can be downloaded. Just like in arcstat and arccat cases,
the job can be referred to either by the jobID that was returned by arcsub at submission time, or by its
name, if the job description contained a job name attribute.

2.2. JOB SUBMISSION AND MANAGEMENT 15

By default, the job is downloaded into a newly created directory in the current path, with the name
typically being a large random number. In order to instruct arcget to use another path, use option -D
(note the capital “D”), e.g.

arcget -D /tmp/myjobs "Test job nr 1"

After downloading, your jobs will be erased from the execution site! Use command line option -k to
keep finished jobs in the Grid.

Other command line options are identical to those of e.g. arcstat.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
retrieves ALL jobs that match either of the criteria (logical OR).

For example, arcget -s Finished -c mycluster <jobid> will retrieve all finished jobs on the
Grid, plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.2.5 arcsync

It is advised to start every grid session by running arcsync, especially when changing workstations. The
reason is that your job submission history is cached on your machine, and if you are using ARC client
installations on different machines, your local lists of submitted jobs will be different. To synchronise
these lists with the information in the Information System, use the arcsync command.

arcsync [options]

(ARC 0.9)

Options:

-c, --cluster [-]name explicitly select or reject a specific site

-i, --index url explicitly select or reject (-) a specific index server

-j, --joblist filename file where user’s job information will be stored

-f, --force don’t ask for confirmation

-T, --truncate truncate the job list before synchronising

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

The ARC client keeps a local list of jobs in the user’s home directory. If this file is lost, corrupt, or the
user wants to recreate the file on a different workstation, the arcsync command will recreate this file
from the information available in the Information System.

Since the information about a job retrieved from a cluster can be slightly out of date if the user very
recently submitted or removed a job, a warning is issued when this command is run. The -f option
disables this warning.

If the job list is not empty when invoking syncronisation, the old jobs will be merged with the new jobs,
unless the -T option is given (note the capital “T”), in which case the job list will first be truncated and
then the new jobs will be added.

16 CHAPTER 2. COMMANDS

2.2.6 arcinfo

The arcinfo command is used to obtain status information about clusters on the Grid.

arcinfo [options]

(ARC 0.9)

Options:

-c, --cluster [-]name explicitly select or reject a specific site

-i, --index url explicitly select or reject (-) a specific index server

-l, --long long format (extended information)

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

The arcinfo command is used to obtain information about clusters and queues (targets) available on
the Grid. Either the --cluster or --index flag should be used to specify the target(s) which should be
queried for information. Both of these flags take a service endpoint as argument. See arcsub and the
configuration notes in Section 4 for description of these.

Detailed information about queried computing services can be obtained by specifying the --long flag.

When specifying the --index flag, the information about the computing services registered at the index
server will be queried, rather than the status of the index server itself.

2.2.7 arckill

It happens that a user may wish to cancel a job. This is done by using the arckill command. A job
can be killed almost at any stage of processing through the Grid.

arckill [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]url explicitly select or reject (-) a specific site

-s, --status statusstr only select jobs whose status is statusstr

-k, --keep keep files in the Grid (do not clean)

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

2.2. JOB SUBMISSION AND MANAGEMENT 17

Arguments:

job ... list of job IDs and/or jobnames

If a job is killed, its traces are being cleaned from the Grid. If you wish to keep the killed job in the
system, e.g. for a post-mortem analysis, use the -k option.

Job cancellation is an asynchronous process, such that it may take a few minutes before the job is
actually cancelled.

Command line options have the same meaning as the corresponding ones of arcstat and others.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
kills ALL jobs that match either of the criteria (logical OR).

For example, arckill -s INLRMS:R -c mycluster <jobid> will kill all running jobs on the Grid,
plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.2.8 arcclean

If a job fails or gets killed with -k option, or when you are not willing to retrieve the results for some
reasons, a good practice for users is not to wait for the system to clean up the job leftovers, but to use
arcclean to release the disk space and to remove the job ID from the list of submitted jobs and from
the Information System.

arcclean [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site (cluster)

-s, --status statusstr only select jobs whose status is statusstr

-f, --force removes the job ID from the local list even if the job
is not found on the Grid

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Only jobs that have finished or were cancelled can be cleaned.

It happens ever so often that the job is cleaned by the system, or is otherwise unreachable, and yet
your local job list file still has it listed. Use -f option in this case to forcefully remove such stale job
information from the local list.

18 CHAPTER 2. COMMANDS

Other command line options have the same meaning as the corresponding ones of arcstat and others.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
cleans ALL jobs that match either of the criteria (logical OR).

For example, arcclean -s FAILED -c mycluster <jobid> will clean all failed jobs on the Grid,
plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.2.9 arcrenew

Quite often, the user proxy expires while the job is still running (or waiting in a queue). In case such
job has to upload output files to a Grid location (Storage Element), it will fail. By using the arcrenew
command, users can upload a new proxy to the job. This can be done while a job is still running, thus
preventing it from failing

If a job has failed in file upload due to expired proxy, arcrenew can be issued whithin 24 hours (or
whatever is the expiration time set by the site) after the job end, which must be followed by arcresume.
The Grid Manager or A-REX will then attempt to finalize the job by uploading the output files to the
desired location.

arcrenew [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site (cluster)

-s, --status statusstr only select jobs whose status is statusstr

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Prior to using arcrenew, be sure to actually create the new proxy by running arcproxy!

Command line options have the same meaning as the corresponding ones of arcstat and others.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
renews proxies for ALL jobs that match either of the criteria (logical OR).

For example, arcrenew -s FAILED -c mycluster <jobid> will renew proxies of all failed jobs on
the Grid, plus of all jobs (in any state) on the cluster mycluster, plus of the job <jobid>.

2.2. JOB SUBMISSION AND MANAGEMENT 19

2.2.10 arcresume

In some cases a user may want to restart a failed job, for example, when input files become available, or
the storage element for the output files came back online, or when a proxy is renewed with arcrenew.
This can be done using the arcresume command.

Make sure your proxy is still valid, or when uncertain, run arcproxy followed by arcrenew before
arcresume. The job will be resumed from the state where it has failed.

arcresume [options] [job ...]

(ARC 0.9)

-a, --all all jobs

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site (cluster)

-s, --status statusstr only select jobs whose status is statusstr

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Command line options have the same meaning as the corresponding ones of arcstat and others.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
resumes ALL jobs that match either of the criteria (logical OR).

For example, arcresume -s FAILED -c mycluster <jobid> will resume all failed jobs on the Grid,
plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.2.11 arcresub

Quite often it happens that a user would like to re-submit a job, but has difficulties recovering the original
job description xRSL file. This happens when xRSL files are created by scripts on-fly, and matching of
xRSL to the job ID is not straightforward. The utility called arcresub helps in such situations, allowing
users to resubmit jobs.

arcresub [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-i, --index url explicitly select or reject (-) a specific index server

20 CHAPTER 2. COMMANDS

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific source site

-q, --qluster [-]name explicitly select or reject a specific site as re-
submission target

-m, --same re-submit to the same site

-s, --status statusstr only select jobs whose status is statusstr

-x, --dumpdescription do not submit – dump transformed job description
to stdout

-k, --keep keep files in the Grid (do not clean)

-b, --broker string select broker method (default is Random)

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Only jobs where the gmlog attribute was specified in the job description can be resubmitted.

More than one jobid and/or jobname can be given. If several jobs were submitted with the same jobname
all those jobs will be resubmitted.

Upon resubmission of a job the corresponding job description will be fetched from the local job list file. If
input files have changed since the original job submission, the job no longer remains the same job and will
therefore not be resubmitted. To make sure the job is always resubmittable, submit it with arcsub -n.

In case the job description is not found in the joblist, an attempt will be made to retrieve it from the
cluster holding the orignal job. This however may fail, since both the submission client and the cluster
can have made modifications to the job description.

Upon resubmision the job will receive a new job ID. The old job ID will be kept in the local job list file,
enabling future back tracing of the resubmitted job.

Regarding command line options, arcresub behaves much like arcsub, except that -c in this case
indicates not the submission target site, but on the contrary, the site from which the jobs will be
resubmitted. Submission target site is specified with option -q. If you wish to re-submit each job to
the same site, use option -m.

If the original job was successfully killed, its traces will be removed from the execution site, unless the
-k option is specified.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
resubmits ALL jobs that match either of the criteria (logical OR).

For example, arcresub -s FAILED -c mycluster <jobid> will resubmit all failed jobs on the Grid,
plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.2.12 arcmigrate

Quite often jobs end up stuck in long queues, and users wish to migrate them to a better resource.
Command arcmigrate is triggering this migration. It applies only to jobs submitted to A-REX, as other
Grid execution services do not support this functionality.

2.3. DATA MANIPULATION 21

arcmigrate [options] [job ...]

(ARC 0.9)

Options:

-a, --all all jobs

-i, --index url explicitly select or reject (-) a specific index server

-j, --joblist filename file containing a list of jobIDs

-c, --cluster [-]name explicitly select or reject a specific site (cluster)

-q, --qluster [-]name explicitly select or reject a specific site as re-
submission target

-f, --forcemigration force migration, ignoring kill failure

-b, --broker string select broker method (default is Random)

-t, --timeout time timeout for queries (default 20 sec)

-d, --debug debuglevel debug level is one of FATAL, ERROR, WARNING,
INFO, VERBOSE or DEBUG

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

job ... list of job IDs and/or jobnames

Currently only jobs having the A-REX status “Running”, “Executing” or “Queuing” can be migrated

Command line options -c and #-q#are interpreted in the same way as in arcresub, namely, -c indicates
“from” and #-q#– “to” which site the job will be migrated.

If the job(s) is successfully migrated, a new job ID(s) is printed out. This jobID uniquely identifies the
job while it is being executed.

When several of the -a, -j, -c, -s and [job...] command line options are specified, the comand
migrates ALL jobs that match either of the criteria (logical OR).

For example, arcmigrate -s FAILED -c mycluster <jobid> will migrate all failed jobs on the
Grid, plus all jobs (in any state) on the cluster mycluster, plus the job <jobid>.

2.3 Data manipulation

ARC provides basic data management tools, which are simple commands for file copy and removal, with
eventual use of data indexing services.

2.3.1 arcls

arcls is a simple utility that allows to list contents and view some attributes of objects of a specified
(by a URL) remote directory.

22 CHAPTER 2. COMMANDS

arcls [options] <URL>

(ARC 0.9)

Options:

-l, --long detailed listing

-L, --locations detailed listing including URLs from which files can
be downloaded

-m, --metadata display all available metadata

-r, --recursive recursion level operate recursively (if possible) up to specified level
(0 - no recursion)

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

URL file or directory URL

This tool is very convenient not only because it allows to list files at a Storage Element or records in
an indexing service, but also because it can give a quick overview of a job’s working directory, which is
explicitly given by job ID.

Usage examples can be as follows:

arcls -L rls://rls.nordugrid.org:38203/logical_file_name

arcls -l gsiftp://lscf.nbi.dk:2811/jobs/1323842831451666535

arcls srm://grid.uio.no:8446/srm/managerv2?SFN=/johndoe/log2

Examples of URLs accepted by this tool can be found in Section 3, though arcls won’t be able to list a
directory at an HTTP server, as they normally do not return directory listings.

2.3.2 arccp

arccp is a powerful tool to copy files over the Grid. It is a part of the A-REX, but can be used by the
User Interface as well.

arccp [options] <source> <destination>

(ARC 0.9)

Options:

-p, --passive use passive transfer (does not work if secure is on,
default if secure is not requested)

-n, --nopassive do not try to force passive transfer

-f, --force if the destination is an indexing service and not the
same as the source and the destination is already
registered, then the copy is normally not done. How-
ever, if this option is specified the source is assumed
to be a replica of the destination created in an un-
controlled way and the copy is done like in case of
replication. Using this option also skips validation of
completed transfers.

2.3. DATA MANIPULATION 23

-i, --indicate show progress indicator

-T, --notransfer do not transfer file, just register it - destination must
be non-existing meta-url

-u, --secure use secure transfer (insecure by default)

-y, --cache path path to local cache (use to put file into cache). The
X509 USER PROXY and X509 CERT DIR environment
variables must be set correctly

-r, --recursive recursion level operate recursively (if possible) up to specified level
(0 - no recursion)

-R, --retries number how many times to retry transfer of every file before
failing

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

source source URL

destination destination URL

This command transfers contents of a file between 2 end-points. End-points are represented by URLs or
meta-URLs. For supported endpoints please refer to Section 3.

arccp can perform multi-stream transfers if threads URL option is specified and server supports it.

Source URL can end with "/". In that case, the whole fileset (directory) will be copied. Also, if the
destination ends with "/", it is extended with part of source URL after last "/", thus allowing users to
skip the destination file or directory name if it is meant to be identical to the source.

Usage examples of arccp are:

arccp gsiftp://lscf.nbi.dk:2811/jobs/1323842831451666535/job.out \

file:///home/myname/job2.out

arccp gsiftp://aftpexp.bnl.gov;threads=10/rep/my.file \

rls://grid.uio.no/zebra4.f

arccp http://www.nordugrid.org/data/somefile gsiftp://hathi.hep.lu.se/data/

2.3.3 arcrm

The arcrm command allows users to erase files at any location specified by a valid URL.

arcrm [options] <source>

(ARC 0.9)

Options:

-f, --force remove logical file name registration even if not all
physical instances were removed

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

24 CHAPTER 2. COMMANDS

-h, --help print help page

Arguments:

source source URL

A convenient use for arcrm is to erase the files in a data indexing catalog (LFC, RLS or such), as it
will not only remove the physical instance, but also will clean up the database record.

Here is an arcrm example:

arcrm lfc://grid.uio.no/grid/atlas/AOD_0947.pool.root

2.3.4 arcsrmping

The arcsrmping command is used to quickly test availability of an SRM service, similarly to the ping
tool in Unix.

arcsrmping [options] <service>

(ARC 0.9)

Options:

-t, --timeout seconds timeout in seconds (default 20)

-d, --debug debuglevel debug level, FATAL, ERROR, WARNING, INFO,
VERBOSE or DEBUG - default WARNING

-z, --conffile filename configuration file (default $HOME/.arc/client.conf)

-v, --version print version information

-h, --help print help page

Arguments:

service A URL to an SRM service

The arcsrmping command is a ping client for the SRM service. It sends an SRM ping request to the
SRM service and displays the result.

2.3.5 chelonia

chelonia is a client tool for accessing the Chelonia storage system. With it it is possible to create,
remove and list file collections, upload, download and remove files, and move and stat collections and
files, using Logical Names (LN).

chelonia [options] <method> [arguments]

(ARC 0.9)

Options:

-b URL URL of Bartender to connect

-x print SOAP XML messages

-v verbose mode

-z filename configuration file (default $HOME/.arc/client.conf)

-w allow to run without the ARC python client libraries
(with limited functionality)

2.3. DATA MANIPULATION 25

Methods:

stat LN [LN ...] get detailed information about an entry or several

makeCollection, make, mkdir LN create a collection

unmakeCollection, unmake, rmdir LN remove an empty collection

list, ls LN list the content of a collection

move, mv source target move entries within the namespace (both LNs)

putFile, put source target upload a file from a source to a target (both specified
as LNs))

getFile, get source [target] download a file from a source to a target

delFile, del, rm LN [LN ...] remove file(s))

modify, mod string modify metadata

policy, pol string modify access policy rules

unlink string remove a link to an entry from a collection without
removing the entry itself

credentialsDelegation, cre string delegate credentials for using gateway

removeCredentials, rem string remove previously delegated credentials

makeMountPoint, makemount string create a mount point

Without arguments, each method prints its own help. Detailed explanation of each method is given
below.

Examples:

chelonia list /

chelonia put orange /

chelonia stat /orange

chelonia get /orange /tmp

chelonia mkdir /fruits

chelonia mkdir /fruits/apple

chelonia mv /orange /fruits

chelonia ls /fruits

chelonia rmdir /fruits/apple

chelonia rmdir /fruits

chelonia rm /fruits/orange

chelonia policy / change ALL +read +addEntry

chelonia modify /pennys-orange set states neededReplicas 2

stat

With the stat method it is possible to get all the metadata about one or more entry (file, collection,
etc.). The entries are specified with their Logical Name (LN).

chelonia stat <LN> [<LN> ...]

The output contains key-value pairs grouped in sections. The ‘states’ section contains the size and the
checksum of a file, the number of needed replicas, and whether a collection is closed or not; the ‘entry’
section contains the DN of the owner, the globally unique ID (GUID) of the entry, and the type of the
entry (file, collection, etc.); the ‘parents’ section contains the GUID of the parent collection(s) of this
entry, and the name of this entry in that collection separated with a ‘/’; the ‘locations’ sections contains
the location of the replicas of a file, which contains of the ID (the URL) of the storage element, the ID of
the replica within the storage element, and the state of the replica; the ‘timestamps’ section contains the
creation time of the entry; the ‘entries’ section contains the name and GUID of the entries of a collection.
Example stat of a file:

26 CHAPTER 2. COMMANDS

$ chelonia stat /thing

’/thing’: found

states

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

entry

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 398CBDEA-E282-4735-8DF6-2464CD00BE2D

type: file

parents

0/thing: parent

locations

https://localhost:60000/Shepherd D519F687-EF65-4AEA-9766-E6E2D42166C4: alive

timestamps

created: 1257351119.3

Example stat of a collection:

$ chelonia stat /

’/’: found

states

closed: no

entry

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 0

type: collection

timestamps

created: 1257351114.37

entries

thing: 398CBDEA-E282-4735-8DF6-2464CD00BE2D

makeCollection

With the makeCollection or mkdir method it is possible to create a new empty collection. The requested
Logical Name (LN) should be specified.

chelonia makeCollection <LN>

The parent collection of the requested Logical Name must exist.

Example output of the method:

$ chelonia mkdir /newcoll

Creating collection ’/newcoll’: done

$ chelonia mkdir /nonexistent/newcoll

Creating collection ’/nonexistent/newcoll’: parent does not exist

unmakeCollection

With the unmakeCollection or rmdir method it is possible to delete an empty collection which is specified
by its Logical Name (LN).

chelonia unmakeCollection <LN>

Example output of the method:

$ chelonia rmdir /newcoll

2.3. DATA MANIPULATION 27

Removing collection ’/newcoll’: removed

$ chelonia rmdir /dir

Removing collection ’/dir’: collection is not empty

list

With the list or ls method it is possible to list the contents of one or more collections which are specified
by their Logical Name (LN).

chelonia list <LN> [<LN> ...]

Example output of the method:

$ chelonia list / /newcoll

’/newcoll’: collection

empty.

’/’: collection

thing <file>

dir <collection>

newcoll <collection>

move

With the move or mv method it is possible to move a file or collection within the namespace of chelonia
(including renaming the entry). The source path and the target path should be specified as Logical
Names

chelonia move <sourceLN> <targetLN>

Example output of the method:

$ chelonia mv /thing /newcoll/

Moving ’/thing’ to ’/newcoll/’: moved

$ chelonia mv /newcoll/thing /newcoll/othername

Moving ’/newcoll/thing’ to ’/newcoll/othername’: moved

putFile

With the putFile or put method it is possible to upload a new file into the system creating a new Logical
Name (LN). It is possible the specify the number of needed replicas.

chelonia putFile <source filename> <target LN> [<number of replicas needed>]

Example output of the method:

$ chelonia put thing /newcoll/

’thing’ (6 bytes) uploaded as ’/newcoll/thing’.

getFile

With the getFile or get method it is possible to download a file specified with its Logical Name (LN).
If the target local path is not given, then the file will be put into the local directory.

28 CHAPTER 2. COMMANDS

chelonia getFile <source LN> [<target filename>]

Example output of the method:

$ chelonia get /newcoll/thing newlocalname

’/newcoll/thing’ (6 bytes) downloaded as ’newlocalname’.

delFile

With the delFile or rm method it is possible to delete one or more files from the system.

chelonia delFile <LN> [<LN> ...]

Example output of the method:

$ chelonia rm /newcoll/othername

/newcoll/othername: deleted

modify

With the modify or mod method it is possible to modify some metadata of an entry.

chelonia modify <LN> <changeType> <section> <property> <value>

The possible values of ‘changeType’ are ‘set’ (sets the property to value within the given section), ‘unset’
(removes the property from the given section - the ‘value’ does not matter) and ‘add’ (sets the property
to value within the given section only if it does not exist yet).

To change the number of needed replicas for a file:

chelonia modify <LN> set states neededReplicas <number of needed replicas>

To close a collection:

chelonia modify <LN> set states closed yes

To change metadata key-value pairs:

chelonia modify <LN> set|unset|add metadata <key> <value>

policy

With the policy or pol method it is possible to modify the policy of the entry

chelonia policy <LN> <changeType> <identity> <action list>

The possible values of ‘changeType’ are ‘set’ (sets the action list to the given user overwriting the old
one), ‘change’ (modify the current action list with adding and removing actions) and ‘clear’ (clear the
action list of the given user).

The ‘identity’ could be currently three things: the DN of a user; the name of a VO (with the syntax:
‘VOMS:<VO name>’); or ‘ALL’ for all users.

The ‘action list’ is a list of actions prefixed with ‘+’ or ‘-’, e.g. ‘+read +addEntry -delete’.

These are the actions which can be used for access control:

• read : user can get the list of entries in the collection; user can download the file

2.3. DATA MANIPULATION 29

• addEntry : user can add a new entry to the collection;

• removeEntry : user can remove any entry from the collection

• delete: user can delete the collection if it is empty; user can delete a file

• modifyPolicy : user can modify the policy of the file/collection

• modifyStates: user can modify some special metadata of the file/collection (close the collection,
change the number of needed replica of the file)

• modifyMetadata: user can modify the arbitrary metadata section of the file/collection (these are
property-value pairs)

There is an implicit default policy: the owner always has all the rights. Checking the ‘stat’ of new
collections:

$ chelonia stat /newcoll

’/newcoll’: found

states

closed: no

entry

owner: /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=Nagy Zsombor

GUID: 41CBD461-09BE-46FD-8A1B-767C7D427AF9

type: collection

parents

0/newcoll: parent

timestamps

created: 1257435820.26

entries

thing: A63658B4-2C6E-46A3-8238-7D291F8F81C2

shows no policies, but it shows the owner. This collection has no additional policies just the default one:
the owner can do anything, noone else can do anything.

Let’s set it in a way that all users can read the contents of this collection:

$ chelonia policy /newcoll change ALL +read

Setting action list of ’/newcoll’ for user ALL to +read: set.

$ chelonia stat /newcoll

’/newcoll’: found

[...]

policy

ALL: +read

[...]

Then we can set that all the members of the knowarc VO would be able to add entries to this collection:

$ chelonia policy /newcoll change VOMS:knowarc +addEntry

Setting action list of ’/newcoll’ for user VOMS:knowarc to +addEntry: set.

$ chelonia stat /newcoll

’/newcoll’: found

[...]

policy

ALL: +read

VOMS:knowarc: +addEntry

[...]

And for example we can set a specific user to be able to remove entries from this collections:

$ chelonia policy /newcoll change \

"/C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser" +removeEntry

Setting action list of ’/newcoll’

30 CHAPTER 2. COMMANDS

for user /C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser to +removeEntry: set.

$ chelonia stat /newcoll’/newcoll’: found

[...]

policy

/C=HU/O=NIIF CA/OU=GRID/OU=NIIF/CN=TestUser: +removeEntry

ALL: +read

VOMS:knowarc: +addEntry

[...]

unlink

With the unlink method it is possible to remove a file or collection just from its parent collection without
removing the file or collection itself.

chelonia unlink <LN>

If there is a file called ‘/newcoll/thing’, it is in the listing of the ‘/newcoll’ collection:

$ chelonia list /newcoll

’/newcoll’: collection

thing <file>

The file is in the entries of the collection:

$ chelonia stat /newcoll

’/newcoll’: found

entries

thing: A63658B4-2C6E-46A3-8238-7D291F8F81C2

[...]

It is possible the ‘stat’ the file with the Logical Name ‘/newcoll/thing’:

jim:~ zsombor$ chelonia stat /newcoll/thing

’/newcoll/thing’: found

states

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

[...]

Now with the ‘unlink’ method it is possible to remove the file from the ‘/newcoll’ collection, but not from
the system:

$ chelonia unlink /newcoll/thing

Unlinking ’/newcoll/thing’: unset

Now the file is not in the collection anymore:

$ chelonia list /newcoll

’/newcoll’: collection

empty.

$ chelonia stat /newcoll/thing

’/newcoll/thing’: not found

But with the GUID of the file, it can still be accessed:

$ chelonia stat A63658B4-2C6E-46A3-8238-7D291F8F81C2

’A63658B4-2C6E-46A3-8238-7D291F8F81C2’: found

states

2.3. DATA MANIPULATION 31

checksumType: md5

neededReplicas: 3

size: 6

checksum: a0186a90393bd4a639a1ce35d8ef85f6

[...]

credentialDelegation

With the credentialDelegation or cre method it is possible to delegate credentials to the Bartender.

chelonia credentialDelegation

removeCredentials

With the removeCredentials or rem method it is possible to remove the previously delegated credentials.

chelonia removeCredentials

makeMountPoint

With the makeMountPoint or makemount method it is possible to create a mount point within the names-
pace of Chelonia which points to a GridFTP server.

chelonia makeMountPoint <LN> <URL>

The ‘LN’ is the requested Logical Name for the mount point, the ‘URL’ points to the GridFTP server.

unmakeMountPoint

With the unmakeMountPoint or unmount method it is possible to remove a previously created mount
point.

chelonia unmakeMountPoint <LN>

The ‘LN’ is the Logical Name of the mount point.

32 CHAPTER 2. COMMANDS

Chapter 3

URLs

File locations in ARC can be specified both as local file names, and as Internet standard Uniform Resource
Locators (URL). There are also some additional URL options that can be used.

The following transfer protocols and metadata servers are supported:

ftp ordinary File Transfer Protocol (FTP)

gsiftp GridFTP, the Globus R© -enhanced FTP protocol with security,
encryption, etc. developed by The Globus Alliance [5]

http ordinary Hyper-Text Transfer Protocol (HTTP) with PUT and
GET methods using multiple streams

https HTTP with SSL v3

httpg HTTP with Globus R© GSI

ldap ordinary Lightweight Data Access Protocol (LDAP) [9]

rls Globus R© Replica Location Service (RLS) [3]

lfc LFC catalog and indexing service of EGEE gLite [1]

srm Storage Resource Manager (SRM) service [7]

file local to the host file name with a full path

arc for the Chelonia storage service, communicates with Bartenders,
the path should be a Logical Name (LN)

An URL can be used in a standard form, i.e.

protocol://[host[:port]]/file

Or, to enhance the performance, it can have additional options:

protocol://[host[:port]][;option[;option[...]]]/file

For a metadata service URL, construction is the following:

protocol://[url[|url[...]]@]host[:port][;option[;option[...]]/
lfn[:metadataoption[:metadataoption[...]]

For Chelonia, the syntax is

arc://<LogicalName>[?BartenderURL=<URL>]

where the BartenderURL could come from the ‘bartender’ parameter of the client configuration file.

For the SRM service, the syntax is

33

34 CHAPTER 3. URLS

srm://host[:port][;options]/[service_path?SFN=]file

Versions 1.1 and 2.2 of the SRM protocol are supported. The default service path is srm/managerv2
when the server supports v2.2, srm/managerv1 otherwise.

The URL components are:

host[:port] Hostname or IP address [and port] of a server

lfn Logical File Name

url URL of the file as registered in indexing service

service_path End-point path of the web service

file File name with full path

option URL option

metadataoption Metadata option for indexing service

The following options are supported for location URLs:

threads=<number> specifies number of parallel streams to be used by GridFTP or
HTTP(s,g); default value is 1, maximal value is 10

cache=yes|no|renew|copy indicates whether the GM should cache the file; default for input
files is yes. renew forces a download of the file, even if the cached
copy is still valid. copy forces the cached file to be copied (rather
than linked) to the session dir, this is useful if for example the file
is to be modified.

readonly=yes|no for transfers to file:// destinations, specifies whether the file
should be read-only (unmodifiable) or not; default is yes

secure=yes|no indicates whether the GridFTP data channel should be encrypted;
default is no

blocksize=<number> specifies size of chunks/blocks/buffers used in GridFTP or
HTTP(s,g) transactions; default is protocol dependent

checksum=cksum|md5|adler32|no specifies the algorithm for checksum to be computed (for transfer
verification or provided to the indexing server). This is overridden
by any metadata options specified (see below). If this option is
not provided, the default for the protocol is used. checksum=no
disables checksum calculation.

exec=yes|no means the file should be treated as executable

preserve=yes|no specify if file must be uploaded to this destination even if job
processing failed (default is no)

guid=yes|no make software use GUIDs instead of LFNs while communicating
to indexing services; meaningful for rls:// only

overwrite=yes|no make software try to overwrite existing file(s), i.e. before writing
to destination, tools will try to remove any information/content
associated with specified URL

protocol=gsi|gssapi to distinguish between two kinds of httpg. gssapi stands for
implemention using only GSSAPI functions to wrap data and gsi
uses additional headers as implmented in Globus IO. The default
is gssapi. In case this fails, gsi is then tried.

spacetoken=<pattern> specify the space token to be used for uploads to SRM storage
elements supporting SRM version 2.2 or higher

autodir=yes|no specify if before writing to specified location software should try to
create all directories mentioned in specified URL. Currently this
applies to FTP and GridFTP only. Default for those protocols is
yes

35

tcpnodelay=yes|no controls the use of the TCP NODELAY socket option (which dis-
ables the Nagle algorithm). Applies to http(s) only. Default is
no

Local files are referred to by specifying either a location relative to the job submission working directory,
or by an absolute path (the one that starts with ”/”), preceded with a file:// prefix.

Metadata service URLs also support metadata options which can be used for register additional metadata
attributes or query the service using metadata attributes. These options are specified at the end of the
LFN and consist of name and value pairs separated by colons. The following attributes are supported:

guid GUID of the file in the metadata service

checksumtype Type of checksum. Supported values are cksum (default), md5
and adler32

checksumvalue The checksum of the file

Currently these metadata options are only supported for lfc:// URLs.

Examples of URLs are:

http://grid.domain.org/dir/script.sh
gsiftp://grid.domain.org:2811;threads=10;secure=yes/dir/input_12378.dat
ldap://grid.domain.org:389/lc=collection1,rc=Nordugrid,dc=nordugrid,dc=org
rls://gsiftp://se.domain.org/datapath/file25.dat@grid.domain.org:61238/myfile02.dat1

file:///home/auser/griddir/steer.cra
lfc://srm://srm.domain.org/griddir@lfc.domain.org/user/file1:guid=\

bc68cdd0-bf94-41ce-ab5a-06a1512764dc:checksumtype=adler32:checksumvalue=123456782

lfc://lfc.domain.org;cache=no/:guid=bc68cdd0-bf94-41ce-ab5a-06a1512764d3

1This is a destination URL. The file will be copied to the GridFTP server at se.domain.org with the
path datapath/file25.dat and registered in the RLS indexing service at grid.domain.org with the
LFN myfile02.dat.
2This is a destination URL. The file will be copied to srm.domain.org at the path griddir/file1 and
registered to the LFC service at lfc.domain.org with the LFN /user/file1. The given GUID and
checksum attributes will be registered.
3This is a source URL. The file is registered in the LFC service at lfc.domain.org with the given GUID
and can be copied or queried by this URL.

36 CHAPTER 3. URLS

Chapter 4

ARC Client Configuration

The default behaviour of an ARC client can be configured by specifying alternative values for some
parameters in the client configuration file. The file is called client.conf and is located in directory .arc
in user’s home area:

$HOME/.arc/client.conf

If this file is not present or does not contain the relevant configuration information, the global configuration
files (if exist) or default values are used instead. Some client tools may be able to create the default
$HOME/.arc/client.conf, if it does not exist.

The ARC configuration file consists of several configuration blocks. Each configuration block is identified
by a keyword and contains configuration options for a specific part of the ARC middleware.

The configuration file is written in a plain text format known as INI. Configuration blocks start with
identifying keywords inside square brackets. Typically, first comes a common block: [common]. Thereafter
follows one or more attribute-value pairs written one on each line in the following format:

[common]

attribute1=value1

attribute2=value2

attribute3=value3 value4

comment line 1

comment line 2

...

Most attributes have counterpart command line options. Command line options always overwrite con-
figuration attributes.

Two blocks are currently recognized, [common] and [alias]. Following sections describe supported
attributes per block.

4.1 Block [common]

defaultservices

This attribute is multi-valued.

This attribute is used to specify default services to be used. Defining such in the user configuration file
will override the default services set in the system configuration.

37

38 CHAPTER 4. ARC CLIENT CONFIGURATION

The value of this attribute should follow the format:

service_type:flavour:service_url

where service type is type of service (e.g. computing or index), flavour specifies type of middle-
ware plugin to use when contacting the service (e.g. ARC0, ARC1, CREAM, UNICORE, etc.) and
service url is the URL used to contact the service. Several services can be listed, separated with a
blank space (no line breaks allowed).

Example:

defaultservices=index:ARC0:ldap://index1.ng.org:2135/Mds-Vo-name=testvo,o=grid

 index:ARC1:https://index2.ng.org:50000/isis

 computing:ARC1:https://ce.arc.org:60000/arex

 computing:CREAM:ldap://ce.glite.org:2170/o=grid

 computing:UNICORE:https://ce.unicore.org:8080/test/services/BESFactory?res=default_bes_factory

rejectservices

This attribute is multi-valued.

This attribute can be used to indicate that a certain service should be rejected (“blacklisted”). Several
services can be listed, separated with a blank space (no line breaks allowed).

Example: rejectservices=computing:ARC1:https://bad.service.org/arex

verbosity

Default verbosity (debug) level to use for the ARC clients. Corresponds to the -d command line option
of the clients. Default value is WARNING, possible values are FATAL, ERROR, WARNING, INFO, VERBOSE or
DEBUG.

Example: verbosity=INFO

timeout

Sets the period of time the client should wait for a service (information, computing, storage etc) to respond
when communicating with it. The period should be given in seconds. Default value is 20 seconds. This
attribute corresponds to the -t command line option.

Example: timeout=10

brokername

Configures which brokering algorithm to use during job submission. This attribute corresponds to the
-b command line option. The default one is the Random broker that chooses targets randomly. Another
possibility is, for example, the FastestQueue broker that chooses the target with the shortest estimated
queue waiting time. For an overview of brokers, please refer to Section 2.2.1.

Example: brokername=Data

4.1. BLOCK [COMMON] 39

brokerarguments

This attribute is used in case a broker comes with arguments. This corresponds to the parameter that
follows column in the -b command line option.

Example: brokerarguments=cow

joblist

Path to the job list file. This file will be used by commands such as arcsub, arcstat, arcsync etc. to
read and write information about jobs. This attribute corresponds to the -j command line option. The
default location of the file is in the $HOME/.arc/client.conf directory with the name jobs.xml.

Example:

joblist=/home/user/run/jobs.xml

joblist=C:\\run\jobs.xml

bartender

Specifies default Bartender services. Multiple Bartender URLs should be separated with a blank space.
These URLs are used by the chelonia command line tool, the Chelonia FUSE plugin and by the data
tool commands arccp, arcls, arcrm, etc..

Example: bartender=http://my.bar.com/tender

proxypath

Specifies a non-standard location of proxy certificate. It is used by arcproxy or similar tools during proxy
generation, and all other tools during establishing of a secure connection. This attribute corresponds to
the -P command line option of arcproxy.

Example: proxypath=/tmp/my-proxy

keypath

Specifies a non-standard location of user’s private key. It is used by arcproxy or similar tools during
proxy generation. This attribute corresponds to the -K command line option of arcproxy.

Example: keypath=/home/username/key.pem

certificatepath

Specifies a non-standard location of user’s public certificate. It is used by arcproxy or similar tools
during proxy generation. This attribute corresponds to the -C command line option of arcproxy.

Example: certificatepath=/home/username/cert.pem

40 CHAPTER 4. ARC CLIENT CONFIGURATION

cacertificatesdirectory

Specifies non-standard location of the directory containing CA-certificates. This attribute corresponds
to the -T command line option of arcproxy.

Example: cacertificatesdirectory=/home/user/cacertificates

cacertificatepath

Specifies an explicit path to the certificate of the CA that issued user’s credentials.

Example: cacertificatepath=/home/user/myCA.0

vomsserverpath

Specifies non-standard path to the file which contians list of VOMS services and associated configuration
parameters. This attribute corresponds to the -V command line option of arcproxy.

Example: vomsserverpath=/etc/voms/vomses

username

Sets default username to be used for requesting credentials from Short Lived Credentials Service. This
attribute corresponds to the -U command line option of arcslcs.

Example: username=johndoe

password

Sets default password to be used for requesting credentials from Short Lived Credentials Service. This
attribute corresponds to the -P command line option of arcslcs.

Example: password=secret

keypassword

Sets default password to be used to encode the private key of credentials obtained from a Short Lived
Credentials Service. This attribute corresponds to the -K command line option of arcslcs.

Example: keypassword=secret2

keysize

Sets size (strength) of the private key of credentials obtained from a Short Lived Credentials Service.
Default value is 1024. This attribute corresponds to the -Z command line option of arcslcs.

Example: keysize=2048

4.2. BLOCK [ALIAS] 41

certificatelifetime

Sets lifetime (in hours, starting from current time) of user certificate which will be obtained from a Short
Lived Credentials Service. This attribute corresponds to the -L command line option of arcslcs.

Example: certificatelifetime=12

slcs

Sets the URL to the Short Lived Certificate Service. This attribute corresponds to the -S command line
option of arcslcs.

Example: slcs=https://127.0.0.1:60000/slcs

storedirectory

Sets directory which will be used to store credentials obtained from a Short Lived Credential Servise.
This attribute corresponds to the -D command line option of arcslcs.

Example: storedirectory=/home/mycredentials

idpname

Sets Identity Provider name (Shibboleth) to which user belongs. It is used for contacting Short Lived
Certificate Services. This attribute corresponds to the -I command line option of arcslcs.

Example: idpname=https://idp.testshib.org/idp/shibboleth

4.2 Block [alias]

Users often prefer to submit jobs to a specific site; since contact URLs (and especially end-point references)
are very long, it is very convenient to replace them with aliases. Block [alias] simply contains a list of
alias-value pairs.

Alias substitutions is performed in connection with the -c command line switch of the ARC clients.

Aliases can refer to a list of services (separated by a blank space).

Alias definitions can be recursive. Any alias defined in a list that is read before a given list can be used
in alias definitions in that list. An alias defined in a list can also be used in alias definitions later in the
same list.

Examples:

[alias]

arc0=computing:ARC0:ldap://ce.ng.org:2135/nordugrid-cluster-name=ce.ng.org,Mds-Vo-name=local,o=grid

arc1=computing:ARC1:https://arex.ng.org:60000/arex

cream=computing:CREAM:ldap://cream.glite.org:2170/o=grid

unicore=computing:UNICORE:https://bes.unicore.org:8080/test/services/BESFactory?res=default_bes

crossbrokering=arc0 arc1 cream unicore

42 CHAPTER 4. ARC CLIENT CONFIGURATION

4.3 srms.conf

If any data management commands are used with the Storage Resource Management (SRM) [7] protocol,
the file

$HOME/.arc/srms.conf

may be created to store cached information on these services. For more information see the description
inside this file.

4.4 Deprecated configuration files

ARC configuration file in releases 0.6 and 0.8 has the same name and the same format. Only one attribute
is preserved (timeout); other attributes unknown to newer ARC versions are ignored.

In ARC≤ 0.5.48, configuration was done via files $HOME/.ngrc, $HOME/.nggiislist and $HOME/.ngalias.

The main configuration file $HOME/.ngrc could contain user’s default settings for the debug level, the
information system query timeout and the download directory used by ngget. A sample file could be the
following:

Sample .ngrc file

Comments starts with

NGDEBUG=1

NGTIMEOUT=60

NGDOWNLOAD=/tmp

If the environment variables NGDEBUG, NGTIMEOUT or NGDOWNLOAD were defined, these took
precedence over the values defined in this configuration. Any command line options override the defaults.

The file $HOME/.nggiislist was used to keep the list of default GIIS server URLs, one line per GIIS
(see giis attribute description above).

The file $HOME/.ngalias was used to keep the list of site aliases, one line per alias (see alias attribute
description above).

Bibliography

[1] gLite, Lightweight Middleware for Grid Computing. Web site. URL http://glite.web.cern.ch/
glite/.

[2] A. Anjomshoaa et al. Job Submission Description Language (JSDL) Specification, Version 1.0 (first
errata update). GFD-R.136, July 2008. URL http://www.gridforum.org/documents/GFD.136.pdf.

[3] Ann L. Chervenak et al. Performance and Scalability of a Replica Location Service. In Proceedings
of the 13th IEEE International Symposium on High Performance Distributed Computing (HPDC’04),
pages 182–191. IEEE Computer Society Press, 2004. ISBN 0-7803-2175-4.

[4] M. Ellert, B. Mohn, I. Márton, and G. Rőczei. libarcclient – A Client Library for ARC. The
NorduGrid Collaboration. URL http://www.nordugrid.org/documents/client_technical.pdf.
NORDUGRID-TECH-20.

[5] I. Foster and C. Kesselman. Globus: A Metacomputing Infrastructure Toolkit. International Journal
of Supercomputer Applications, 11(2):115–128, 1997. Available at: http://www.globus.org.

[6] F. Pacini and A. Maraschini. Job Description Language attributes specification, 2007. URL https:
//edms.cern.ch/document/590869/1. EGEE-JRA1-TEC-590869-JDL-Attributes-v0-8.

[7] A. Sim, A. Shoshani, et al. The Storage Resource Manager Interface (SRM) Specification v2.2.
GFD-R-P.129, May 2008. URL http://www.ggf.org/documents/GFD.129.pdf.

[8] O. Smirnova. Extended Resource Specification Language. The NorduGrid Collaboration. URL http:
//www.nordugrid.org/documents/xrsl.pdf. NORDUGRID-MANUAL-4.

[9] M. Smith and T. A. Howes. LDAP : Programming Directory-Enabled Applications with Lightweigt
Directory Access Protocol. Macmillan, 1997.

Index

Numbers written in italic refer to the page where the corresponding entry is described; numbers underlined
refer to the definition; numbers in roman refer to the pages where the entry is used.

A

arccat 13

arcclean 17

arccp 22

arcget 14

arcinfo 16

arckill 16

arcls 21

arcmigrate 20

arcproxy 7

arcrenew 18

arcresub 19

arcresume 19

arcrm 23

arcslcs 9
arcsrmping 24
arcsub 9
arcsync 15

B
broker 11

C
chelonia 24
chelonia:credentialDelegation . 31
chelonia:delFile 28
chelonia:getFile 27
chelonia:list 27
chelonia:makeCollection 26

chelonia:makeMountPoint . . . 31

chelonia:modify 28

chelonia:move 27

chelonia:policy 28

chelonia:putFile 27

chelonia:removeCredentials . . 31

chelonia:stat 25

chelonia:unlink 30

chelonia:unmakeCollection . . . 26

chelonia:unmakeMountPoint . 31

commands:arccat 13

commands:arcclean 17

commands:arccp 22

commands:arcget 14

43

http://glite.web.cern.ch/glite/
http://glite.web.cern.ch/glite/
http://www.gridforum.org/documents/GFD.136.pdf
http://www.nordugrid.org/documents/client_technical.pdf
https://edms.cern.ch/document/590869/1
https://edms.cern.ch/document/590869/1
http://www.ggf.org/documents/GFD.129.pdf
http://www.nordugrid.org/documents/xrsl.pdf
http://www.nordugrid.org/documents/xrsl.pdf

44 Index

commands:arcinfo 16

commands:arckill 16

commands:arcls 21

commands:arcmigrate 20

commands:arcproxy 7

commands:arcrenew 18

commands:arcresub 19

commands:arcresume 19

commands:arcrm 23

commands:arcslcs 9

commands:arcsrmping 24

commands:arcsub 9

commands:arcsync 15

commands:chelonia 24

commands:chelonia:credentialDelegation
. 31

commands:chelonia:delFile . . . 28

commands:chelonia:getFile . . 27

commands:chelonia:list 27

commands:chelonia:makeCollection
. 26

commands:chelonia:makeMountPoint
. 31

commands:chelonia:modify . . 28

commands:chelonia:move 27

commands:chelonia:policy . . . 28

commands:chelonia:putFile . . 27

commands:chelonia:removeCredentials
. 31

commands:chelonia:stat 25

commands:chelonia:unlink . . . 30

commands:chelonia:unmakeCollection
. 26

commands:chelonia:unmakeMountPoint
. 31

configuration:bartender 39

configuration:brokerarguments 38

configuration:brokername . . . 38

configuration:cacertificatepath 40

configuration:cacertificatesdirectory
. 39

configuration:certificatelifetime 40

configuration:certificatepath . 39

configuration:defaultservices . 37

configuration:deprecated files . 42

configuration:idpname 41

configuration:joblist 39

configuration:keypassword . . . 40

configuration:keypath 39

configuration:keysize 40

configuration:password 40

configuration:proxypath 39

configuration:rejectservices . . 38
configuration:slcs 41
configuration:srms.conf 41
configuration:storedirectory . . 41
configuration:timeout 38
configuration:username 40
configuration:verbosity 38
configuration:vomsserverpath . 40

D
data management 21

G
gmlog 20

J
job ID 11
job management 9

S
security 7
submit job 9

U
URL 33
URL:options 34
URLs 33

	Introduction
	Commands
	Proxy utilities
	arcproxy
	arcslcs

	Job submission and management
	arcsub
	arcstat
	arccat
	arcget
	arcsync
	arcinfo
	arckill
	arcclean
	arcrenew
	arcresume
	arcresub
	arcmigrate

	Data manipulation
	arcls
	arccp
	arcrm
	arcsrmping
	chelonia

	URLs
	ARC Client Configuration
	Block [common]
	defaultservices
	rejectservices
	verbosity
	timeout
	brokername
	brokerarguments
	joblist
	bartender
	proxypath
	keypath
	certificatepath
	cacertificatesdirectory
	cacertificatepath
	vomsserverpath
	username
	password
	keypassword
	keysize
	certificatelifetime
	slcs
	storedirectory
	idpname

	Block [alias]
	srms.conf
	Deprecated configuration files

