1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51
|
9 lattice points in polytope (module generators)
0 Hilbert basis elements of recession monoid
4 vertices of polyhedron
0 extreme rays of recession cone
4 support hyperplanes of polyhedron (homogenized)
embedding dimension = 3
affine dimension of the polyhedron = 2 (maximal)
rank of recession monoid = 0 (polyhedron is polytope)
internal index = 1
size of triangulation = 3
resulting sum of |det|s = 8
dehomogenization:
0 0 1
module rank = 9
volume (lattice normalized) = 8
volume (Euclidean) = 4
***********************************************************************
9 lattice points in polytope (module generators):
0 0 1
0 1 1
0 2 1
1 0 1
1 1 1
1 2 1
2 0 1
2 1 1
2 2 1
0 Hilbert basis elements of recession monoid:
4 vertices of polyhedron:
0 0 1
0 2 1
2 0 1
2 2 1
0 extreme rays of recession cone:
4 support hyperplanes of polyhedron (homogenized):
-1 0 2
0 -1 2
0 1 0
1 0 0
|