File: squaref1.ref

package info (click to toggle)
normaliz 3.10.4%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: trixie
  • size: 40,260 kB
  • sloc: cpp: 47,283; makefile: 2,207; sh: 1
file content (249 lines) | stat: -rw-r--r-- 6,537 bytes parent folder | download | duplicates (3)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
33 Hilbert basis elements
19 lattice points in polytope (Hilbert basis elements of degree 1)
19 extreme rays
134 support hyperplanes

embedding dimension = 9
rank = 9 (maximal)
external index = 4
internal index = 1
original monoid is not integrally closed in chosen lattice

size of triangulation   = 281
resulting sum of |det|s = 425

grading:
1 1 1 1 1 1 1 1 1 
with denominator = 4

degrees of extreme rays:
1:19  

Hilbert basis elements are not of degree 1

multiplicity = 425

Hilbert series:
1 10 49 137 161 63 4 
denominator with 9 factors:
1:9  

degree of Hilbert Series as rational function = -3

Hilbert polynomial:
40320 142512 216092 191156 112105 46088 14098 3284 425 
with common denominator = 40320

rank of class group = 125
class group is free

***********************************************************************

19 lattice points in polytope (Hilbert basis elements of degree 1):
 0 0 0 0 1 1 1 0 1
 0 0 1 1 1 1 0 0 0
 0 1 0 0 1 1 1 0 0
 0 1 0 1 1 0 0 0 1
 0 1 0 1 1 1 0 0 0
 0 1 1 0 1 0 1 0 0
 0 1 1 0 1 1 0 0 0
 0 1 1 1 0 0 1 0 0
 0 1 1 1 1 0 0 0 0
 1 0 0 1 0 1 1 0 0
 1 0 0 1 1 1 0 0 0
 1 0 1 0 0 0 0 1 1
 1 0 1 0 0 1 0 1 0
 1 0 1 1 1 0 0 0 0
 1 1 0 0 0 1 0 0 1
 1 1 0 0 1 0 1 0 0
 1 1 0 1 0 0 0 1 0
 1 1 1 0 1 0 0 0 0
 1 1 1 1 0 0 0 0 0

14 further Hilbert basis elements of higher degree:
 1 1 0 1 1 2 1 0 1
 1 1 0 1 2 1 1 0 1
 2 1 1 1 1 1 0 1 0
 1 3 1 1 2 1 2 0 1
 2 2 0 2 2 2 1 0 1
 2 2 1 1 1 1 1 1 2
 2 2 1 1 1 2 1 1 1
 2 2 2 2 1 0 1 1 1
 2 2 2 2 2 0 0 1 1
 3 1 1 1 1 2 1 1 1
 3 2 1 1 1 1 1 1 1
 3 2 2 1 1 1 0 1 1
 2 3 1 2 2 1 2 1 2
 3 3 2 3 2 0 1 1 1

19 extreme rays:
 0 0 0 0 1 1 1 0 1
 0 0 1 1 1 1 0 0 0
 0 1 0 0 1 1 1 0 0
 0 1 0 1 1 0 0 0 1
 0 1 0 1 1 1 0 0 0
 0 1 1 0 1 0 1 0 0
 0 1 1 0 1 1 0 0 0
 0 1 1 1 0 0 1 0 0
 0 1 1 1 1 0 0 0 0
 1 0 0 1 0 1 1 0 0
 1 0 0 1 1 1 0 0 0
 1 0 1 0 0 0 0 1 1
 1 0 1 0 0 1 0 1 0
 1 0 1 1 1 0 0 0 0
 1 1 0 0 0 1 0 0 1
 1 1 0 0 1 0 1 0 0
 1 1 0 1 0 0 0 1 0
 1 1 1 0 1 0 0 0 0
 1 1 1 1 0 0 0 0 0

134 support hyperplanes:
 -11  5  9 -3  5 13   1   9  -7
  -7 -3  1  9 17  5  -7   1   5
  -7  1  5  1  1  9   5   5  -3
  -7  1  9 -3 13 17  -7   9 -11
  -5  3  5 -1  1  5   1   3  -3
  -3  1 -3  5  5  1  -3   5   1
  -3  1  1  1  1  1   1   1   1
  -3  1  3 -1  1  3   1   3  -1
  -3  1  3  1 -1  3   3   1  -1
  -3  3 -1  1  3  5  -3  -1   5
  -3  5 -3  5  1 -3   1   9   1
  -3  5 -3  5  1  1  -3   5   1
  -1 -5 -1  7  7  3  -1  -1   3
  -1 -3  1  3  5 -1  -1   1   5
  -1 -1 -1  3  3 -1  -1   3   3
  -1 -1  1  1  1 -1   1   1   3
  -1 -1  2  0  0  1   2   2   1
  -1 -1  3 -1 -1  3   3   3   3
  -1 -1  3 -1  1  1   1   3   1
  -1  0  1  0  0  1   1   1   0
  -1  1 -1  1  1 -1   1   3   1
  -1  1 -1  1  1  1  -1   1   1
  -1  1 -1  1  1  1  -1   3  -1
  -1  1 -1  1  1  3  -1  -1   3
  -1  1 -1  1  1  3  -1   5  -3
  -1  1 -1  2  1  0  -1   2   0
  -1  1 -1  3  1 -1  -1   3   1
  -1  1  0  0  1  2  -1   3  -2
  -1  1  0  1  0  0   0   1   0
  -1  1  0  2  0 -1   0   2   1
  -1  1  1 -1  1  1   1   1  -1
  -1  1  1 -1  1  3  -1   1  -1
  -1  1  1  0  0  1   0   1  -1
  -1  1  1  1 -1  1   1   1  -1
  -1  1  2  0  0  1   0   0  -1
  -1  1  2  1  0  0   0  -1   0
  -1  1  4  2  0 -1   0  -2   1
  -1  3 -5  3  3 -1  -1   7  -1
  -1  3 -1 -1  3 -1   3   3  -1
  -1  3 -1  1  1 -1   1   3  -1
  -1  3 -1  3 -1 -1  -1   3   3
  -1  3 -1  3 -1 -1   3   3  -1
  -1  3  3 -1 -1  3  -1  -1  -1
   0 -2  3 -1  2  1   0   3   1
   0 -1  0  1  1  0   0   0   1
   0 -1  1  0  1  0   0   1   1
   0  0  0  0  0  0   0   0   1
   0  0  0  0  0  0   0   1   0
   0  0  0  0  0  0   1   0   0
   0  0  0  0  0  1   0   0   0
   0  0  0  0  1 -1   1   1   1
   0  0  0  1  0  0   0   0   0
   0  0  0  1  1  0  -1   0   0
   0  0  1 -1  0  1   0   1   1
   0  0  1  0  0  0   0   0   0
   0  0  1  0  1  1  -1   0  -1
   0  0  1  1 -1  0   1  -1   0
   0  0  1  1  1  0  -1  -1   0
   0  1  0 -1  1  0   1   0   0
   0  1  0 -1  1  0   1   1  -1
   0  1  0  0  0  1  -1  -1   1
   0  1  0  1 -1  0   2   1  -1
   0  2  0 -1  1  0   1   2  -2
   0  2  1  0 -1  1  -1  -2   1
   1 -7  1  5  5  9   1   1  -3
   1 -3 -1  3  3  1   1  -1   1
   1 -3  1  1  1  1   1   1   1
   1 -3  1  1  5 -3   1   1   5
   1 -3  1  5  1  1   1  -3   1
   1 -3  1  5  5  1  -3  -3   1
   1 -3  5 -1  3  1  -1   3   1
   1 -3  5  9 13  1 -11  -7   1
   1 -1 -1  1  1  1   1  -1   1
   1 -1  0  1  1  0   0  -1   0
   1 -1  1  1  1  1  -1  -1  -1
   1 -1  1  3 -1  1   1  -1  -1
   1 -1  3  0  2  1  -2   0  -1
   1 -1  3  3  5  1  -5  -3  -1
   1  0  0 -1  2 -1   1   0   0
   1  0  0  0  0  0   0  -1   0
   1  0  0  0  1 -1   0   0   0
   1  1 -3  1  1  1   1   1   1
   1  1 -3  1  1  1   1   5  -3
   1  1 -3  1  1  5   1  -3   5
   1  1 -3  5  5 -3  -3   5   1
   1  1 -1 -1  1  1   1  -1   1
   1  1 -1  1  1 -1  -1   1   1
   1  1  1 -3  1  1   1   1   1
   1  1  1 -3  3 -1   3   1  -1
   1  1  1 -3  5 -3   5   1   1
   1  1  1 -1 -1  1  -1  -1   1
   1  1  1 -1  1 -1   1  -1  -1
   1  1  1  1 -3  1   1  -3   1
   1  1  1  1 -1 -1   3  -1  -1
   1  1  1  1  1 -3   1   1   1
   1  1  1  1  1  1  -3  -3   1
   1  1  5  1  1 -3   1  -3   1
   1  2  0 -3  2  1   1   0  -1
   1  2  1 -1 -1  3  -2  -2   0
   1  3 -1 -3  3  1   1  -1   1
   1  3  1 -5  5 -1   5   1  -3
   1  3  1 -1 -1  1  -1  -3   1
   1  3  1 -1 -1  3  -3  -3   1
   1  5 -3 -3  5  1   1   9  -7
   1  5  1 -7  5  1   5   1  -3
   1  5  1 -7  9 -3   9   1  -3
   1  5  3 -3 -1  7  -5  -3  -1
   2 -1  0  1  1  0   0  -1  -1
   2  1  0 -3  4 -1   2   0  -2
   3 -5 -1  3  3  3   3  -1  -1
   3 -5  3  7 -1  3   3  -5  -1
   3 -1 -1 -1  3 -1   3  -1  -1
   3 -1 -1 -1  7 -5   3   3   3
   3 -1 -1  3  3 -1  -1  -1  -1
   3 -1  3 -1  3 -1  -1  -1  -1
   3 -1  3  3  7 -1  -5  -5  -1
   3  1  1 -1  1 -1  -1  -3   1
   3  3 -1 -5  3  3   3  -1  -1
   3  3 -1 -1 -1  3  -1  -5   3
   3  3  1 -1 -1  1  -3  -5   3
   3  3  3 -1 -1 -1  -1  -5   3
   3  7  3 -5 -1  3  -1  -5  -1
   3  7  3 -1 -5  3  -5  -9   7
   3 11  3 -1 -5  7  -9 -13   7
   5  1  1 -7  9 -3   5   1  -3
   5  1  1 -3  5 -3   1  -3  -3
   5  5  1 -3 -3  5  -3  -7   1
   5  9  1 -3 -3  5  -7 -11   5
   7 -1  3 -1  7 -5  -1  -5  -1
   7  3 -1 -9 15 -5   7  -1  -5
   7 11  3 -9 -1  7  -5  -9  -1
   9 -7  1  5  5  1   1  -7  -3
   9 -3  1  1  5 -3   1  -7  -3
  11 -1 -1 -1  7 -5   3  -5  -5

1 congruences:
 1 1 1 1 1 1 1 1 1 4

9 basis elements of generated  lattice:
 1 0 0 0 0 0 0 0 -1
 0 1 0 0 0 0 0 0 -1
 0 0 1 0 0 0 0 0 -1
 0 0 0 1 0 0 0 0 -1
 0 0 0 0 1 0 0 0 -1
 0 0 0 0 0 1 0 0 -1
 0 0 0 0 0 0 1 0 -1
 0 0 0 0 0 0 0 1 -1
 0 0 0 0 0 0 0 0  4