1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764
|
/*
* Normaliz
* Copyright (C) 2007-2014 Winfried Bruns, Bogdan Ichim, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifdef NMZ_MIC_OFFLOAD
#pragma offload_attribute (push, target(mic))
#endif
#include <cassert>
#include <iostream>
#include <sstream>
#include <map>
#include <algorithm>
#include "libnormaliz/HilbertSeries.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/map_operations.h"
#include "libnormaliz/integer.h"
#include "libnormaliz/convert.h"
#include "libnormaliz/matrix.h"
//---------------------------------------------------------------------------
namespace libnormaliz {
using std::cout; using std::endl; using std::flush;
using std::istringstream; using std::ostringstream;
long lcm_of_keys(const map<long, denom_t>& m){
long l = 1;
map<long, denom_t>::const_iterator it;
for (it = m.begin(); it != m.end(); ++it) {
if (it->second != 0)
l = lcm(l,it->first);
}
return l;
}
//---------------------------------------------------------------------------
// Constructor, creates 0/1
HilbertSeries::HilbertSeries() {
num = vector<mpz_class>(1,0);
//denom just default constructed
is_simplified = false;
shift = 0;
verbose = false;
}
// Constructor, creates num/denom, see class description for format
HilbertSeries::HilbertSeries(const vector<num_t>& numerator, const vector<denom_t>& gen_degrees) {
num = vector<mpz_class>(1,0);
add(numerator, gen_degrees);
is_simplified = false;
shift = 0;
verbose = false;
}
// Constructor, creates num/denom, see class description for format
HilbertSeries::HilbertSeries(const vector<mpz_class>& numerator, const map<long, denom_t>& denominator) {
num = numerator;
denom = denominator;
is_simplified = false;
shift = 0;
verbose = false;
}
// Constructor, string as created by to_string_rep
HilbertSeries::HilbertSeries(const string& str) {
from_string_rep(str);
is_simplified = false;
shift = 0;
verbose = false;
}
void HilbertSeries::reset() {
num.clear();
num.push_back(0);
denom.clear();
denom_classes.clear();
shift = 0;
is_simplified = false;
}
// add another HilbertSeries to this
void HilbertSeries::add(const vector<num_t>& num, const vector<denom_t>& gen_degrees) {
vector<denom_t> sorted_gd(gen_degrees);
sort(sorted_gd.begin(), sorted_gd.end());
if (gen_degrees.size() > 0)
assert(sorted_gd[0]>0); //TODO InputException?
poly_add_to(denom_classes[sorted_gd], num);
if (denom_classes.size() > DENOM_CLASSES_BOUND)
collectData();
is_simplified = false;
}
// add another HilbertSeries to this
HilbertSeries& HilbertSeries::operator+=(const HilbertSeries& other) {
// add denom_classes
map< vector<denom_t>, vector<num_t> >::const_iterator it;
for (it = other.denom_classes.begin(); it != other.denom_classes.end(); ++it) {
poly_add_to(denom_classes[it->first], it->second);
}
// add accumulated data
vector<mpz_class> num_copy(other.num);
performAdd(num_copy, other.denom);
return (*this);
}
void HilbertSeries::performAdd(const vector<num_t>& numerator, const vector<denom_t>& gen_degrees) const {
map<long, denom_t> other_denom;
size_t i, s = gen_degrees.size();
for (i=0; i<s; ++i) {
assert(gen_degrees[i]>0);
other_denom[gen_degrees[i]]++;
}
// convert numerator to mpz
vector<mpz_class> other_num(numerator.size());
convert(other_num, numerator);
performAdd(other_num, other_denom);
}
//modifies other_num!!
void HilbertSeries::performAdd(vector<mpz_class>& other_num, const map<long, denom_t>& oth_denom) const {
map<long, denom_t> other_denom(oth_denom); //TODO redesign, dont change other_denom
// adjust denominators
denom_t diff;
map<long, denom_t>::iterator it;
for (it = denom.begin(); it != denom.end(); ++it) { // augment other
denom_t& ref = other_denom[it->first];
diff = it->second - ref;
if (diff > 0) {
ref += diff;
poly_mult_to(other_num, it->first, diff);
}
}
for (it = other_denom.begin(); it != other_denom.end(); ++it) { // augment this
denom_t& ref = denom[it->first];
diff = it->second - ref;
if (diff > 0) {
ref += diff;
poly_mult_to(num, it->first, diff);
}
}
assert (denom == other_denom);
// now just add the numerators
poly_add_to(num,other_num);
remove_zeros(num);
is_simplified = false;
}
void HilbertSeries::collectData() const {
if (denom_classes.empty()) return;
if (verbose) verboseOutput() << "Adding " << denom_classes.size() << " denominator classes..." << flush;
map< vector<denom_t>, vector<num_t> >::iterator it;
for (it = denom_classes.begin(); it != denom_classes.end(); ++it) {
performAdd(it->second, it->first);
}
denom_classes.clear();
if (verbose) verboseOutput() << " done." << endl;
}
// simplify, see class description
void HilbertSeries::simplify() const {
if (is_simplified)
return;
collectData();
/* if (verbose) {
verboseOutput() << "Hilbert series before simplification: "<< endl << *this;
}*/
vector<mpz_class> q, r, poly; //polynomials
// In denom_cyclo we collect cyclotomic polynomials in the denominator.
// During this method the Hilbert series is given by num/(denom*cdenom)
// where denom | cdenom are exponent vectors of (1-t^i) | i-th cyclotminc poly.
map<long, denom_t> cdenom;
map<long, denom_t>::reverse_iterator rit;
long i;
for (rit = denom.rbegin(); rit != denom.rend(); ++rit) {
// check if we can divide the numerator by (1-t^i)
i = rit->first;
denom_t& denom_i = rit->second;
poly = coeff_vector<mpz_class>(i);
while (denom_i > 0) {
poly_div(q, r, num, poly);
if (r.size() == 0) { // numerator is divisable by poly
num = q;
denom_i--;
}
else {
break;
}
}
if (denom_i == 0)
continue;
// decompose (1-t^i) into cyclotomic polynomial
for(long d=1; d<=i/2; ++d) {
if (i % d == 0)
cdenom[d] += denom_i;
}
cdenom[i] += denom_i;
// the product of the cyclo. is t^i-1 = -(1-t^i)
if (denom_i%2 == 1)
v_scalar_multiplication(num,mpz_class(-1));
} // end for
denom.clear();
map<long, denom_t>::iterator it = cdenom.begin();
while (it != cdenom.end()) {
// check if we can divide the numerator by i-th cyclotomic polynomial
i = it->first;
denom_t& cyclo_i = it->second;
poly = cyclotomicPoly<mpz_class>(i);
while (cyclo_i > 0) {
poly_div(q, r, num, poly);
if (r.empty()) { // numerator is divisable by poly
num = q;
cyclo_i--;
}
else {
break;
}
}
if (cyclo_i == 0) {
cdenom.erase(it++);
} else {
++it;
}
}
// done with canceling
// save this representation
cyclo_num = num;
cyclo_denom = cdenom;
// now collect the cyclotomic polynomials in (1-t^i) factors
it = cdenom.find(1);
if (it != cdenom.end())
dim = it->second;
else
dim = 0;
period = lcm_of_keys(cdenom);
i = period;
if (period > 10000) {
if (verbose) {
errorOutput() << "WARNING: Period is too big, the representation of the Hilbert series may have more than dimensional many factors in the denominator!" << endl;
}
i = cdenom.rbegin()->first;
}
while (!cdenom.empty()) {
//create a (1-t^i) factor out of all cyclotomic poly.
denom[i]++;
v_scalar_multiplication(num,mpz_class(-1));
for (long d = 1; d <= i; ++d) {
if (i % d == 0) {
it = cdenom.find(d);
if (it != cdenom.end() && it->second>0) {
it->second--;
if (it->second == 0)
cdenom.erase(it);
} else {
num = poly_mult(num, cyclotomicPoly<mpz_class>(d));
}
}
}
i = lcm_of_keys(cdenom);
if (i > 10000) {
i = cdenom.rbegin()->first;
}
}
/* if (verbose) {
verboseOutput() << "Simplified Hilbert series: " << endl << *this;
}*/
is_simplified = true;
computeDegreeAsRationalFunction();
quasi_poly.clear();
}
void HilbertSeries::computeDegreeAsRationalFunction() const {
simplify();
long num_deg = num.size() - 1 + shift;
long denom_deg = 0;
for (auto it = denom.begin(); it != denom.end(); ++it) {
denom_deg += it->first * it->second;
}
degree = num_deg - denom_deg;
}
long HilbertSeries::getDegreeAsRationalFunction() const {
simplify();
return degree;
}
long HilbertSeries::getPeriod() const {
simplify();
return period;
}
bool HilbertSeries::isHilbertQuasiPolynomialComputed() const {
return is_simplified && !quasi_poly.empty();
}
vector< vector<mpz_class> > HilbertSeries::getHilbertQuasiPolynomial() const {
computeHilbertQuasiPolynomial();
if (quasi_poly.empty()) throw NotComputableException("HilbertQuasiPolynomial");
return quasi_poly;
}
mpz_class HilbertSeries::getHilbertQuasiPolynomialDenom() const {
computeHilbertQuasiPolynomial();
if (quasi_poly.empty()) throw NotComputableException("HilbertQuasiPolynomial");
return quasi_denom;
}
void HilbertSeries::computeHilbertQuasiPolynomial() const {
if (isHilbertQuasiPolynomialComputed()) return;
simplify();
if (period > 200000) {
if (verbose) {
errorOutput()<<"WARNING: We skip the computation of the Hilbert-quasi-polynomial because the period "<< period <<" is too big!" <<endl;
}
return;
}
if (verbose && period > 1) {
verboseOutput() << "Computing Hilbert quasipolynomial of period "
<< period <<" ..." << flush;
}
long i,j;
//period und dim encode the denominator
//now adjust the numerator
long num_size = num.size();
vector<mpz_class> norm_num(num_size); //normalized numerator
for (i = 0; i < num_size; ++i) {
norm_num[i] = num[i];
}
map<long, denom_t>::reverse_iterator rit;
long d;
vector<mpz_class> factor, r;
for (rit = denom.rbegin(); rit != denom.rend(); ++rit) {
d = rit->first;
//nothing to do if it already has the correct t-power
if (d != period) {
//norm_num *= (1-t^p / 1-t^d)^denom[d]
poly_div(factor, r, coeff_vector<mpz_class>(period), coeff_vector<mpz_class>(d));
assert(r.empty()); //assert remainder r is 0
//TODO more efficient method *=
for (i=0; i < rit->second; ++i) {
norm_num = poly_mult(norm_num, factor);
}
}
}
//cut numerator into period many pieces and apply standard method
quasi_poly = vector< vector<mpz_class> >(period);
long nn_size = norm_num.size();
for (j=0; j<period; ++j) {
quasi_poly[j].reserve(dim);
}
for (i=0; i<nn_size; ++i) {
quasi_poly[i%period].push_back(norm_num[i]);
}
for (j=0; j<period; ++j) {
quasi_poly[j] = compute_polynomial(quasi_poly[j], dim);
}
//substitute t by t/period:
//dividing by period^dim and multipling the coeff with powers of period
mpz_class pp=1;
for (i = dim-2; i >= 0; --i) {
pp *= period; //p^i ok, it is p^(dim-1-i)
for (j=0; j<period; ++j) {
quasi_poly[j][i] *= pp;
}
} //at the end pp=p^dim-1
//the common denominator for all coefficients, dim! * pp
quasi_denom = permutations<mpz_class>(1,dim) * pp;
//substitute t by t-j
for (j=0; j<period; ++j) {
// X |--> X - (j + shift)
linear_substitution<mpz_class>(quasi_poly[j], j + shift); // replaces quasi_poly[j]
}
//divide by gcd //TODO operate directly on vector
Matrix<mpz_class> QP(quasi_poly);
mpz_class g = QP.matrix_gcd();
g = libnormaliz::gcd(g,quasi_denom);
quasi_denom /= g;
QP.scalar_division(g);
//we use a normed shift, so that the cylcic shift % period always yields a non-negative integer
long normed_shift = -shift;
while (normed_shift < 0) normed_shift += period;
for (j=0; j<period; ++j) {
quasi_poly[j] = QP[(j+normed_shift)%period]; // QP[ (j - shift) % p ]
}
if (verbose && period > 1) {
verboseOutput() << " done." << endl;
}
}
// returns the numerator, repr. as vector of coefficients, the h-vector
const vector<mpz_class>& HilbertSeries::getNum() const {
simplify();
return num;
}
// returns the denominator, repr. as a map of the exponents of (1-t^i)^e
const map<long, denom_t>& HilbertSeries::getDenom() const {
simplify();
return denom;
}
// returns the numerator, repr. as vector of coefficients
const vector<mpz_class>& HilbertSeries::getCyclotomicNum() const {
simplify();
return cyclo_num;
}
// returns the denominator, repr. as a map of the exponents of (1-t^i)^e
const map<long, denom_t>& HilbertSeries::getCyclotomicDenom() const {
simplify();
return cyclo_denom;
}
// shift
void HilbertSeries::setShift(long s) {
if (shift != s) {
is_simplified = false;
// remove quasi-poly //TODO could also be adjusted
quasi_poly.clear();
quasi_denom = 1;
shift = s;
}
}
long HilbertSeries::getShift() const {
return shift;
}
void HilbertSeries::adjustShift() {
collectData();
size_t adj = 0; // adjust shift by
while (adj < num.size() && num[adj] == 0) adj++;
if (adj > 0) {
shift += adj;
num.erase(num.begin(),num.begin()+adj);
if (cyclo_num.size() != 0) {
assert (cyclo_num.size() >= adj);
cyclo_num.erase(cyclo_num.begin(),cyclo_num.begin()+adj);
}
}
}
// methods for textual transfer of a Hilbert Series
string HilbertSeries::to_string_rep() const {
collectData();
ostringstream s;
s << num.size() << " ";
s << num;
vector<denom_t> denom_vector(to_vector(denom));
s << denom_vector.size() << " ";
s << denom_vector;
return s.str();
}
void HilbertSeries::from_string_rep(const string& input) {
istringstream s(input);
long i,size;
s >> size;
num.resize(size);
for (i = 0; i < size; ++i) {
s >> num[i];
}
vector<denom_t> denom_vector;
s >> size;
denom_vector.resize(size);
for (i = 0; i < size; ++i) {
s >> denom_vector[i];
}
denom = count_in_map<long,denom_t>(denom_vector);
is_simplified = false;
}
// writes in a human readable format
ostream& operator<< (ostream& out, const HilbertSeries& HS) {
HS.collectData();
out << "(";
// i == 0
if (HS.num.size()>0) out << " " << HS.num[0];
if (HS.shift != 0) out << "*t^" << HS.shift;
for (size_t i=1; i<HS.num.size(); ++i) {
if ( HS.num[i]== 1 ) out << " +t^"<< i + HS.shift;
else if ( HS.num[i]==-1 ) out << " -t^"<< i + HS.shift;
else if ( HS.num[i] > 0 ) out << " +" << HS.num[i] << "*t^" << i + HS.shift;
else if ( HS.num[i] < 0 ) out << " -" <<-HS.num[i] << "*t^" << i + HS.shift;
}
out << " ) / (";
if (HS.denom.empty()) {
out << " 1";
}
map<long, denom_t>::const_iterator it;
for (it = HS.denom.begin(); it != HS.denom.end(); ++it) {
if ( it->second != 0 ) out << " (1-t^"<< it->first <<")^" << it->second;
}
out << " )" << std::endl;
return out;
}
//---------------------------------------------------------------------------
// polynomial operations, for polynomials repr. as vector of coefficients
//---------------------------------------------------------------------------
// returns the coefficient vector of 1-t^i
template<typename Integer>
vector<Integer> coeff_vector(size_t i) {
vector<Integer> p(i+1,0);
p[0] = 1;
p[i] = -1;
return p;
}
template<typename Integer>
void remove_zeros(vector<Integer>& a) {
size_t i=a.size();
while ( i>0 && a[i-1]==0 ) --i;
if (i < a.size()) {
a.resize(i);
}
}
// a += b (also possible to define the += op for vector)
template<typename Integer>
void poly_add_to (vector<Integer>& a, const vector<Integer>& b) {
size_t b_size = b.size();
if (a.size() < b_size) {
a.resize(b_size);
}
for (size_t i=0; i<b_size; ++i) {
a[i]+=b[i];
}
remove_zeros(a);
}
// a -= b (also possible to define the -= op for vector)
template<typename Integer>
void poly_sub_to (vector<Integer>& a, const vector<Integer>& b) {
size_t b_size = b.size();
if (a.size() < b_size) {
a.resize(b_size);
}
for (size_t i=0; i<b_size; ++i) {
a[i]-=b[i];
}
remove_zeros(a);
}
// a * b
template<typename Integer>
vector<Integer> poly_mult(const vector<Integer>& a, const vector<Integer>& b) {
size_t a_size = a.size();
size_t b_size = b.size();
vector<Integer> p( a_size + b_size - 1 );
size_t i,j;
for (i=0; i<a_size; ++i) {
if (a[i] == 0) continue;
for (j=0; j<b_size; ++j) {
if (b[j] == 0) continue;
p[i+j] += a[i]*b[j];
}
}
return p;
}
// a *= (1-t^d)^e
template<typename Integer>
void poly_mult_to(vector<Integer>& a, long d, long e) {
assert(d>0);
assert(e>=0);
long i;
a.reserve(a.size() + d*e);
while (e>0) {
a.resize(a.size() + d);
for (i=a.size()-1; i>=d; --i) {
a[i] -= a[i-d];
}
e--;
}
}
// division with remainder, a = q * b + r, deg(r) < deg(b), needs |leadcoef(b)| = 1
template<typename Integer>
void poly_div(vector<Integer>& q, vector<Integer>& r, const vector<Integer>& a, const vector<Integer>&b) {
assert(b.back()!=0); // no unneeded zeros
assert(b.back()==1 || b.back()==-1); // then division is always possible
r = a;
remove_zeros(r);
size_t b_size = b.size();
int degdiff = r.size()-b_size; // degree differenz
if (r.size() < b_size) {
q = vector<Integer>();
} else {
q = vector<Integer>(degdiff+1);
}
Integer divisor;
size_t i=0;
while (r.size() >= b_size) {
divisor = r.back()/b.back();
q[degdiff] = divisor;
// r -= divisor * t^degdiff * b
for (i=0; i<b_size; ++i) {
r[i+degdiff] -= divisor * b[i];
}
remove_zeros(r);
degdiff = r.size()-b_size;
}
return;
}
template<typename Integer>
vector<Integer> cyclotomicPoly(long n) {
// the static variable is initialized only once and then stored
static map<long, vector<Integer> > CyclotomicPoly = map<long, vector<Integer> >();
if (CyclotomicPoly.count(n) == 0) { //it was not computed so far
vector<Integer> poly, q, r;
for (long i = 1; i <= n; ++i) {
// compute needed and uncomputed factors
if( n % i == 0 && CyclotomicPoly.count(i) == 0) {
// compute the i-th poly by dividing X^i-1 by the
// d-th cycl.poly. with d divides i
poly = vector<Integer>(i+1);
poly[0] = -1; poly[i] = 1; // X^i - 1
for (long d = 1; d < i; ++d) { // <= i/2 should be ok
if( i % d == 0) {
poly_div(q, r, poly, CyclotomicPoly[d]);
assert(r.empty());
poly = q;
}
}
CyclotomicPoly[i] = poly;
//cout << i << "-th cycl. pol.: " << CyclotomicPoly[i];
}
}
}
assert(CyclotomicPoly.count(n)>0);
return CyclotomicPoly[n];
}
//---------------------------------------------------------------------------
// computing the Hilbert polynomial from h-vector
//---------------------------------------------------------------------------
// The algorithm follows "Cohen-Macaulay rings", 4.1.5 and 4.1.9.
// The E_vector is the vector of higher multiplicities.
// It is assumed that (d-1)! is used as a common denominator in the calling routine.
template<typename Integer>
vector<Integer> compute_e_vector(vector<Integer> Q, int dim){
size_t j;
int i;
vector <Integer> E_Vector(dim,0);
// cout << "QQQ " << Q;
// Q.resize(dim+1);
int bound=Q.size();
if(bound>dim)
bound=dim;
for (i = 0; i <bound; i++) {
for (j = 0; j < Q.size()-i; j++) {
E_Vector[i] += Q[j];
}
E_Vector[i]/=permutations<Integer>(1,i);
for (j = 1; j <Q.size()-i; j++) {
Q[j-1]=j*Q[j];
}
}
return E_Vector;
}
//---------------------------------------------------------------------------
template<typename Integer>
vector<Integer> compute_polynomial(vector<Integer> h_vector, int dim) {
// handle dimension 0
if (dim == 0)
return vector<Integer>(dim);
vector<Integer> Hilbert_Polynomial = vector<Integer>(dim);
int i,j;
Integer mult_factor;
vector <Integer> E_Vector=compute_e_vector(h_vector, dim);
vector <Integer> C(dim,0);
C[0]=1;
for (i = 0; i <dim; i++) {
mult_factor=permutations<Integer>(i,dim);
if (((dim-1-i)%2)==0) {
for (j = 0; j <dim; j++) {
Hilbert_Polynomial[j]+=mult_factor*E_Vector[dim-1-i]*C[j];
}
}
else {
for (j = 0; j <dim; j++) {
Hilbert_Polynomial[j]-=mult_factor*E_Vector[dim-1-i]*C[j];
}
}
for (j = dim-1; 0 <j; j--) {
C[j]=(unsigned long)(i+1)*C[j]+C[j-1];
}
C[0]=permutations<Integer>(1,i+1);
}
return Hilbert_Polynomial;
}
//---------------------------------------------------------------------------
// substitutes t by (t-a), overwrites the polynomial!
template<typename Integer>
void linear_substitution(vector<Integer>& poly, const Integer& a) {
long deg = poly.size()-1;
// Iterated division by (t+a)
for (long step=0; step<deg; ++step) {
for (long i = deg-1; i >= step; --i) {
poly[i] -= a * poly[i+1];
}
//the remainders are the coefficients of the transformed polynomial
}
}
} //end namespace libnormaliz
#ifdef NMZ_MIC_OFFLOAD
#pragma offload_attribute (pop)
#endif
|