1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673
|
/*
* Normaliz
* Copyright (C) 2007-2014 Winfried Bruns, Bogdan Ichim, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifdef NMZ_MIC_OFFLOAD
#pragma offload_attribute (push, target(mic))
#endif
#include <stdlib.h>
#include <math.h>
#include <iostream>
//#include <sstream>
#include <algorithm>
#include <queue>
#include "libnormaliz/bottom.h"
#include "libnormaliz/libnormaliz.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/integer.h"
//#include "libnormaliz/my_omp.h"
#include "libnormaliz/full_cone.h"
#ifdef NMZ_SCIP
#include <scip/scip.h>
#include <scip/scipdefplugins.h> //TODO needed?
#include <scip/cons_linear.h>
#else
class SCIP;
#endif // NMZ_SCIP
namespace libnormaliz {
using namespace std;
long ScipBound = 1000000;
template<typename Integer>
vector<Integer> best_point(const list<vector<Integer> >& bottom_candidates, const Matrix<Integer>& gens, const Matrix<Integer>& SuppHyp, const vector<Integer>& grading);
template<typename Integer>
vector<Integer> opt_sol(SCIP* scip, const Matrix<Integer>& gens, const Matrix<Integer>& SuppHyp, const vector<Integer>& grading);
template<typename Integer>
void bottom_points_inner(const list<vector<Integer> >& bottom_candidates, SCIP* scip, Matrix<Integer>& gens, list< vector<Integer> >& new_points, vector< Matrix<Integer> >& q_gens,vector< Matrix<Integer> >& big_simplices,long app_level);
double convert_to_double(mpz_class a) {
return a.get_d();
}
double convert_to_double(long a) {
return a;
}
double convert_to_double(long long a) {
return a;
}
// TODO do not use global variables
long long stellar_det_sum;
template<typename Integer>
void bottom_points(list< vector<Integer> >& new_points, Matrix<Integer> gens,const vector<Integer>& grading_, long app_level, long recursion_depth) {
Integer volume;
int dim = gens[0].size();
Matrix<Integer> Support_Hyperplanes = gens.invert(volume);
vector<Integer> grading = grading_;
if (grading.empty()) grading = gens.find_linear_form();
/*if (grading.empty()) {
grading = Support_Hyperplanes[0];
for (int i=1; i<dim; ++i) {
v_add_result(grading, dim, grading, Support_Hyperplanes[i]);
}
v_make_prime(grading);
}*/
list<vector<Integer> > bottom_candidates;
bottom_candidates.splice(bottom_candidates.begin(), new_points);
//Matrix<Integer>(bottom_candidates).pretty_print(cout);
#ifdef NMZ_SCIP
if(verbose){
if (bottom_candidates.empty() && app_level==1){
verboseOutput() << "Computing points from bottom using SCIP." << endl;
} else{
verboseOutput() << "Computing points from bottom using approximation with approximation level " << app_level << endl;
}
}
#else
if(verbose){
verboseOutput() << "Computing points from bottom using approximation with approximation level " << app_level << endl;
}
#endif
//cout << "Volume bound for stopping the algorithm: "<< ScipBound << endl;
// find a good approximation level
Integer grading_product=1;
for (int i =0; i< dim; i++) grading_product *= v_scalar_product(grading,gens[i]);
//cout << "The volume is " << volume << endl;
//cout << "The product of the gradings is " << grading_product << endl;
long max_app_lvl;
double stuff_under_root = convert_to_double(grading_product)*100000/convert_to_double(volume); // current volume goal is 10^5
//cout << "The stuff under the root is " << stuff_under_root << endl;
//max_app_lvl = lround(pow(stuff_under_root,1.0/dim));
max_app_lvl = floor(pow(stuff_under_root,1.0/dim)+0.5);
//cout << "The maximal approximation level is " << max_app_lvl << endl;
if (app_level>1 && verbose){
verboseOutput() << "simplex volume " << volume << endl;
}
#ifndef NMZ_SCIP
if(max_app_lvl==1 && bottom_candidates.size()==0){
if(verbose){
verboseOutput() << "We stop approximation, since there are no bottom candidates and maximal approxmation level is 1." << endl;
}
return;
}
#endif
if (app_level>max_app_lvl && bottom_candidates.size()==0){
if(verbose){
verboseOutput() << "We stop approximation, since there are no bottom candidates and the current approximation level is higher than the maximal one." << endl;
}
return;
}
#ifndef NMZ_SCIP
if(verbose){
verboseOutput() << "There are " << bottom_candidates.size() << " bottom candidates." << endl;
}
#else
if (verbose && !bottom_candidates.empty()){
verboseOutput() << "There are " << bottom_candidates.size() << " bottom candidates." << endl;
}
#endif
stellar_det_sum = 0;
vector< Matrix<Integer> > q_gens;
q_gens.push_back(gens);
int level = 0;
#ifndef NCATCH
std::exception_ptr tmp_exception;
#endif
// list for the simplices that could not be decomposed
vector< Matrix<Integer> > big_simplices;
#pragma omp parallel reduction(+:stellar_det_sum)
{
#ifndef NCATCH
try {
#endif
// setup scip enviorenment
SCIP* scip = NULL;
#ifdef NMZ_SCIP
SCIPcreate(& scip);
SCIPincludeDefaultPlugins(scip);
// SCIPsetMessagehdlr(scip,NULL); // deactivate scip output
SCIPsetIntParam(scip, "display/verblevel", 0);
// modify timing for better parallelization
// SCIPsetBoolParam(scip, "timing/enabled", FALSE);
SCIPsetBoolParam(scip, "timing/statistictiming", FALSE);
SCIPsetBoolParam(scip, "timing/rareclockcheck", TRUE);
SCIPsetIntParam(scip, "heuristics/shiftandpropagate/freq", -1);
SCIPsetIntParam(scip, "branching/pscost/priority", 1000000);
// SCIPsetIntParam(scip, "nodeselection/uct/stdpriority", 1000000);
#endif // NMZ_SCIP
vector< Matrix<Integer> > local_q_gens;
list< vector<Integer> > local_new_points;
while (!q_gens.empty()) {
if(verbose){
#pragma omp single
verboseOutput() << q_gens.size() << " simplices on level " << level++ << endl;
}
#pragma omp for schedule(static)
for (size_t i = 0; i < q_gens.size(); ++i) {
#ifndef NCATCH
try {
#endif
bottom_points_inner(bottom_candidates, scip, q_gens[i], local_new_points, local_q_gens,big_simplices,app_level);
#ifndef NCATCH
} catch(const std::exception& ) {
tmp_exception = std::current_exception();
}
#endif
}
#pragma omp single
{
q_gens.clear();
}
#pragma omp critical
{
q_gens.insert(q_gens.end(),local_q_gens.begin(),local_q_gens.end());
}
local_q_gens.clear();
#pragma omp barrier
}
#pragma omp critical
{
new_points.splice(new_points.end(), local_new_points, local_new_points.begin(), local_new_points.end());
}
#ifdef NMZ_SCIP
SCIPfree(& scip);
#endif // NMZ_SCIP
#ifndef NCATCH
} catch(const std::exception& ) {
tmp_exception = std::current_exception();
}
#endif
} // end parallel
#ifndef NCATCH
if (!(tmp_exception == 0)) std::rethrow_exception(tmp_exception);
#endif
// if we still have big_simplices we approx again
int counter=0;
//cout << "A big simplex!" << endl;
//if (!big_simplices.empty()) big_simplices.front().pretty_print(cout);
if (app_level<max_app_lvl && !big_simplices.empty()){
if(verbose){
verboseOutput() << "There are " << big_simplices.size() << " big simplices (vol>1000*BOUND) remaining. We approximate them again." << endl;
}
for (auto it = big_simplices.begin(); it != big_simplices.end(); ++it){
// now we approximate this simplex again. maybe we're lucky.
// create full_cone
Matrix<Integer> gens = *it;
list<vector<Integer> > new_points_again;
Full_Cone<Integer> ApproxCone(gens);
//ApproxCone.verbose = true;
ApproxCone.approx_level=max_app_lvl;
ApproxCone.Grading = grading;
ApproxCone.is_Computed.set(ConeProperty::Grading);
ApproxCone.verbose=verbose;
if(verbose){
verboseOutput() << "Re-approximating simplex " << it-big_simplices.begin()+1 << " / "<< big_simplices.size() << " (recursion depth " << (recursion_depth+1) << ") | Approximation level: " << ApproxCone.approx_level << endl;
}
ApproxCone.compute_sub_div_elements(gens,new_points_again);
if(verbose){
verboseOutput() << "Start bottom points again." << endl;
}
//Matrix<Integer>(new_points_again).pretty_print(cout);
bottom_points(new_points_again,gens,ApproxCone.Grading,ApproxCone.approx_level, recursion_depth+1);
//vector<Integer> new_point = best_point(hb, gens, Support_Hyperplanes, grading);
if (!new_points_again.empty()){
counter++;
#pragma omp critical
new_points.splice(new_points.end(), new_points_again, new_points_again.begin(), new_points_again.end());
}
else{
if(verbose){
verboseOutput() << "The new approximation did not yield a point." << endl;
}
}
}
}
if (!big_simplices.empty() && app_level==1 && 1<max_app_lvl && verbose){
verboseOutput() << "In " << counter << " of " << big_simplices.size() << " cases the new approximation was successfull." << endl;
}
//cout << new_points.size() << " new points accumulated" << endl;
new_points.sort();
new_points.unique();
if(verbose){
if (app_level>1) verboseOutput() << new_points.size() << " additional bottom points accumulated. " << endl;
if (app_level==1) verboseOutput() << new_points.size() << " bottom points accumulated in total." << endl;
if (app_level==1) verboseOutput() << "The sum of determinants of the stellar subdivision is " << stellar_det_sum << endl;
}
}
template<typename Integer>
void bottom_points_inner(const list<vector<Integer> >& bottom_candidates, SCIP* scip,
Matrix<Integer>& gens, list< vector<Integer> >& local_new_points,
vector< Matrix<Integer> >& local_q_gens, vector< Matrix<Integer> >& big_simplices,long app_level) {
vector<Integer> grading = gens.find_linear_form();
Integer volume;
int dim = gens[0].size();
Matrix<Integer> Support_Hyperplanes = gens.invert(volume);
if (volume < ScipBound) {
stellar_det_sum += convertTo<long long>(volume);
return;
}
Support_Hyperplanes = Support_Hyperplanes.transpose();
Support_Hyperplanes.make_prime();
#ifdef NMZ_SCIP
// set time limit according to volume
double time_limit = pow(log10(convert_to_double(volume)),2);
SCIPsetRealParam(scip, "limits/time", time_limit);
// call scip
vector<Integer> new_point;
if (bottom_candidates.empty() && app_level==1){ //the case we really want to use SCIP
new_point = opt_sol(scip, gens, Support_Hyperplanes, grading);
} else { // we already have used SCIP and are now approximating again
new_point = best_point(bottom_candidates, gens, Support_Hyperplanes, grading);
}
#else
vector<Integer> new_point = best_point(bottom_candidates, gens, Support_Hyperplanes, grading); // only approximation
#endif // NMZ_SCIP
if ( !new_point.empty() ){
//if (find(local_new_points.begin(), local_new_points.end(),new_point) == local_new_points.end())
local_new_points.push_back(new_point);
Matrix<Integer> stellar_gens(gens);
int nr_hyps = 0;
for (int i=0; i<dim; ++i) {
if (v_scalar_product(Support_Hyperplanes[i], new_point) != 0) {
stellar_gens[i] = new_point;
local_q_gens.push_back(stellar_gens);
stellar_gens[i] = gens[i];
} else nr_hyps++;
}
//#pragma omp critical(VERBOSE)
//cout << new_point << " liegt in " << nr_hyps <<" hyperebenen" << endl;
}
else {
//cout << "Could not find a new point! " << endl;
// store the simplex into the big simplices list
if (volume > 1000*ScipBound) { // current bound for big simplices is 10^9
#pragma omp critical
big_simplices.push_back(gens);
}
stellar_det_sum += convertTo<long long>(volume);
}
return;
}
template<typename Integer>
vector<Integer> best_point(const list<vector<Integer> >& bottom_candidates, const Matrix<Integer>& gens, const Matrix<Integer>& SuppHyp, const vector<Integer>& grading) {
size_t dim = SuppHyp.nr_of_columns();
size_t i;
auto best = bottom_candidates.end();
Integer best_value = v_scalar_product(grading,gens[dim-1]);
for (auto it = bottom_candidates.begin(); it != bottom_candidates.end(); ++it) {
for (i=0; i<dim; ++i) {
if (v_scalar_product(SuppHyp[i],*it) < 0) {
break;
}
}
if (i < dim) continue;
Integer current_value = v_scalar_product(grading,*it);
if (current_value<best_value){
best_value = current_value;
best = it;
}
}
if (best != bottom_candidates.end()) {
return *best;
} else {
//cout << "Could not find a new point in the list! " << endl;
return vector<Integer>();
}
}
// returns -1 if maximum is negative
template<typename Integer>
double max_in_col(const Matrix<Integer>& M, size_t j) {
Integer max = -1;
for (size_t i=0; i<M.nr_of_rows(); ++i) {
if (M[i][j] > max) max = M[i][j];
}
return convert_to_double(max);
}
// returns 1 if minimum is positive
template<typename Integer>
double min_in_col(const Matrix<Integer>& M, size_t j) {
Integer min = 1;
for (size_t i=0; i<M.nr_of_rows(); ++i) {
if (M[i][j] < min) min = M[i][j];
}
return convert_to_double(min);
}
#ifdef NMZ_SCIP
template<typename Integer>
vector<Integer> opt_sol(SCIP* scip,
const Matrix<Integer>& gens, const Matrix<Integer>& SuppHyp,
const vector<Integer>& grading) {
double upper_bound = convert_to_double(v_scalar_product(grading,gens[0]))-0.5;
// TODO make the test more strict
long dim = grading.size();
// create variables
SCIP_VAR** x = new SCIP_VAR*[dim];
char name[SCIP_MAXSTRLEN];
SCIPcreateProbBasic(scip, "extra_points");
for (long i=0; i<dim; i++) {
(void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "x_%d", i);
// SCIPcreateVarBasic(scip, &x[i], name, -SCIPinfinity(scip), SCIPinfinity(scip),
// convert_to_double(grading[i]), SCIP_VARTYPE_INTEGER);
// min_in_col and max_in_col already give good bounds if all signs are positive or negative
// no constraint needed
SCIPcreateVarBasic(scip, &x[i], name, min_in_col(gens,i), max_in_col(gens, i),
convert_to_double(grading[i]), SCIP_VARTYPE_INTEGER);
SCIPaddVar(scip, x[i]);
}
// create constraints
// vector< vector<Integer> > SuppHyp(MyCone.getSupportHyperplanes());
double* ineq = new double[dim];
long nrSuppHyp = SuppHyp.nr_of_rows();
for( long i = 0; i < nrSuppHyp; ++i )
{
SCIP_CONS* cons;
for (long j=0; j<dim; j++)
ineq[j] = convert_to_double(SuppHyp[i][j]);
(void) SCIPsnprintf(name, SCIP_MAXSTRLEN, "ineq_%d", i);
SCIPcreateConsBasicLinear(scip, &cons, name, dim, x, ineq, 0.0, SCIPinfinity(scip));
SCIPaddCons(scip, cons);
SCIPreleaseCons(scip, &cons);
}
SCIP_CONS* cons;
// setup non-zero constraints
// if all extreme rays have the same sign in one dimension, add the x_i>=1 or x_i<=-1 constraint
for (long i=0; i<dim; i++){
double min = min_in_col(gens,i);
double max = max_in_col(gens,i);
if (min*max>0){
break;
}
if (i==dim-1){
//cout << "no same sign. using bound disjunction" << endl;
// set bound disjunction
SCIP_VAR** double_x = new SCIP_VAR*[2*dim];
SCIP_BOUNDTYPE* boundtypes = new SCIP_BOUNDTYPE[2*dim];
SCIP_Real* bounds = new SCIP_Real[2*dim];
for (long i=0; i<dim;i++) {
double_x[2*i] = x[i];
double_x[2*i+1] = x[i];
boundtypes[2*i]= SCIP_BOUNDTYPE_LOWER;
boundtypes[2*i+1] = SCIP_BOUNDTYPE_UPPER;
bounds[2*i] = 1.0;
bounds[2*i+1] = -1.0;
}
SCIPcreateConsBasicBounddisjunction (scip, &cons,"non_zero",2*dim,double_x,boundtypes,bounds);
SCIPaddCons(scip, cons);
SCIPreleaseCons(scip, &cons);
/*
// this type of constraints procedures numerical problems:
for (long j=0; j<dim; j++)
ineq[j] = convert_to_double(grading[j]);
SCIPcreateConsBasicLinear(scip, &cons, "non_zero", dim, x, ineq, 1.0, SCIPinfinity(scip));
*/
}
}
// set objective limit, feasible solution has to have a better objective value
SCIPsetObjlimit(scip,upper_bound);
// give original generators as hints to scip
SCIP_SOL* input_sol;
SCIP_Bool stored;
SCIPcreateOrigSol(scip, &input_sol, NULL);
for (long i=0; i<dim; i++) {
for (long j=0; j<dim; j++) {
SCIPsetSolVal(scip, input_sol, x[j], convert_to_double(gens[i][j]));
}
//SCIPprintSol(scip, input_sol, NULL, TRUE);
SCIPaddSol(scip, input_sol, &stored);
}
SCIPfreeSol(scip, &input_sol);
//SCIPinfoMessage(scip, NULL, "Original problem:\n");
//SCIPprintOrigProblem(scip, NULL, NULL, FALSE);
//SCIPinfoMessage(scip, NULL, "\nSolving...\n");
//#ifndef NDEBUG_BLA
//FILE* file = fopen("mostrecent.lp","w");
//assert (file != NULL);
//SCIPprintOrigProblem(scip, file, "lp", FALSE);
//SCIPwriteParams(scip, "mostrecent.set", TRUE, TRUE);
//fclose(file);
//#endif
// set numerics
Integer maxabs = v_max_abs(grading);
double epsilon = max(1e-20,min(1/(convert_to_double(maxabs)*10),1e-10));
//cout << "epsilon is in region " << log10(epsilon) << endl;
double feastol = max(1e-17,epsilon*10);
SCIPsetRealParam(scip, "numerics/epsilon", epsilon);
SCIPsetRealParam(scip, "numerics/feastol", feastol);
SCIPsolve(scip);
//SCIPprintStatistics(scip, NULL);
vector<Integer> sol_vec(dim);
if(SCIPgetStatus(scip) == SCIP_STATUS_TIMELIMIT && verbose) verboseOutput() << "time limit reached!" << endl;
if( SCIPgetNLimSolsFound(scip) > 0 ) // solutions respecting objective limit (ie not our input solutions)
{
SCIP_SOL* sol = SCIPgetBestSol(scip);
//SCIPprintOrigProblem(scip, NULL, NULL, FALSE);
//SCIPprintSol(scip, sol, NULL, FALSE) ;
for (int i=0;i<dim;i++) {
convert(sol_vec[i], SCIPconvertRealToLongint(scip,SCIPgetSolVal(scip,sol,x[i])));
}
if(v_scalar_product(grading,sol_vec)>upper_bound){
//Integer sc = v_scalar_product(sol_vec,grading);
if(verbose){
#pragma omp critical(VERBOSE)
{
verboseOutput() << "Solution does not respect upper bound!" << endl;
//cout << "upper bound: " << upper_bound << endl;
//cout << "grading: " << grading;
//cout << "hyperplanes:" << endl;
//SuppHyp.pretty_print(cout);
//cout << "generators:" << endl;
//gens.pretty_print(cout);
//cout << sc << " | solution " << sol_vec;
//cout << "epsilon: " << epsilon << endl;
//SCIPprintOrigProblem(scip, NULL, NULL, FALSE);
//SCIPprintSol(scip, sol, NULL, FALSE) ;
//cout << "write files... " << endl;
//FILE* file = fopen("mostrecent.lp","w");
//assert (file != NULL);
//SCIPprintOrigProblem(scip, file, "lp", FALSE);
//SCIPwriteParams(scip, "mostrecent.set", TRUE, TRUE);
//fclose(file);
//assert(v_scalar_product(grading,sol_vec)<=upper_bound);
}
}
return vector<Integer>();
}
for (int i=0;i<nrSuppHyp;i++) {
if((v_scalar_product(SuppHyp[i],sol_vec))<0) {
//Integer sc = v_scalar_product(sol_vec,grading);
if(verbose){
#pragma omp critical(VERBOSE)
{
verboseOutput() << "Solution does not respect hyperplanes!" << endl;
//cout << "the hyperplane: " << SuppHyp[i];
//cout << "grading: " << grading;
//cout << "hyperplanes:" << endl;
//SuppHyp.pretty_print(cout);
//cout << "generators:" << endl;
//gens.pretty_print(cout);
//cout << sc << " | solution " << sol_vec;
//cout << "epsilon: " << epsilon << endl;
//SCIPprintOrigProblem(scip, NULL, NULL, FALSE);
//SCIPprintSol(scip, sol, NULL, FALSE) ;
//cout << "write files... " << endl;
//FILE* file = fopen("mostrecent.lp","w");
//assert (file != NULL);
//SCIPprintOrigProblem(scip, file, "lp", FALSE);
//SCIPwriteParams(scip, "mostrecent.set", TRUE, TRUE);
//fclose(file);
//assert((v_scalar_product(SuppHyp[i],sol_vec))>=0);
}
}
return vector<Integer>();
}
}
if((v_scalar_product(grading,sol_vec))<1) {
//Integer sc = v_scalar_product(sol_vec,grading);
if (verbose){
#pragma omp critical(VERBOSE)
{
verboseOutput() << "Solution does not respect the nonzero condition!" << endl;
/*cout << "grading: " << grading;
cout << "hyperplanes:" << endl;
SuppHyp.pretty_print(cout);
cout << "generators:" << endl;
gens.pretty_print(cout);
cout << sc << " | solution " << sol_vec;
cout << "epsilon: " << epsilon << endl;
SCIPprintOrigProblem(scip, NULL, NULL, FALSE);
SCIPprintSol(scip, sol, NULL, FALSE) ;
cout << "write files... " << endl;
FILE* file = fopen("mostrecent.lp","w");
assert (file != NULL);
SCIPprintOrigProblem(scip, file, "lp", FALSE);
SCIPwriteParams(scip, "mostrecent.set", TRUE, TRUE);
fclose(file);
assert((v_scalar_product(grading,sol_vec))>=1);*/
}
}
return vector<Integer>();
}
/*assert(v_scalar_product(grading,sol_vec)<=upper_bound);
for (int i=0;i<nrSuppHyp;i++) assert((v_scalar_product(SuppHyp[i],sol_vec))>=0);
assert((v_scalar_product(grading,sol_vec))>=1);*/
//Integer sc = v_scalar_product(sol_vec,grading);
//#pragma omp critical(VERBOSE)
//cout << sc << " | solution " << sol_vec;
} else {
return vector<Integer>();
}
for (int j=0;j<dim;j++) SCIPreleaseVar(scip, &x[j]);
SCIPfreeProb(scip);
return sol_vec;
}
#endif // NMZ_SCIP
#ifndef NMZ_MIC_OFFLOAD //offload with long is not supported
template void bottom_points(list< vector<long> >& new_points, Matrix<long> gens,const vector<long>& grading,long app_level,long recursion_depth);
#endif // NMZ_MIC_OFFLOAD
template void bottom_points(list< vector<long long> >& new_points, Matrix<long long> gens,const vector<long long>& grading,long app_level,long recursion_depth);
template void bottom_points(list< vector<mpz_class> >& new_points, Matrix<mpz_class> gens,const vector<mpz_class>& grading,long app_level,long recursion_depth);
} // namespace
#ifdef NMZ_MIC_OFFLOAD
#pragma offload_attribute (pop)
#endif
|