1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
|
2 Hilbert basis elements
0 Hilbert basis elements of degree 1
2 extreme rays
2 support hyperplanes
embedding dimension = 2
rank = 2 (maximal)
external index = 1
size of triangulation = 1
resulting sum of |det|s = 1
grading:
2 3
degrees of extreme rays:
2: 1 3: 1
multiplicity = 1/6
Hilbert series:
1 -1 1
denominator with 2 factors:
1: 1 6: 1
degree of Hilbert Series as rational function = -5
Hilbert series with cyclotomic denominator:
1
cyclotomic denominator:
1: 2 2: 1 3: 1
Hilbert quasi-polynomial of period 6:
0: 6 1
1: -1 1
2: 4 1
3: 3 1
4: 2 1
5: 1 1
with common denominator = 6
rank of class group = 0
class group is free
***********************************************************************
0 Hilbert basis elements of degree 1:
2 further Hilbert basis elements of higher degree:
1 0
0 1
2 extreme rays:
1 0
0 1
2 support hyperplanes:
0 1
1 0
|