1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744
|
/*
* Normaliz
* Copyright (C) 2007-2019 Winfried Bruns, Bogdan Ichim, Christof Soeger
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#ifndef LIBNORMALIZ_FULL_CONE_H
#define LIBNORMALIZ_FULL_CONE_H
#include <list>
#include <vector>
#include <deque>
#include <chrono>
//#include <set>
#include "libnormaliz/general.h"
#include "libnormaliz/cone.h"
//#include "libnormaliz/cone_property.h"
#include "libnormaliz/matrix.h"
#include "libnormaliz/simplex.h"
#include "libnormaliz/cone_dual_mode.h"
#include "libnormaliz/HilbertSeries.h"
#include "libnormaliz/reduction.h"
// #include "libnormaliz/sublattice_representation.h"
#include "libnormaliz/offload_handler.h"
#include "libnormaliz/automorph.h"
#include "libnormaliz/dynamic_bitset.h"
#include "libnormaliz/signed_dec.h"
namespace libnormaliz {
using std::list;
using std::map;
using std::pair;
using std::vector;
struct HollowTriJob {
vector<size_t> Selection;
vector<key_t> PatternKey;
dynamic_bitset Pattern;
};
template <typename Integer>
class Cone;
template <typename Integer>
class SimplexEvaluator;
template <typename Integer>
class CandidateList;
template <typename Integer>
class Candidate;
template <typename Integer>
class Simplex;
template <typename Integer>
class Collector;
template <typename Integer>
class Cone_Dual_Mode;
template <typename Integer>
struct FACETDATA;
template <typename Integer>
class Full_Cone {
friend class Cone<Integer>;
friend class SimplexEvaluator<Integer>;
friend class CandidateList<Integer>;
friend class Candidate<Integer>;
friend class Collector<Integer>;
public:
int omp_start_level; // records the omp_get_level() when the computation is started
// recorded at the start of the top cone constructor and the compute functions
// compute and dualize_cone
size_t dim;
size_t level0_dim; // dim of cone in level 0 of the inhomogeneous case
size_t module_rank; // rank of solution module over level 0 monoid in the inhomogeneous case
size_t nr_gen;
// size_t hyp_size; // not used at present
Integer index; // index of full lattice over lattice of generators
bool verbose;
bool keep_convex_hull_data;
bool pointed;
bool is_simplicial;
bool deg1_generated_computed;
bool deg1_generated;
bool deg1_extreme_rays;
bool deg1_triangulation;
bool deg1_hilbert_basis;
bool inhomogeneous;
// control of what to compute (set from outside)
bool explicit_full_triang; // indicates whether full triangulation is asked for without default mode
// bool explicit_h_vector; // to distinguish it from being set via default mode --DONE VIA do_default_mode
bool do_determinants;
bool do_multiplicity;
bool do_integral;
bool do_integrally_closed;
bool do_Hilbert_basis;
bool do_deg1_elements;
bool do_h_vector;
bool keep_triangulation;
bool pulling_triangulation;
bool keep_triangulation_bitsets; // convert the triangulation keys into bitsets and keep them
bool do_Stanley_dec;
bool do_default_mode;
bool do_class_group;
bool do_module_gens_intcl;
bool do_module_rank;
bool do_cone_dec;
bool do_supphyps_dynamic; // for integer hull computations where we want to insert extreme rays only
// more or less ...
bool do_multiplicity_by_signed_dec;
bool do_integral_by_signed_dec;
bool do_signed_dec;
bool do_virtual_multiplicity_by_signed_dec;
bool include_dualization; // can only be set in connection with signed dec
bool do_pure_triang; // no determinants
bool exploit_automs_mult;
bool exploit_automs_vectors;
bool do_automorphisms;
bool check_semiopen_empty;
bool do_hsop;
bool do_extreme_rays;
bool do_pointed;
bool believe_pointed; // sometimes set to suppress the check for pointedness
bool do_triangulation_size;
// algorithmic variants
bool do_approximation;
bool do_bottom_dec;
bool suppress_bottom_dec;
bool keep_order;
bool hilbert_basis_rec_cone_known;
// control of triangulation and evaluation
bool do_triangulation;
bool do_partial_triangulation;
bool do_only_multiplicity;
bool stop_after_cone_dec;
bool do_evaluation;
bool triangulation_is_nested;
bool triangulation_is_partial;
// type of definition of automorphism group
AutomParam::Quality quality_of_automorphisms;
// internal helper control variables
bool use_existing_facets; // in order to avoid duplicate computation of already computed facets
bool do_excluded_faces;
bool no_descent_to_facets; // primal algorithm must be applied to God_Father
bool do_only_supp_hyps_and_aux;
bool do_all_hyperplanes; // controls whether all support hyperplanes must be computed
bool use_bottom_points;
ConeProperties is_Computed;
bool has_generator_with_common_divisor;
long autom_codim_vectors; // bound for the descent to faces in algorithms using automorphisms
long autom_codim_mult; // bound ditto for multiplicity
Integer HB_bound; // only degree bound used in connection with automorphisms
// to discard vectors quickly
long block_size_hollow_tri;
long decimal_digits;
string project_name;
bool time_measured;
bool don_t_add_hyperplanes; // blocks the addition of new hyperplanes during time measurement
bool take_time_of_large_pyr; // if true, the time of large pyrs is measured
vector<chrono::nanoseconds> time_of_large_pyr;
vector<chrono::nanoseconds> time_of_small_pyr;
vector<size_t> nr_pyrs_timed;
// data of the cone (input or output)
vector<Integer> Truncation; // used in the inhomogeneous case to suppress vectors of level > 1
vector<Integer> Norm; // is Truncation or Grading, used to "simplify" renf_elem_vectors
vector<Integer> IntHullNorm; // used in computation of integer hulls for guessing extreme rays
Integer TruncLevel; // used for approximation of simplicial cones
vector<Integer> Grading;
vector<Integer> GradingOnPrimal; // grading on the cone whose multiplicity is computed by signed dec
vector<Integer> Sorting;
mpq_class multiplicity;
#ifdef ENFNORMALIZ
renf_elem_class renf_multiplicity;
#endif
Matrix<Integer> Generators;
Matrix<Integer> InputGenerators; // stores purified input -- Generators can be extended
set<vector<Integer>> Generator_Set; // the generators as a set (if needed)
Matrix<nmz_float> Generators_float; // floating point approximations to the generators
vector<key_t> PermGens; // stores the permutation of the generators created by sorting
vector<bool> Extreme_Rays_Ind;
Matrix<Integer> Support_Hyperplanes;
Matrix<Integer> HilbertBasisRecCone;
Matrix<Integer> Subcone_Support_Hyperplanes; // used if *this computes elements in a subcone, for example in approximation
Matrix<Integer> Subcone_Equations;
vector<Integer> Subcone_Grading;
size_t nrSupport_Hyperplanes;
list<vector<Integer>> Hilbert_Basis;
vector<Integer> Witness; // for not integrally closed
Matrix<Integer>
Basis_Max_Subspace; // a basis of the maximal linear subspace of the cone --- only used in connection with dual mode or integer hull computation
Matrix<Integer> RationalExtremeRays; // for integer hull computation
list<vector<Integer>> ModuleGeneratorsOverOriginalMonoid;
CandidateList<Integer> OldCandidates, NewCandidates, HBRC, ModuleGensDepot; // for the Hilbert basis
// HBRC is for the Hilbert basis of the recession cone if provided, ModuleGensDepot for the collected module
// generators in this case
size_t CandidatesSize;
list<vector<Integer>> Deg1_Elements;
HilbertSeries Hilbert_Series;
vector<Integer> gen_degrees; // will contain the degrees of the generators
vector<long> gen_degrees_long; // will contain the degrees of the generators as long (for h-vector)
Integer shift; // needed in the inhomogeneous case to make degrees positive
vector<Integer> gen_levels; // will contain the levels of the generators (in the inhomogeneous case)
size_t TriangulationBufferSize; // number of elements in Triangulation, for efficiency
list<SHORTSIMPLEX<Integer>> Triangulation; // triangulation of cone
vector<pair<dynamic_bitset, dynamic_bitset>> Triangulation_ind; // the same, but bitsets instead of keys
list<SHORTSIMPLEX<Integer>> TriangulationBuffer; // simplices to evaluate
list<SimplexEvaluator<Integer>> LargeSimplices; // Simplices for internal parallelization
Integer detSum; // sum of the determinants of the simplices
list<STANLEYDATA_int> StanleyDec; // Stanley decomposition
vector<Integer>
ClassGroup; // the class group as a vector: ClassGroup[0]=its rank, then the orders of the finite cyclic summands
Matrix<Integer> ProjToLevel0Quot; // projection matrix onto quotient modulo level 0 sublattice
size_t index_covering_face; // used in checking emptiness of semiopen polyhedron
string Polynomial;
mpq_class Integral, VirtualMultiplicity;
nmz_float RawEuclideanIntegral;
long DegreeOfPolynomial;
// ************************** Data for convex hull computations ****************************
vector<size_t> HypCounter; // counters used to give unique number to hyperplane
// must be defined thread wise to avoid critical
vector<bool> in_triang; // intriang[i]==true means that Generators[i] has been actively inserted
vector<key_t> GensInCone; // lists the generators completely built in
size_t nrGensInCone; // their number
vector<size_t> Comparisons; // at index i we note the total number of comparisons
// of positive and negative hyperplanes needed for the first i generators
size_t nrTotalComparisons; // counts the comparisons in the current computation
list<FACETDATA<Integer>> Facets; // contains the data for Fourier-Motzkin and extension of triangulation
size_t old_nr_supp_hyps; // must be remembered since Facets gets extended before the current generators is finished
// ******************************************************************************************
// Pointer to the cone by which the Full_Cone has been constructed (if any)
// Cone<Integer>* Creator;
Matrix<Integer> Embedding; // temporary solution -- at present used for integration with signed dec
// the absolute top cone in recursive algorithms where faces are evaluated themselves
// Full_Cone<Integer>* God_Father; // not used at present
// data relating a pyramid to its ancestors
Full_Cone<Integer>* Top_Cone; // reference to cone on top level relative to pyramid formation
vector<key_t> Top_Key; // indices of generators w.r.t Top_Cone
Full_Cone<Integer>* Mother; // reference to the mother of the pyramid
vector<key_t> Mother_Key; // indices of generators w.r.t Mother
size_t apex; // indicates which generator of mother cone is apex of pyramid
int pyr_level; // -1 for top cone, increased by 1 for each level of pyramids
int descent_level; // measures the decent in recursive algorithms that exploit compute_automorphisms
// 0 for God_father, increases by 1 with each passage to a facet
Isomorphism_Classes<Integer> FaceClasses;
vector<bool> IsLarge; // additional information whether pyramid is large
// control of pyramids, recursion and parallelization
bool is_pyramid; // false for top cone
long top_last_to_be_inserted; // used for signed dec to avoid storage of hyperplanes that are not needed
bool pyramids_for_last_built_directly; // ditto
bool recursion_allowed; // to allow or block recursive formation of pyramids
bool multithreaded_pyramid; // indicates that this cone is computed in parallel threads
bool tri_recursion; // true if we have gone to pyramids because of triangulation
// storage for subpyramids
size_t store_level; // the level on which daughters will be stored
deque<list<vector<key_t>>> Pyramids; // storage for pyramids
deque<size_t> nrPyramids; // number of pyramids on the various levels
deque<bool> Pyramids_scrambled; // only used for mic
// data that can be used to go out of build_cone and return later (not done at present)
// but also useful at other places
// long nextGen; // the next generator to be processed
long lastGen; // the last generator processed
// Helpers for triangulation and Fourier-Motzkin
vector<typename list<SHORTSIMPLEX<Integer>>::iterator> TriSectionFirst; // first simplex with lead vertex i
vector<typename list<SHORTSIMPLEX<Integer>>::iterator> TriSectionLast; // last simplex with lead vertex i
list<FACETDATA<Integer>> LargeRecPyrs; // storage for large recursive pyramids given by basis of pyramid in mother cone
list<SHORTSIMPLEX<Integer>> FreeSimpl; // list of short simplices already evaluated, kept for recycling
vector<list<SHORTSIMPLEX<Integer>>> FS; // the same per thread
vector<Matrix<Integer>> RankTest; // helper matrices for rank test
vector<Matrix<Integer>> WorkMat; // helper matrix for matrix inversion
Matrix<Integer> UnitMat; // prefabricated unit matrix
vector<Matrix<nmz_float>> RankTest_float; // helper matrices for rank test
// helpers for evaluation
vector<SimplexEvaluator<Integer>> SimplexEval; // one per thread
vector<Collector<Integer>> Results; // one per thread
vector<Integer> Order_Vector; // vector for the disjoint decomposition of the cone
#ifdef NMZ_MIC_OFFLOAD
MicOffloader<long long> mic_offloader;
#endif
void try_offload_loc(long place, size_t max_level);
template <typename IntegerCone>
void restore_previous_computation(CONVEXHULLDATA<IntegerCone>& ConvHullData, bool goal);
template <typename IntegerCone>
void dualize_and_restore(CONVEXHULLDATA<IntegerCone>& ConvHullData);
// defining semiopen cones
Matrix<Integer> ExcludedFaces;
map<dynamic_bitset, long> InExCollect;
// statistics
size_t totalNrSimplices; // total number of simplices evaluated
size_t nrSimplicialPyr;
size_t totalNrPyr;
size_t start_from;
size_t AdjustedReductionBound;
AutomorphismGroup<Integer> Automs;
bool is_global_approximation; // true if approximation is defined in Cone
vector<vector<key_t>> approx_points_keys;
Matrix<Integer> OriginalGenerators;
Integer VolumeBound; // used to stop computation of approximation if simplex of this has larger volume
long renf_degree;
// vector<HollowTriJob> HTJlist;
/* ---------------------------------------------------------------------------
* Private routines, used in the public routines
* ---------------------------------------------------------------------------
*/
void number_hyperplane(FACETDATA<Integer>& hyp, const size_t born_at, const size_t mother);
bool is_hyperplane_included(FACETDATA<Integer>& hyp);
/* vector<Integer> FM_comb(const vector<Integer>& Pos,
const Integer& PosVal,
const vector<Integer>& Neg,
const Integer& NegVal,
bool extract_gcd = true); */
void add_hyperplane(const size_t& new_generator,
const FACETDATA<Integer>& positive,
const FACETDATA<Integer>& negative,
list<FACETDATA<Integer>>& NewHyps,
bool known_to_be_simplicial);
void make_pyramid_for_last_generator(const FACETDATA<Integer>& Fac); // used for signed dec
void extend_triangulation(const size_t& new_generator);
void update_pulling_triangulation(const size_t& new_generator); // variant of extend_triangulation used for pulling tris
void find_new_facets(const size_t& new_generator);
void process_pyramids(const size_t new_generator, const bool recursive);
void process_pyramid(const vector<key_t>& Pyramid_key,
const size_t new_generator,
const size_t store_level,
Integer height,
const bool recursive,
typename list<FACETDATA<Integer>>::iterator hyp,
size_t start_level);
void select_supphyps_from(list<FACETDATA<Integer>>& NewFacets,
const size_t new_generator,
const vector<key_t>& Pyramid_key,
const vector<bool>& Pyr_in_triang);
bool check_pyr_buffer(const size_t level);
void evaluate_stored_pyramids(const size_t level);
void match_neg_hyp_with_pos_hyps(const FACETDATA<Integer>& Neg,
size_t new_generator,
const vector<FACETDATA<Integer>*>& PosHyps,
dynamic_bitset& Zero_P,
vector<list<dynamic_bitset>>& Facets_0_1);
void collect_pos_supphyps(vector<FACETDATA<Integer>*>& PosHyps, dynamic_bitset& Zero_P, size_t& nr_pos);
void evaluate_large_rec_pyramids(size_t new_generator);
void find_and_evaluate_start_simplex();
// Simplex<Integer> find_start_simplex() const;
vector<key_t> find_start_simplex() const;
void store_key(const vector<key_t>&,
const Integer& height,
const Integer& mother_vol,
list<SHORTSIMPLEX<Integer>>& Triangulation);
void find_bottom_facets();
void convert_polyhedron_to_polytope();
void compute_multiplicity_or_integral_by_signed_dec();
/* void make_facet_triang(list<vector<key_t> >& FacetTriang, const FACETDATA<Integer>& Facet);*/
void compute_deg1_elements_via_projection_simplicial(const vector<key_t>& key); // for a simplicial subcone by projecion
void compute_sub_div_elements(const Matrix<Integer>& gens,
list<vector<Integer>>& sub_div_elements,
bool best_point = false); // computes subdividing elements via approximation
// void select_deg1_elements(const Full_Cone& C);
// void select_Hilbert_Basis(const Full_Cone& C); //experimental, unused
void build_top_cone();
void build_cone_dynamic();
void build_cone();
void get_supphyps_from_copy(
bool from_scratch,
bool with_extreme_rays = false); // if evaluation starts before support hyperplanes are fully computed
void update_reducers(bool forced = false); // update list of reducers after evaluation of simplices
// bool is_reducible(list<vector<Integer>*>& Irred, const vector<Integer>& new_element);
void global_reduction();
vector<Integer> compute_degree_function() const;
// Matrix<Integer> select_matrix_from_list(const list<vector<Integer>>& S, vector<size_t>& selection);
bool contains(const vector<Integer>& v);
bool subcone_contains(const vector<Integer>& v);
// bool contains(const Full_Cone& C);
void extreme_rays_and_deg1_check();
void find_grading();
void find_grading_inhom();
void check_given_grading();
void disable_grading_dep_comp();
void set_degrees();
void set_levels(); // for truncation in the inhomogeneous case
void find_module_rank(); // finds the module rank in the inhom case
void find_module_rank_from_HB();
void find_module_rank_from_proj(); // used if Hilbert basis is not computed
void find_level0_dim(); // ditto for the level 0 dimension
void find_level0_dim_from_HB(); // from the Hilbert basis (after dual mode)
void sort_gens_by_degree(bool triangulate);
// void compute_support_hyperplanes(bool do_extreme_rays=false);
bool check_evaluation_buffer();
bool check_evaluation_buffer_size();
void prepare_old_candidates_and_support_hyperplanes();
void evaluate_triangulation();
void evaluate_large_simplices();
void evaluate_large_simplex(size_t j, size_t lss);
void transfer_triangulation_to_top();
void primal_algorithm();
void primal_algorithm_initialize();
void primal_algorithm_finalize();
void primal_algorithm_set_computed();
void finish_Hilbert_series();
void make_module_gens();
void reset_degrees_and_merge_new_candidates();
void remove_duplicate_ori_gens_from_HB();
void compute_class_group();
void compose_perm_gens(const vector<key_t>& perm);
void check_grading_after_dual_mode();
// void multiplicity_by_signed_dec();
void minimize_support_hyperplanes();
void compute_extreme_rays(bool use_facets = false);
void compute_extreme_rays_compare(bool use_facets);
void compute_extreme_rays_rank(bool use_facets);
void select_deg1_elements();
void check_pointed();
void deg1_check();
void check_deg1_extreme_rays();
void check_deg1_hilbert_basis();
// void compute_multiplicity();
void minimize_excluded_faces();
void prepare_inclusion_exclusion();
void set_preconditions();
void set_primal_algorithm_control_variables();
void reset_tasks();
void deactivate_completed_tasks();
void check_simpliciality_hyperplane(const FACETDATA<Integer>& hyp) const;
void check_facet(const FACETDATA<Integer>& Fac, const size_t& new_generator) const; // debugging routine
void set_simplicial(FACETDATA<Integer>& hyp);
void compute_hsop();
void heights(list<vector<key_t>>& facet_keys,
list<pair<dynamic_bitset, size_t>> faces,
size_t index,
vector<size_t>& ideal_heights,
size_t max_dim);
void start_message();
void end_message();
void set_zero_cone();
void compute_automorphisms(size_t nr_special_gens = 0);
void compute_by_automorphisms();
mpq_class facet_multiplicity(const vector<key_t>& facet_key);
void compute_multiplicity_via_automs();
vector<vector<key_t>> get_facet_keys_for_orbits(const vector<Integer>& fixed_point, bool with_orbit_sizes);
vector<Integer> get_fixed_point(size_t nr_cone_points);
void compute_HB_via_automs();
vector<Integer> replace_fixed_point_by_generator(const vector<Integer>& fixed_point,
const key_t facet_nr,
const vector<Integer>& help_grading);
void compute_Deg1_via_automs();
void get_cone_over_facet_vectors(const vector<Integer>& fixed_point,
const vector<key_t>& facet_key,
const key_t facet_nr,
list<vector<Integer>>& facet_vectors);
Matrix<Integer> push_supphyps_to_cone_over_facet(const vector<Integer>& fixed_point, const key_t facet_nr);
void import_HB_from(const IsoType<Integer>& copy);
// bool check_extension_to_god_father();
// void compute_multiplicity_via_recession_cone();
void copy_autom_params(const Full_Cone<Integer>& C);
/* void recursive_revlex_triangulation(vector<key_t> simplex_so_far,
const vector<key_t>& gens_in_face,
const vector<typename list<FACETDATA<Integer>>::const_iterator>& mother_facets,
size_t dim);
void make_facets();
void revlex_triangulation();*/
chrono::nanoseconds rank_time();
chrono::nanoseconds cmp_time();
chrono::nanoseconds ticks_comp_per_supphyp;
chrono::nanoseconds ticks_rank_per_row;
chrono::nanoseconds ticks_per_cand;
void small_vs_large(const size_t new_generator); // compares computation times of small vs. large pyramids
#ifdef NMZ_MIC_OFFLOAD
void try_offload(size_t max_level);
#else
void try_offload(size_t max_level){};
#endif
/*---------------------------------------------------------------------------
* Constructors
*---------------------------------------------------------------------------
*/
Full_Cone(); // default constructor
Full_Cone(const Matrix<Integer>& M, bool do_make_prime = true); // main constructor
Full_Cone(Cone_Dual_Mode<Integer>& C); // removes data from the argument!
Full_Cone(Full_Cone<Integer>& C, const vector<key_t>& Key); // for pyramids
/*---------------------------------------------------------------------------
* Data access
*---------------------------------------------------------------------------
*/
void print() const; // to be modified, just for tests
size_t getDimension() const;
size_t getNrGenerators() const;
bool isPointed() const;
bool isDeg1ExtremeRays() const;
bool isDeg1HilbertBasis() const;
vector<Integer> getGrading() const;
mpq_class getMultiplicity() const;
Integer getShift() const;
size_t getModuleRank() const;
const Matrix<Integer>& getGenerators() const;
vector<bool> getExtremeRays() const;
size_t getNrExtremeRays() const;
Matrix<Integer> getSupportHyperplanes() const;
Matrix<Integer> getHilbertBasis() const;
Matrix<Integer> getModuleGeneratorsOverOriginalMonoid() const;
Matrix<Integer> getDeg1Elements() const;
vector<Integer> getHVector() const;
Matrix<Integer> getExcludedFaces() const;
bool isComputed(ConeProperty::Enum prop) const;
void setComputed(ConeProperty::Enum prop);
void setComputed(ConeProperty::Enum prop, bool value);
/*---------------------------------------------------------------------------
* Computation Methods
*---------------------------------------------------------------------------
*/
void dualize_cone(bool print_message = true);
void support_hyperplanes();
void compute();
/* adds generators, they have to lie inside the existing cone */
void add_generators(const Matrix<Integer>& new_points);
void dual_mode();
void error_msg(string s) const;
};
// class end *****************************************************************
template <typename Integer>
template <typename IntegerCone>
void Full_Cone<Integer>::dualize_and_restore(CONVEXHULLDATA<IntegerCone>& ConvHullData) {
// goal=true: to primal, goal=false: to dual
/* ConvHullData.Generators.pretty_print(cout);
cout << "===============" << endl;
Generators.pretty_print(cout);
cout << "===============" << endl;*/
HypCounter.resize(omp_get_max_threads());
for (size_t i = 0; i < HypCounter.size(); ++i)
HypCounter[i] = i + 1;
start_from = ConvHullData.Facets.size();
in_triang.resize(start_from, true);
in_triang.resize(nr_gen);
GensInCone = identity_key(start_from);
nrGensInCone = start_from;
swap(ConvHullData.Comparisons, Comparisons);
Comparisons.resize(start_from);
nrTotalComparisons = ConvHullData.nrTotalComparisons;
old_nr_supp_hyps = ConvHullData.Generators.nr_of_rows();
// FACETDATA<Integer> new_facet;
for (size_t i = 0; i < old_nr_supp_hyps; ++i) {
FACETDATA<Integer> new_facet;
new_facet.GenInHyp.resize(nr_gen);
size_t j = 0;
size_t nr_gens_in_fac = 0;
for (const auto& Fac : ConvHullData.Facets) {
new_facet.GenInHyp[j] = Fac.GenInHyp[i];
if (new_facet.GenInHyp[j])
nr_gens_in_fac++;
j++;
}
new_facet.simplicial = (nr_gens_in_fac == dim - 1);
new_facet.BornAt = 0;
new_facet.Mother = 0;
// new_facet.is_positive_on_all_original_gens = false;
// new_facet.is_negative_on_some_original_gen = false;
new_facet.Ident = HypCounter[0];
HypCounter[0] += HypCounter.size();
if (ConvHullData.is_primal)
ConvHullData.SLR.convert_to_sublattice(new_facet.Hyp, ConvHullData.Generators[i]);
else
ConvHullData.SLR.convert_to_sublattice_dual(new_facet.Hyp, ConvHullData.Generators[i]);
Facets.push_back(new_facet);
}
size_t j = 0;
for (const auto& Fac : ConvHullData.Facets) {
if (ConvHullData.is_primal) {
ConvHullData.SLR.convert_to_sublattice_dual(Generators[j], Fac.Hyp);
}
else {
ConvHullData.SLR.convert_to_sublattice(Generators[j], Fac.Hyp);
}
++j;
}
use_existing_facets = true;
}
template <typename Integer>
template <typename IntegerCone>
void Full_Cone<Integer>::restore_previous_computation(CONVEXHULLDATA<IntegerCone>& ConvHullData, bool goal) {
// goal=true: to primal, goal=false: to dual
/* ConvHullData.Generators.pretty_print(cout);
cout << "===============" << endl;
Generators.pretty_print(cout);
cout << "===============" << endl;*/
if (ConvHullData.is_primal != goal) {
dualize_and_restore(ConvHullData);
return;
}
swap(ConvHullData.HypCounter, HypCounter);
start_from = ConvHullData.Generators.nr_of_rows();
/* for(size_t i=0;i<start_from;++i)
in_triang[i]=ConvHullData.in_triang[i];*/
swap(ConvHullData.in_triang, in_triang);
swap(ConvHullData.GensInCone, GensInCone);
in_triang.resize(nr_gen);
nrGensInCone = ConvHullData.nrGensInCone;
swap(ConvHullData.Comparisons, Comparisons);
Comparisons.resize(start_from);
nrTotalComparisons = ConvHullData.nrTotalComparisons;
old_nr_supp_hyps = ConvHullData.old_nr_supp_hyps;
for (auto& Fac : ConvHullData.Facets) {
FACETDATA<Integer> Ret;
if (ConvHullData.is_primal)
ConvHullData.SLR.convert_to_sublattice_dual(Ret.Hyp, Fac.Hyp);
else
ConvHullData.SLR.convert_to_sublattice(Ret.Hyp, Fac.Hyp);
swap(Ret.GenInHyp, Fac.GenInHyp);
Ret.GenInHyp.resize(nr_gen);
// convert(Ret.ValNewGen,Fac.ValNewGen);
Ret.BornAt = Fac.BornAt;
Ret.Ident = Fac.Ident;
Ret.Mother = Fac.Mother;
// Ret.is_positive_on_all_original_gens = Fac.is_positive_on_all_original_gens;
// Ret.is_negative_on_some_original_gen = Fac.is_negative_on_some_original_gen;
Ret.simplicial = Fac.simplicial;
Facets.push_back(Ret);
}
for (size_t i = 0; i < ConvHullData.Generators.nr_of_rows(); ++i) {
if (ConvHullData.is_primal)
ConvHullData.SLR.convert_to_sublattice(Generators[i], ConvHullData.Generators[i]);
else
ConvHullData.SLR.convert_to_sublattice_dual(Generators[i], ConvHullData.Generators[i]);
}
use_existing_facets = true;
}
//---------------------------------------------------------------------------
} // namespace libnormaliz
//---------------------------------------------------------------------------
#endif
//---------------------------------------------------------------------------
|