1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
|
17 Hilbert basis elements
16 lattice points in polytope (Hilbert basis elements of degree 1)
10 generators of integral closure of the ideal
16 extreme rays
24 support hyperplanes
embedding dimension = 7
rank = 7 (maximal)
external index = 1
internal index = 1
original monoid is not integrally closed in chosen lattice
size of partial triangulation = 1
resulting sum of |det|s = 2
grading:
1 1 1 1 1 1 -2
degrees of extreme rays:
1:16
Hilbert basis elements are not of degree 1
ideal is not primary to the ideal generated by the indeterminates
***********************************************************************
16 lattice points in polytope (Hilbert basis elements of degree 1):
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 0 1 1 1 0 1
0 1 0 0 0 0 0
0 1 0 0 1 1 1
0 1 0 1 1 0 1
0 1 1 0 0 1 1
1 0 0 0 0 0 0
1 0 0 0 1 1 1
1 0 0 1 0 1 1
1 0 1 0 1 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
1 further Hilbert basis elements of higher degree:
1 1 1 1 1 1 2
10 generators of integral closure of the ideal:
0 0 1 1 0 1
0 0 1 1 1 0
0 1 0 0 1 1
0 1 0 1 1 0
0 1 1 0 0 1
1 0 0 0 1 1
1 0 0 1 0 1
1 0 1 0 1 0
1 1 0 1 0 0
1 1 1 0 0 0
16 extreme rays:
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 1
0 0 1 1 1 0 1
0 1 0 0 0 0 0
0 1 0 0 1 1 1
0 1 0 1 1 0 1
0 1 1 0 0 1 1
1 0 0 0 0 0 0
1 0 0 0 1 1 1
1 0 0 1 0 1 1
1 0 1 0 1 0 1
1 1 0 1 0 0 1
1 1 1 0 0 0 1
24 support hyperplanes:
0 0 0 0 0 0 1
0 0 0 0 0 1 0
0 0 0 0 1 0 0
0 0 0 1 0 0 0
0 0 1 0 0 0 0
0 0 1 1 0 1 -1
0 0 1 1 1 0 -1
0 1 0 0 0 0 0
0 1 0 0 1 1 -1
0 1 0 1 1 0 -1
0 1 1 0 0 1 -1
0 1 1 1 1 1 -2
1 0 0 0 0 0 0
1 0 0 0 1 1 -1
1 0 0 1 0 1 -1
1 0 1 0 1 0 -1
1 0 1 1 1 1 -2
1 1 0 1 0 0 -1
1 1 0 1 1 1 -2
1 1 1 0 0 0 -1
1 1 1 0 1 1 -2
1 1 1 1 0 1 -2
1 1 1 1 1 0 -2
1 1 1 1 1 1 -3
|