1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159
|
17 Hilbert basis elements
1 lattice points in polytope (Hilbert basis elements of degree 1)
16 extreme rays
11 support hyperplanes
3 excluded faces
embedding dimension = 8
rank = 8 (maximal)
external index = 1
size of triangulation = 16
resulting sum of |det|s = 19
grading:
1 1 1 1 1 1 1 1
degrees of extreme rays:
1:1 2:13 4:2
multiplicity = 1/8
multiplicity (float) = 0.125
Hilbert series:
1 0 8 0 14 1 7 0 1
denominator with 8 factors:
1:1 2:6 4:1
shift = 1
degree of Hilbert Series as rational function = -8
Expansion of Hilbert series
1: 1
2: 1
3: 15
4: 15
5: 99
6: 100
7: 429
8: 435
9: 1430
10: 1452
11: 3978
12: 4040
13: 9690
14: 9838
15: 21318
16: 21632
17: 43263
18: 43873
19: 82225
20: 83331
21: 148005
22: 149902
23: 254475
24: 257583
25: 420732
26: 425632
27: 672452
28: 679928
29: 1043460
30: 1054548
31: 1577532
32: 1593576
33: 2330445
34: 2353161
35: 3372291
36: 3403839
37: 4790071
38: 4833136
39: 6690585
40: 6748467
41: 9203634
42: 9280348
43: 12485550
44: 12585936
45: 16723070
46: 16852914
47: 22137570
48: 22303736
49: 28989675
50: 29200249
51: 37584261
Hilbert series with cyclotomic denominator:
1 0 8 0 14 1 7 0 1
cyclotomic denominator:
1:8 2:7 4:1
Hilbert quasi-polynomial of period 4:
0: 0 16896 25312 24304 11830 2884 343 16
1: 80640 209088 210112 108304 31360 5152 448 16
2: 10080 16896 25312 24304 11830 2884 343 16
3: 80640 209088 210112 108304 31360 5152 448 16
with common denominator = 645120
rank of class group = 3
class group is free
***********************************************************************
1 lattice points in polytope (Hilbert basis elements of degree 1):
1 0 0 0 0 0 0 0
16 further Hilbert basis elements of higher degree:
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
16 extreme rays:
1 0 0 0 0 0 0 0
0 0 0 1 0 0 1 0
0 0 1 0 0 1 0 0
0 0 1 1 0 0 0 0
0 1 0 0 1 0 0 0
0 1 0 1 0 0 0 0
0 1 1 0 0 0 0 0
1 0 0 0 0 0 0 1
1 0 0 0 0 0 1 0
1 0 0 0 0 1 0 0
1 0 0 0 1 0 0 0
1 0 0 1 0 0 0 0
1 0 1 0 0 0 0 0
1 1 0 0 0 0 0 0
0 1 1 1 0 0 0 1
1 0 0 0 1 1 1 0
11 support hyperplanes:
0 0 0 0 0 0 0 1
0 0 0 0 0 0 1 0
0 0 0 0 0 1 0 0
0 0 0 0 1 0 0 0
0 0 0 1 0 0 0 0
0 0 1 0 0 0 0 0
0 1 0 0 0 0 0 0
1 -1 1 1 1 -1 -1 -1
1 0 0 0 0 0 0 0
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1
3 excluded faces:
1 -1 1 1 1 -1 -1 -1
1 1 -1 1 -1 1 -1 -1
1 1 1 -1 -1 -1 1 -1
|