1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
|
17 Hilbert basis elements
1 Hilbert basis elements of degree 1
16 extreme rays
11 support hyperplanes
3 excluded faces
embedding dimension = 8
rank = 8 (maximal)
external index = 1
size of triangulation = 16
resulting sum of |det|s = 19
grading:
1 1 1 1 1 1 1 1
degrees of extreme rays:
1: 1 2: 13 4: 2
multiplicity = 1/8
Hilbert series:
1 0 8 0 14 1 7 0 1
denominator with 8 factors:
1: 1 2: 6 4: 1
shift = 1
degree of Hilbert Series as rational function = -8
Hilbert series with cyclotomic denominator:
1 0 8 0 14 1 7 0 1
cyclotomic denominator:
1: 8 2: 7 4: 1
Hilbert quasi-polynomial of period 4:
0: 0 16896 25312 24304 11830 2884 343 16
1: 80640 209088 210112 108304 31360 5152 448 16
2: 10080 16896 25312 24304 11830 2884 343 16
3: 80640 209088 210112 108304 31360 5152 448 16
with common denominator = 645120
rank of class group = 3
class group is free
***********************************************************************
1 Hilbert basis elements of degree 1:
1 0 0 0 0 0 0 0
16 further Hilbert basis elements of higher degree:
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
16 extreme rays:
1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
11 support hyperplanes:
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 -1 1 1 1 -1 -1 -1
1 0 0 0 0 0 0 0
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1
3 excluded faces:
1 -1 1 1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1
|