File: automorph.cpp

package info (click to toggle)
normaliz 3.11.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 40,448 kB
  • sloc: cpp: 48,104; makefile: 2,247; sh: 1
file content (1432 lines) | stat: -rw-r--r-- 47,135 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
/*
 * Normaliz
 * Copyright (C) 2007-2025  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

//---------------------------------------------------------------------------
#include <set>

#include "libnormaliz/matrix.h"
#include "libnormaliz/nmz_nauty.h"
#include "libnormaliz/cone.h"
#include "libnormaliz/full_cone.h"
#include "libnormaliz/list_and_map_operations.h"
#include "libnormaliz/nmz_hash.h"

namespace libnormaliz {

using namespace std;

// meant for a posteriori changes of GensRef
// for example, when a coordinate transformation has been applied
// and we want the GensRef in their original coordinates
template <typename Integer>
void AutomorphismGroup<Integer>::setGensRef(const Matrix<Integer>& GivenGensRef) {
    GensRef = GivenGensRef;
}

/* Unused getters
template <typename Integer>
AutomParam::Method AutomorphismGroup<Integer>::getMethod() const {
    return method;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::Is_Computed(AutomParam::Goals goal) const {
    return contains(is_Computed, goal);
} */

template <typename Integer>
bool AutomorphismGroup<Integer>::HasQuality(AutomParam::Quality quality) const {
    return getQualitiesString().find(quality_to_string(quality)) != string::npos;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::IsIntegral() const {
    return is_integral;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::IsInput() const {
    return HasQuality(AutomParam::input_gen) || HasQuality(AutomParam::input_ineq);
}

template <typename Integer>
bool AutomorphismGroup<Integer>::IsAmbient() const {
    return HasQuality(AutomParam::ambient_gen) || HasQuality(AutomParam::ambient_ineq);
}

template <typename Integer>
bool AutomorphismGroup<Integer>::IsIntegralityChecked() const {
    return integrality_checked;
}

template <typename Integer>
set<AutomParam::Quality> AutomorphismGroup<Integer>::getQualities() const {
    return Qualities;
}

template <typename Integer>
const Matrix<Integer>& AutomorphismGroup<Integer>::getGens() const {
    return GensRef;
}

template <typename Integer>
const Matrix<Integer>& AutomorphismGroup<Integer>::getLinForms() const {
    return LinFormsRef;
}

/*

template <typename Integer>
const Matrix<Integer>& AutomorphismGroup<Integer>::getSpecialLinForms() const {
    return SpecialLinFormsRef;
}
*/

template <typename Integer>
mpz_class AutomorphismGroup<Integer>::getOrder() const {
    return order;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getGensPerms() const {
    return GenPerms;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getLinFormsPerms() const {
    return LinFormPerms;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getGensOrbits() const {
    return GenOrbits;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getLinFormsOrbits() const {
    return LinFormOrbits;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getExtremeRaysPerms() const {
    assert(cone_dependent_data_computed);
    return ExtRaysPerms;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getVerticesPerms() const {
    assert(cone_dependent_data_computed);
    return VerticesPerms;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getSupportHyperplanesPerms() const {
    assert(cone_dependent_data_computed);
    return SuppHypsPerms;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getExtremeRaysOrbits() const {
    assert(cone_dependent_data_computed);
    return ExtRaysOrbits;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getVerticesOrbits() const {
    assert(cone_dependent_data_computed);
    return VerticesOrbits;
}

template <typename Integer>
const vector<vector<key_t> >& AutomorphismGroup<Integer>::getSupportHyperplanesOrbits() const {
    assert(cone_dependent_data_computed);
    return SuppHypsOrbits;
}

/* unused getters
template <typename Integer>
const vector<Matrix<Integer> >& AutomorphismGroup<Integer>::getLinMaps() const {
    return LinMaps;
}

template <typename Integer>
const vector<key_t>& AutomorphismGroup<Integer>::getCanLabellingGens() const {
    return CanLabellingGens;
}

*/

template <typename Integer>
const BinaryMatrix<Integer>& AutomorphismGroup<Integer>::getCanType() const {
    return CanType;
}

template <typename Integer>
void AutomorphismGroup<Integer>::reset() {
    order = 1;
    makeCanType = false;
    cone_dependent_data_computed = false;
    is_integral = false;
    integrality_checked = false;
}

template <typename Integer>
AutomorphismGroup<Integer>::AutomorphismGroup() {
    reset();
}

/*
template<typename Integer>
AutomorphismGroup<Integer>::AutomorphismGroup(const Matrix<Integer>& ExtRays, const Matrix<Integer>& SpecialGens,
        const Matrix<Integer>& SupHyps,  const Matrix<Integer>& SpecialLinearForms){

    reset();
    method=AutomParam::E;

    Gens=ExtRays; // reference for orbits
    LinForms=SuppHyps;  // ditto

    Matrix<Integer> LinFormsComp=GivenLinearForms;
    size_t nr_special_linforms=SpecialLinForms.nr_of_rows();
    LinFormsComp.append(SpecialLinearForms);

    Matrix<Integer> GensComp=GivenGens;
    size_t nr_special_gens=SpecialGens.nr_of_rows();
    GensComp.append(SpecialGens);

}*/

template <typename Integer>
bool AutomorphismGroup<Integer>::make_linear_maps_primal(const Matrix<Integer>& GivenGens,
                                                         const vector<vector<key_t> >& ComputedGenPerms) {
    LinMaps.clear();
    vector<key_t> PreKey = GivenGens.max_rank_submatrix_lex();
    vector<key_t> ImKey(PreKey.size());
    for (const auto& ComputedGenPerm : ComputedGenPerms) {
        for (size_t j = 0; j < ImKey.size(); ++j)
            ImKey[j] = ComputedGenPerm[PreKey[j]];
        Matrix<Integer> Pre = GivenGens.submatrix(PreKey);
        Matrix<Integer> Im = GivenGens.submatrix(ImKey);
        Integer denom, g;
        Matrix<Integer> Map = Pre.solve(Im, denom);
        g = Map.matrix_gcd();
        if (g % denom != 0)
            return false;
        Map.scalar_division(denom);
        if (Map.vol() != 1)
            return false;
        LinMaps.push_back(Map.transpose());
        // Map.pretty_print(cout);
        // cout << "--------------------------------------" << endl;
    }
    return true;
}

template <>
bool AutomorphismGroup<renf_elem_class>::make_linear_maps_primal(const Matrix<renf_elem_class>& GivenGens,
                                                                 const vector<vector<key_t> >& ComputedGenPerms) {
    LinMaps.clear();
    vector<key_t> PreKey = GivenGens.max_rank_submatrix_lex();
    vector<key_t> ImKey(PreKey.size());
    for (const auto& ComputedGenPerm : ComputedGenPerms) {
        for (size_t j = 0; j < ImKey.size(); ++j)
            ImKey[j] = ComputedGenPerm[PreKey[j]];
        Matrix<renf_elem_class> Pre = GivenGens.submatrix(PreKey);
        Matrix<renf_elem_class> Im = GivenGens.submatrix(ImKey);
        renf_elem_class denom;
        Matrix<renf_elem_class> Map = Pre.solve(Im, denom);
        /*renf_elem_class g=Map.matrix_gcd();
        if(g%denom !=0)
            return false;*/
        Map.scalar_division(denom);
        /*if(Map.vol()!=1)
            return false;*/
        LinMaps.push_back(Map.transpose());
        // Map.pretty_print(cout);
        // cout << "--------------------------------------" << endl;
    }
    return true;
}

string quality_to_string(AutomParam::Quality quality) {
    if (quality == AutomParam::combinatorial)
        return "combinatorial";
    if (quality == AutomParam::rational)
        return "Rational";
    if (quality == AutomParam::integral)
        return "Integral";
    if (quality == AutomParam::euclidean)
        return "Euclidean";
    if (quality == AutomParam::ambient_gen)
        return "Ambient(from generators)";
    if (quality == AutomParam::ambient_ineq)
        return "Ambient(from inequalities)";
    if (quality == AutomParam::input_gen)
        return "Input(from generators)";
    if (quality == AutomParam::input_ineq)
        return "Input(from inequalities)";
    if (quality == AutomParam::algebraic)
        return "Algebraic";
    if (quality == AutomParam::graded)
        return "Graded";
    if (quality == AutomParam::monoid)
        return "Monoid";
    assert(false);
    return string();  // silence compiler warning
}

template <typename Integer>
void AutomorphismGroup<Integer>::fromInputToMonoid(){

    if(Qualities.find(AutomParam::input_gen) != Qualities.end())
        Qualities.erase(AutomParam::input_gen);
    Qualities.insert(AutomParam::monoid);
}

template <typename Integer>
string AutomorphismGroup<Integer>::getQualitiesString() const {
    string result;
    for (const auto& Q : Qualities)
        result += quality_to_string(Q) + " ";
    return result;
}

template <typename Integer>
AutomorphismGroup<Integer>::AutomorphismGroup(const Matrix<Integer>& ExtRays,
                                              const Matrix<Integer>& SpecialGens,
                                              const Matrix<Integer>& SuppHyps,
                                              const Matrix<Integer>& SpecialLinForms) {
    reset();
    set_basic_gens_and_lin_forms(ExtRays, SpecialGens, SuppHyps, SpecialLinForms);
}

template <typename Integer>
void AutomorphismGroup<Integer>::activateCanType(bool onoff) {
    makeCanType = onoff;
}

template <typename Integer>
AutomorphismGroup<Integer>::AutomorphismGroup(const Matrix<Integer>& ExtRays,
                                              const Matrix<Integer>& SuppHyps,
                                              const Matrix<Integer>& SpecialLinForms) {

    // SuppHyps.debug_print('+');
    // ExtRays.debug_print('$');
    reset();
    size_t dim = ExtRays.nr_of_columns();
    Matrix<Integer> SpecialGens(0, dim);
    set_basic_gens_and_lin_forms(ExtRays, SpecialGens, SuppHyps, SpecialLinForms);
    if (ExtRays.nr_of_rows() == 0)
        order = 1;
}

template <typename Integer>
void AutomorphismGroup<Integer>::set_basic_gens_and_lin_forms(const Matrix<Integer>& ExtRays,
                                                              const Matrix<Integer>& SpecialGens,
                                                              const Matrix<Integer>& SuppHyps,
                                                              const Matrix<Integer>& SpecialLinForms) {
    reset();
    GensRef = ExtRays;  // reference data
    LinFormsRef = SuppHyps;
    SpecialLinFormsRef = SpecialLinForms;
    SpecialGensRef = SpecialGens;

    nr_special_linforms = SpecialLinForms.nr_of_rows();
    nr_special_gens = SpecialGens.nr_of_rows();

    addedComputationGens = false;
    addedComputationLinForms = false;
}

template <typename Integer>
void AutomorphismGroup<Integer>::addComputationGens(const Matrix<Integer>& GivenGens) {
    if (GivenGens.nr_of_rows() == 0)
        return;

    GensComp = GivenGens;
    GensComp.append(SpecialGensRef);
    addedComputationGens = true;
}

/*
template <typename Integer>
void AutomorphismGroup<Integer>::addComputationLinForms(const Matrix<Integer>& GivenLinearForms) {
    if (GivenLinearForms.nr_of_rows() == 0)
        return;

    LinFormsComp = GivenLinearForms;
    LinFormsComp.append(SpecialLinFormsRef);
    addedComputationLinForms = true;
}
*/

template <typename Integer>
void AutomorphismGroup<Integer>::dualize() {
    swap(GensRef, LinFormsRef);
    swap(SpecialGensRef, SpecialLinFormsRef);
    swap(GensComp, LinFormsComp);
    swap(addedComputationGens, addedComputationLinForms);
}

// contravariant -- swaps only computation results !!
template <typename Integer>
void AutomorphismGroup<Integer>::swap_data_from_dual(AutomorphismGroup<Integer> Dual) {
    swap(GenPerms, Dual.LinFormPerms);
    swap(LinFormPerms, Dual.GenPerms);
    swap(GenOrbits, Dual.LinFormOrbits);
    swap(LinFormOrbits, Dual.GenOrbits);

    for (size_t i = 0; i < Dual.LinMaps.size(); ++i) {
        Integer dummy;
        LinMaps.push_back(Dual.LinMaps[i].invert(dummy).transpose());
    }

    order = Dual.order;
    is_integral = Dual.is_integral;
    integrality_checked = Dual.integrality_checked;
    Qualities = Dual.Qualities;

    // Note: CanType cannot be dualized
}

// covariant  -- swaps only computation results !!
template <typename Integer>
void AutomorphismGroup<Integer>::swap_data_from(AutomorphismGroup<Integer> Help) {
    swap(GenPerms, Help.GenPerms);
    swap(LinFormPerms, Help.LinFormPerms);
    swap(GenOrbits, Help.GenOrbits);
    swap(LinFormOrbits, Help.LinFormOrbits);

    for (size_t i = 0; i < Help.LinMaps.size(); ++i) {
        LinMaps.push_back(Help.LinMaps[i]);
    }

    CanType = Help.CanType;  // no swap yet ...
    order = Help.order;
    is_integral = Help.is_integral;
    integrality_checked = Help.integrality_checked;
    Qualities = Help.Qualities;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::compute_polytopal(const AutomParam::Quality& desired_quality) {
    assert(SpecialLinFormsRef.nr_of_rows() > 0);

    // we "polytopalize" the generators:
    // division by grading/dehomogenization for renf_elem_class
    // scaling to lcm(degrees) else

    vector<Integer> Grad = SpecialLinFormsRef[0];
    Matrix<Integer> NormedGens = GensRef;
    if (using_renf<Integer>()) {
        bool is_polytope = NormedGens.standardize_rows(Grad);
        if (!is_polytope)
            throw NotComputableException("For automorphisms of algebraic polyhedra input must define a polytope");
    }
    else {
        mpz_class LCM_mpz = 1;  // to be on the safe side with this potentially very large number
        for (size_t i = 0; i < NormedGens.nr_of_rows(); ++i) {
            Integer val = v_scalar_product(Grad, NormedGens[i]);
            mpz_class val_mpz = convertTo<mpz_class>(val);
            if (val == 0)
                throw NotComputableException("Euclidean or rational automorphisms only computable for polytopes");
            LCM_mpz = libnormaliz::lcm(LCM_mpz, val_mpz);
        }
        Integer LCM = convertTo<Integer>(LCM_mpz);
        if (LCM != 1) {
            for (size_t i = 0; i < NormedGens.nr_of_rows(); ++i) {
                Integer val = v_scalar_product(Grad, NormedGens[i]);
                Integer quot = LCM / val;
                v_scalar_multiplication(NormedGens[i], quot);
            }
        }
    }

    if (GensRef.nr_of_rows() <= LinFormsRef.nr_of_rows() || LinFormsRef.nr_of_rows() == 0 ||
        desired_quality == AutomParam::euclidean) {
        AutomorphismGroup<Integer> Help(NormedGens, LinFormsRef, SpecialLinFormsRef);
        bool success = Help.compute_inner(desired_quality);
        swap_data_from(Help);
        return success;
    }

    // we make the dual polytope by taking the standard fixed point
    // as the grading on the dual space.
    // in the next round we take the exit above.

    vector<Integer> FixedPoint(Grad.size());
    for (size_t i = 0; i < NormedGens.nr_of_rows(); ++i) {
        FixedPoint = v_add(FixedPoint, NormedGens[i]);
    }
    if (using_renf<Integer>())
        v_standardize(FixedPoint);
    else
        v_make_prime(FixedPoint);

    AutomorphismGroup<Integer> DualPolytope(LinFormsRef, NormedGens, FixedPoint);
    bool success = DualPolytope.compute(desired_quality);
    swap_data_from_dual(DualPolytope);
    return success;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::compute_integral() {
    bool success = false;
    bool gens_tried = false;

    size_t nr_gens_used = GensComp.nr_of_rows();
    if (nr_gens_used == 0)
        nr_gens_used = GensRef.nr_of_rows();

    size_t nr_linforms_used = LinFormsComp.nr_of_rows();
    if (nr_linforms_used == 0)
        nr_linforms_used = LinFormsRef.nr_of_rows();

    if (addedComputationGens || nr_gens_used <= nr_linforms_used || nr_linforms_used == 0 || makeCanType) {
        success = compute_inner(AutomParam::integral);
        gens_tried = true;
    }

    if (success || makeCanType)  // if the CanType is asked for, dualization is not aloowed
        return success;

    AutomorphismGroup<Integer> Dual(*this);
    Dual.dualize();

    success = Dual.compute_inner(AutomParam::integral);

    if (success) {
        swap_data_from_dual(Dual);
        return true;
    }

    if (!gens_tried)
        success = compute_inner(AutomParam::integral);

    // if (success)
    //    return true;

    // success = compute_inner(AutomParam::integral, true);  // true = Gens x LinForms

    return success;
}

template <typename Integer>
bool AutomorphismGroup<Integer>::compute(const AutomParam::Quality& desired_quality, bool force_gens_x_linforms) {
    if (desired_quality == AutomParam::integral)
        return compute_integral();

    if (desired_quality == AutomParam::rational || desired_quality == AutomParam::algebraic ||
        desired_quality == AutomParam::euclidean)
        return compute_polytopal(desired_quality);

    return compute_inner(desired_quality, force_gens_x_linforms);
}

template <typename Integer>
nauty_result<Integer> AutomorphismGroup<Integer>::prepare_Gns_only_and_apply_nauty(const AutomParam::Quality& desired_quality) {
    if (nr_special_gens == 0 && !addedComputationGens) {
#ifdef NMZ_NAUTY
        return compute_automs_by_nauty_FromGensOnly(GensRef, nr_special_gens, SpecialLinFormsRef, desired_quality);
#else
        throw NotComputableException("Automorphism groups and iso types not accessible without nauty");
#endif
    }
    else {
        if (!addedComputationGens)
            GensComp = GensRef;
        GensComp.append(SpecialGensRef);
#ifdef NMZ_NAUTY
        return compute_automs_by_nauty_FromGensOnly(GensComp, nr_special_gens, SpecialLinFormsRef, desired_quality);
#else
        throw NotComputableException("Automorphism groups and iso types not accessible without nauty");
#endif
    }
}

template <typename Integer>
nauty_result<Integer> AutomorphismGroup<Integer>::prepare_Gns_x_LF_only_and_apply_nauty(
    const AutomParam::Quality& desired_quality) {
    // cout << "**** " << addedComputationGens << " " << addedComputationLinForms << " " << GensComp.nr_of_rows() << " " <<
    // LinFormsComp.nr_of_rows() << endl;

    if (nr_special_gens > 0 || addedComputationGens) {
        if (!addedComputationGens) {
            GensComp = GensRef;
        }
        GensComp.append(SpecialGensRef);
    }

    if (nr_special_linforms > 0 || addedComputationLinForms) {
        if (!addedComputationLinForms) {
            LinFormsComp = LinFormsRef;
        }
        LinFormsComp.append(SpecialLinFormsRef);
    }

    // cout << "**** " << addedComputationGens << " " << addedComputationLinForms << " " << GensComp.nr_of_rows() << " " <<
    // LinFormsComp.nr_of_rows() << endl;

#ifdef NMZ_NAUTY
    if (GensComp.nr_of_rows() == 0) {
        if (LinFormsComp.nr_of_rows() == 0)
            return compute_automs_by_nauty_Gens_LF(GensRef, nr_special_gens, LinFormsRef, nr_special_linforms, desired_quality);
        else
            return compute_automs_by_nauty_Gens_LF(GensRef, nr_special_gens, LinFormsComp, nr_special_linforms, desired_quality);
    }
    else {
        if (LinFormsComp.nr_of_rows() == 0)
            return compute_automs_by_nauty_Gens_LF(GensComp, nr_special_gens, LinFormsRef, nr_special_linforms, desired_quality);
        else
            return compute_automs_by_nauty_Gens_LF(GensComp, nr_special_gens, LinFormsComp, nr_special_linforms, desired_quality);
    }
#else
    throw NotComputableException("Automorphism groups and iso types not accessible without nauty");
#endif
}

template <typename Integer>
bool AutomorphismGroup<Integer>::compute_inner(const AutomParam::Quality& desired_quality, bool force_gens_x_linforms) {
    bool FromGensOnly = true;
    if (desired_quality == AutomParam::combinatorial || desired_quality == AutomParam::ambient_gen ||
        desired_quality == AutomParam::ambient_ineq || force_gens_x_linforms)
        FromGensOnly = false;

    assert(desired_quality == AutomParam::integral || !addedComputationGens);
    assert(!makeCanType || desired_quality == AutomParam::integral || desired_quality == AutomParam::rational);

    if (!FromGensOnly) {
        if (!addedComputationGens) {
            if (!addedComputationLinForms) {
                method = AutomParam::EH;
            }
            else {
                method = AutomParam::EL;
            }
        }
        else {
            method = AutomParam::GH;
        }
    }  // !FromGensOnly
    else {
        if (!addedComputationGens) {
            method = AutomParam::EE;
        }
        else {
            method = AutomParam::GG;
        }
    }

    nauty_result<Integer> result;

#ifdef NMZ_NAUTY
    if (FromGensOnly) {
        result = prepare_Gns_only_and_apply_nauty(desired_quality);
    }
    else {
        result = prepare_Gns_x_LF_only_and_apply_nauty(desired_quality);
    }
#endif

    order = result.order;
    if (makeCanType)
        CanType = result.CanType;

    Qualities.insert(desired_quality);

    if (!using_renf<Integer>() && (HasQuality(AutomParam::ambient_gen) || HasQuality(AutomParam::ambient_ineq))) {
        is_integral = true;
        integrality_checked = true;
    }

    bool check_integrality = false;  // the critical point in this case is that full dimension may be reached only
    if (!using_renf<Integer>() && HasQuality(AutomParam::input_ineq)) {  // with the dehomogenization which is a special genarator
        size_t gens_ref_rank = GensRef.rank();                           // i.e., a fixed point in this setting
        if (GensRef.nr_of_rows() > 0 && gens_ref_rank == GensRef[0].size())
            check_integrality = true;
    }

    if (HasQuality(AutomParam::integral) ||
        HasQuality(AutomParam::rational) ||  // in the algebraic case we compute the linear maps
        HasQuality(AutomParam::algebraic) || HasQuality(AutomParam::input_gen) || check_integrality) {
        integrality_checked = true;
        if (GensComp.nr_of_rows() > 0)
            is_integral = make_linear_maps_primal(GensComp, result.GenPerms);
        else
            is_integral = make_linear_maps_primal(GensRef, result.GenPerms);
    }

    // cout << "LLLL " << maps_lifted << endl;

    if (!is_integral && desired_quality == AutomParam::integral)
        return false;

    if (using_renf<Integer>()) {  // makes no sense in this case
        is_integral = false;
        integrality_checked = false;
    }

    // cout << quality_to_string(desired_quality) << " " << maps_lifted << endl;

    if (true) {  //(contains(ToCompute,AutomParam::OrbitsPrimal)){
        if (method == AutomParam::EH || method == AutomParam::EL || method == AutomParam::EE) {
            GenPerms = result.GenPerms;
            GenOrbits = convert_to_orbits(result.GenOrbits);
        }
        else {
            gen_data_via_lin_maps();
        }
    }

    // cout << "EEE " << given_gens_are_extrays << endl;

    if (LinFormsRef.nr_of_rows() > 0) {
        if ((method == AutomParam::EH || method == AutomParam::GH) && !using_renf<Integer>()) {
            LinFormPerms = result.LinFormPerms;
            LinFormOrbits = convert_to_orbits(result.LinFormOrbits);
        }
        else {
            // linform_data_via_lin_maps();
            linform_data_via_incidence();
        }
    }

    /* CanLabellingGens.clear();
    if(!addedComputationGens){
        CanLabellingGens=result.CanLabellingGens;
    }
    cout << "===========" << endl;
    cout << result.GenPerms;
    cout << "===========" << endl;
    cout << GenPerms;
    cout << "===========" << endl;
    cout << LinFormPerms;
    cout << "===========" << endl;
    cout << GenOrbits;
    cout << "===========" << endl;
    cout << LinFormOrbits;
    cout << "===========" << endl;*/

    return true;
}

template <typename Integer>
void AutomorphismGroup<Integer>::gen_data_via_lin_maps() {
    GenPerms.clear();
    map<vector<Integer>, key_t> S;
    for (key_t k = 0; k < GensRef.nr_of_rows(); ++k)
        S[GensRef[k]] = k;
    for (size_t i = 0; i < LinMaps.size(); ++i) {
        vector<key_t> Perm(GensRef.nr_of_rows());
        for (key_t j = 0; j < Perm.size(); ++j) {
            vector<Integer> Im = LinMaps[i].MxV(GensRef[j]);
            assert(S.find(Im) != S.end());  // for safety
            if (!using_renf<Integer>())
                v_make_prime(Im);
            Perm[j] = S[Im];
        }
        GenPerms.push_back(Perm);
    }
    GenOrbits = orbits(GenPerms, GensRef.nr_of_rows());
}

/* now done via inciddnce

template <typename Integer>
void AutomorphismGroup<Integer>::linform_data_via_lin_maps() {
    bool only_rational = contains(Qualities, AutomParam::rational);
    LinFormPerms.clear();
    map<vector<Integer>, key_t> S;
    for (key_t k = 0; k < LinFormsRef.nr_of_rows(); ++k)
        S[LinFormsRef[k]] = k;
    for (size_t i = 0; i < LinMaps.size(); ++i) {
        vector<key_t> Perm(LinFormsRef.nr_of_rows());
        Integer dummy;
        Matrix<Integer> LM = LinMaps[i].invert(dummy).transpose();
        for (key_t j = 0; j < Perm.size(); ++j) {
            vector<Integer> Im = LM.MxV(LinFormsRef[j]);
            if (only_rational)
                v_make_prime(Im);
            assert(S.find(Im) != S.end());  // for safety
            Perm[j] = S[Im];
        }
        LinFormPerms.push_back(Perm);
    }
    LinFormOrbits = orbits(LinFormPerms, LinFormsRef.nr_of_rows());
}

*/

template <typename Integer>
void AutomorphismGroup<Integer>::setIncidenceMap(const map<dynamic_bitset, key_t>& Incidence) {
    IncidenceMap = Incidence;
    assert(IncidenceMap.size() == LinFormsRef.nr_of_rows());
    if (IncidenceMap.size() > 0)
        assert(IncidenceMap.begin()->first.size() == GensRef.nr_of_rows());
}

template <typename Integer>
void AutomorphismGroup<Integer>::compute_incidence_map() {
    if (IncidenceMap.size() > 0)  // already computed or set from the outside
        return;

    vector<dynamic_bitset> IncidenceMatrix;

    makeIncidenceMatrix(IncidenceMatrix, GensRef, LinFormsRef);
    IncidenceMap = map_vector_to_indices(IncidenceMatrix);
    // cout << "IIIIIIIIII " << IncidenceMap.size() << "--  " << LinFormsRef.nr_of_rows() <<  "--  " << GensRef.nr_of_rows() <<
    // endl;
    assert(IncidenceMap.size() == LinFormsRef.nr_of_rows());
}

template <typename Integer>
void AutomorphismGroup<Integer>::linform_data_via_incidence() {
    compute_incidence_map();

    LinFormPerms.clear();
    LinFormPerms.resize(GenPerms.size());
    for (size_t i = 0; i < GenPerms.size(); ++i) {
        vector<key_t> linf_perm(LinFormsRef.nr_of_rows());
        for (const auto& L : IncidenceMap) {
            dynamic_bitset permuted_indicator(GensRef.nr_of_rows());
            for (size_t j = 0; j < GensRef.nr_of_rows(); ++j)
                permuted_indicator[GenPerms[i][j]] = L.first[j];
            linf_perm[L.second] = IncidenceMap[permuted_indicator];
        }
        LinFormPerms[i] = linf_perm;
    }

    LinFormOrbits = orbits(LinFormPerms, LinFormsRef.nr_of_rows());
}

// the next two functions create the orbit of a vector from the action of linear maps
template <typename Integer>
void AutomorphismGroup<Integer>::add_images_to_orbit(const vector<Integer>& v, set<vector<Integer> >& orbit) const {
    for (size_t i = 0; i < LinMaps.size(); ++i) {
        vector<Integer> w = LinMaps[i].MxV(v);
        auto f = orbit.find(w);
        if (f != orbit.end())
            continue;
        else {
            orbit.insert(w);
            add_images_to_orbit(w, orbit);
        }
    }
}

template <typename Integer>
list<vector<Integer> > AutomorphismGroup<Integer>::orbit_primal(const vector<Integer>& v) const {
    set<vector<Integer> > orbit;
    add_images_to_orbit(v, orbit);
    list<vector<Integer> > orbit_list;
    for (auto& c : orbit)
        orbit_list.push_back(c);
    return orbit_list;
}

//-------------------------------------------------------------------------------

/* MUCH TO DO
template<typename Integer>
IsoType<Integer>::IsoType(Full_Cone<Integer>& C, bool with_Hilbert_basis){

    dim=C.getDim();
    if(dim=0)
        return;

    if(with_Hilbert_basis){
        if(!C.isComputed(ConeProperty::HilbertBasis)){
            C.do_Hilbert_basis=true;
            C.compute();
        }
        HilbertBasis=Matrix<Integer>(C.Hilbert_Basis);
    }

    if(!C.isComputed(ConeProperty::ExtremeRays)){
        C.get_supphyps_from_copy(true);
        C.get_supphyps_from_copy(true,true);
    }

    ExtremeRays=C.Generators.submatrix(C.Extreme_Rays_ind);
    SupportHyperplanes=C.Support_Hyperplanes;

    if(C.isComputed(ConeProperty::Multiplicity))
        Multiplicity=C.multiplicity;

}*/

template <typename Integer>
IsoType<Integer>::IsoType() {  // constructs a dummy object
}

/*
template <typename Integer>
IsoType<Integer>::IsoType(const Full_Cone<Integer>& C, bool& success) {

    success = false;
    assert(C.isComputed(ConeProperty::Automorphisms));

    // we don't want the zero cone here. It should have been filtered out.
    assert(C.dim > 0);
    // We insist that cones arriving here are have their extreme rays as generators
    nrExtremeRays = C.getNrExtremeRays();
    assert(nrExtremeRays == C.nr_gen);

    if (C.isComputed(ConeProperty::Grading))
        Grading = C.Grading;
    if (C.inhomogeneous)
        Truncation = C.Truncation;

    if (C.Automs.getMethod() == AutomParam::GG)  // not yet useful
        return;
    CanType = C.Automs.CanType;
    CanLabellingGens = C.Automs.getCanLabellingGens();
    rank = C.dim;
    nrSupportHyperplanes = C.nrSupport_Hyperplanes;
    if (C.isComputed(ConeProperty::Multiplicity))
        Multiplicity = C.multiplicity;

    if (C.isComputed(ConeProperty::HilbertBasis)) {
        HilbertBasis = Matrix<Integer>(0, rank);
        ExtremeRays = C.Generators;
        // we compute the coordinate transformation to the first max linearly indepndent
        // of extreme rays in canonical order
        CanBasisKey = ExtremeRays.max_rank_submatrix_lex(CanLabellingGens);
        CanTransform = ExtremeRays.submatrix(CanBasisKey).invert(CanDenom);

        // now we remove the extreme rays from the stored Hilbert CanBasisKey
        // since the isomorphic copy knows its own extreme rays
        if (C.Hilbert_Basis.size() > nrExtremeRays) {  // otherwise nothing to do
            set<vector<Integer> > ERSet;
            for (size_t i = 0; i < nrExtremeRays; ++i)
                ERSet.insert(ExtremeRays[i]);
            for (const auto& h : C.Hilbert_Basis) {
                if (ERSet.find(h) == ERSet.end())
                    HilbertBasis.append(h);
            }
        }
    }
    success = true;
}
*/

template <typename Integer>
IsoType<Integer>::IsoType(Cone<Integer>& C) {
    type = AutomParam::integral_standard;

    C.compute(ConeProperty::HilbertBasis);

    /* cout << "****************" << endl;
    C.getHilbertBasisMatrix().pretty_print(cout);
    cout << "----------------" << endl;
    C.getSupportHyperplanesMatrix().pretty_print(cout);
    cout << "****************" << endl; */

    Matrix<Integer> HB_sublattice = C.getSublattice().to_sublattice(C.getHilbertBasis());
    Matrix<Integer> SH_sublattice = C.getSublattice().to_sublattice_dual(C.getSupportHyperplanes());

    /* HB_sublattice.pretty_print(cout);
    cout << "----------------" << endl;
    SH_sublattice.pretty_print(cout);
    cout << "****************" << endl; */

#ifndef NMZ_NAUTY

    throw FatalException("IsoType needs nauty");
#else

    nauty_result<Integer> nau_res = compute_automs_by_nauty_Gens_LF(HB_sublattice, 0, SH_sublattice, 0, AutomParam::integral);
    CanType = nau_res.CanType;
#endif
}

template <typename Integer>
IsoType<Integer>::IsoType(const Matrix<Integer>& M) {
    type = AutomParam::matrix;  // for tihe time being

    Matrix<Integer> UnitMatrix(M.nr_of_columns());

#ifndef NMZ_NAUTY

    throw FatalException("IsoType needs nauty");

#else

    nauty_result<Integer> nau_res =
        compute_automs_by_nauty_Gens_LF(M, 0, UnitMatrix, 0, AutomParam::integral);  // true = with iso type
    CanType = nau_res.CanType;
#endif
}

template <typename Integer>
IsoType<Integer>::IsoType(const Matrix<Integer>& Inequalities,
                          const Matrix<Integer> Equations,
                          const vector<Integer> Grading,
                          bool strict_type_check) {
    type = AutomParam::rational_dual;

    Matrix<Integer> Subspace = Equations.kernel();
    Matrix<Integer> IneqOnSubspace(Inequalities.nr_of_rows(), Subspace.nr_of_rows());
    for (size_t i = 0; i < Inequalities.nr_of_rows(); ++i)
        IneqOnSubspace[i] = Subspace.MxV(Inequalities[i]);

    vector<Integer> GradingOnSubspace = Subspace.MxV(Grading);
    IneqOnSubspace.append(GradingOnSubspace);  // better to treat it as a special generator ?

    /*cout << "***************" << endl;
    IneqOnSubspace.pretty_print(cout);
    cout << "**************" << endl;*/

    Matrix<Integer> Empty(0, Subspace.nr_of_rows());

#ifndef NMZ_NAUTY

    throw FatalException("IsoType needs nauty");

#else

    nauty_result<Integer> nau_res;
    // #pragma omp critical(NAUTY)
    nau_res = compute_automs_by_nauty_FromGensOnly(IneqOnSubspace, 0, Empty, AutomParam::integral);
    if (strict_type_check)
        CanType = nau_res.CanType;
    else {
        ostringstream TypeStream;
        nau_res.CanType.pretty_print(TypeStream);
        HashValue = sha256hexvec(TypeStream.str());
    }

    /* vector<vector<key_t> > OrbitKeys = convert_to_orbits(nau_res.GenOrbits);
    FacetOrbits.clear();
    for(size_t i =0; i< OrbitKeys.size() -1; ++i)  // don't want the orbit of the grading
        FacetOrbits.push_back(key_to_bitset(OrbitKeys[i], Inequalities.nr_of_rows()) );    */

    // cout << "-----------------------------------------" << endl;
    // cout << FacetOrbits;
#endif

    index = IneqOnSubspace.full_rank_index();
}

template <typename Integer>
IsoType<Integer>::IsoType(const Matrix<Integer>& ExtremeRays, const vector<Integer> Grading, bool strict_type_check) {
    type = AutomParam::rational_primal;

    /*cout << "***************" << endl;
    IneqOnSubspace.pretty_print(cout);
    cout << "**************" << endl;*/

    Sublattice_Representation<Integer> Subspace(ExtremeRays, true, false);  //  take saturation, no LLL
    Matrix<Integer> EmbeddedExtRays = Subspace.to_sublattice(ExtremeRays);
    vector<Integer> RestrictedGrad = Subspace.to_sublattice_dual_no_div(Grading);

    Matrix<Integer> GradMat(RestrictedGrad);

    // Matrix<Integer> Empty(0,Subspace.getRank());

    nauty_result<Integer> nau_res;

#ifndef NMZ_NAUTY

    throw FatalException("IsoType needs nauty");

#else

#ifndef NMZ_NAUTY_TLS
#pragma omp critical(NAUTY)
#endif
    nau_res = compute_automs_by_nauty_FromGensOnly(EmbeddedExtRays, 0, GradMat, AutomParam::integral);

    if (strict_type_check)
        CanType = nau_res.CanType;
    else {
        ostringstream TypeStream;
        nau_res.CanType.pretty_print(TypeStream);
        HashValue = sha256hexvec(TypeStream.str());
    }
#endif

    // vector<vector<key_t> > OrbitKeys = convert_to_orbits(nau_res.GenOrbits);
    // FacetOrbits.clear();

    // cout << "-----------------------------------------" << endl;
    // cout << FacetOrbits;

    index = convertTo<Integer>(Subspace.getExternalIndex());
}

template <>
IsoType<renf_elem_class>::IsoType(Cone<renf_elem_class>& C) {
    assert(false);
}

/*
template <typename Integer>
const Matrix<Integer>& IsoType<Integer>::getHilbertBasis() const {
    return HilbertBasis;
}

template <typename Integer>
const Matrix<Integer>& IsoType<Integer>::getCanTransform() const {
    return CanTransform;
}

template <typename Integer>
Integer IsoType<Integer>::getCanDenom() const {
    return CanDenom;
}

template <typename Integer>
bool IsoType<Integer>::isOfType(const Full_Cone<Integer>& C) const {
    if (C.dim != rank || C.nrSupport_Hyperplanes != nrSupportHyperplanes || nrExtremeRays != C.getNrExtremeRays())
        return false;
    if (!CanType.equal(C.Automs.CanType))
        return false;
    return true;
}

template <typename Integer>
mpq_class IsoType<Integer>::getMultiplicity() const {
    return Multiplicity;
}
*/

template <typename Integer>
const BinaryMatrix<Integer>& IsoType<Integer>::getCanType() const {
    return CanType;
}

// Isomorphisam classes

template <typename Integer>
Isomorphism_Classes<Integer>::Isomorphism_Classes() {
    // Classes.push_back(IsoType<Integer>());
    type = AutomParam::integral_standard;
}

template <typename Integer>
Isomorphism_Classes<Integer>::Isomorphism_Classes(AutomParam::Type given_type) {
    // Classes.push_back(IsoType<Integer>());
    type = given_type;
}

template <typename Integer>
size_t Isomorphism_Classes<Integer>::size() const {
    return Classes.size();
}

template <typename Integer>
const set<IsoType<Integer>, IsoType_compare<Integer> >& Isomorphism_Classes<Integer>::getClasses() const {
    return Classes;
}

template <typename Integer>
const IsoType<Integer>& Isomorphism_Classes<Integer>::find_type(const IsoType<Integer>& IT, bool& found) const {
    assert(IT.type == type);

    auto F = Classes.find(IT);
    found = true;
    if (F == Classes.end())
        found = false;
    return *F;
}

template <typename Integer>
const IsoType<Integer>& Isomorphism_Classes<Integer>::add_type(const IsoType<Integer>& IT, bool& found) {
    assert(IT.type == type);

    // typename set<IsoType<Integer>, IsoType_compare<Integer> >::iterator ICL;
    pair<typename set<IsoType<Integer>, IsoType_compare<Integer> >::iterator, bool> ret;
    ret = Classes.insert(IT);
    found = !ret.second;
    /* if(!found){
        cout << "new isoclass CanType, format " << IT.CanType.get_nr_rows()<< "x" << IT.CanType.get_nr_columns()<< endl;
        IT.CanType.get_value_mat().pretty_print(cout);
        cout << "Values " << IT.CanType.get_values();
    }*/

    return *ret.first;
}

template <typename Integer>
size_t Isomorphism_Classes<Integer>::erase_type(const IsoType<Integer>& IT) {
    return Classes.erase(IT);
}

template <typename Integer>
const IsoType<Integer>& Isomorphism_Classes<Integer>::find_type(Cone<Integer>& C, bool& found) const {
    IsoType<Integer> IT(C);
    return find_type(IT, found);
}

template <typename Integer>
const IsoType<Integer>& Isomorphism_Classes<Integer>::add_type(Cone<Integer>& C, bool& found) {
    IsoType<Integer> IT(C);
    return add_type(IT, found);
}

template <typename Integer>
size_t Isomorphism_Classes<Integer>::erase_type(Cone<Integer>& C) {
    IsoType<Integer> IT(C);
    return erase_type(IT);
}

/*
template <typename Integer>
void Isomorphism_Classes<Integer>::add_type(Full_Cone<Integer>& C, bool& success) {
    Classes.push_back(IsoType<Integer>(C, success));
    if (!success)
        Classes.pop_back();
}
*/

size_t NOT_FOUND = 0;
size_t FOUND = 0;

/*
template <typename Integer>
const IsoType<Integer>& Isomorphism_Classes<Integer>::find_type(Full_Cone<Integer>& C, bool& found) const {
    assert(C.getNrExtremeRays() == C.nr_gen);
    found = false;
    if (C.Automs.method == AutomParam::GG)  // cannot be used for automorphism class
        return *Classes.begin();
    auto it = Classes.begin();
    ++it;
    for (; it != Classes.end(); ++it) {
        if (it->isOfType(C)) {
            found = true;
            FOUND++;
            return *it;
        }
    }
    NOT_FOUND++;
    return *Classes.begin();
}
*/

/*
 //  old functions used for the computation of orbits
list<dynamic_bitset> partition(size_t n, const vector<vector<key_t> >& Orbits) {
    // produces a list of bitsets, namely the indicator vectors of the key vectors in Orbits

    list<dynamic_bitset> Part;
    for (const auto& Orbit : Orbits) {
        dynamic_bitset p(n);
        for (unsigned int j : Orbit)
            p.set(j, true);
        Part.push_back(p);
    }
    return Part;
}

vector<vector<key_t> > keys(const list<dynamic_bitset>& Partition) {
    // inverse operation of partition
    vector<vector<key_t> > Keys;
    auto p = Partition.begin();
    for (; p != Partition.end(); ++p) {
        vector<key_t> key;
        for (size_t j = 0; j < p->size(); ++j)
            if (p->test(j))
                key.push_back(j);
        Keys.push_back(key);
    }
    return Keys;
}

list<dynamic_bitset> join_partitions(const list<dynamic_bitset>& P1, const list<dynamic_bitset>& P2) {
    // computes the join of two partitions given as lusts of indicator vectors
    list<dynamic_bitset> J = P1;  // work copy pf P1
    auto p2 = P2.begin();
    for (; p2 != P2.end(); ++p2) {
        auto p1 = J.begin();
        for (; p1 != J.end(); ++p1) {  // search the first member of J that intersects p1
            if ((*p2).intersects(*p1))
                break;
        }
        if ((*p2).is_subset_of(*p1))  // is contained in that member, nothing to do
            continue;
        // now we join the members of J that intersect p2
        assert(p1 != J.end());  // to be on the safe side
        auto p3 = p1;
        p3++;
        while (p3 != J.end()) {
            if ((*p2).intersects(*p3)) {
                *p1 |= *p3;  // the union
                p3 = J.erase(p3);
            }
            else
                p3++;
        }
    }
    return J;
}
*/

vector<vector<key_t> > PermGroup(const vector<vector<key_t> >& Perms, size_t N) {
    // creates the full permutation group of 0,...,N-1 generated by Perms

    set<vector<key_t> > Group, Work;

    Group.insert(identity_key(N));
    for (size_t i = 0; i < Perms.size(); ++i)
        Work.insert(Perms[i]);

    while (!Work.empty()) {
        set<vector<key_t> > NewPerms;
        for (auto& W : Work) {
            for (size_t j = 0; j < Perms.size(); ++j) {
                vector<key_t> new_perm(N);
                for (size_t k = 0; k < N; ++k)
                    new_perm[k] = Perms[j][W[k]];
                auto p = Group.find(new_perm);
                if (p != Group.end())
                    continue;
                p = Work.find(new_perm);
                if (p != Work.end())
                    continue;
                NewPerms.insert(new_perm);
            }
        }
        Group.insert(Work.begin(), Work.end());
        Work = NewPerms;
    }

    vector<vector<key_t> > GroupVector;
    for (auto& W : Group)
        GroupVector.push_back(W);
    return GroupVector;
}

vector<vector<key_t> > orbits(const vector<vector<key_t> >& Perms, size_t N) {
    // Perms is a list of permutations of 0,...,N-1
    // We create the orbits of the permitation group generated by them.

    vector<vector<key_t> > Orbits;
    if (Perms.size() == 0) {  // each element is its own orbit
        Orbits.reserve(N);
        for (size_t i = 0; i < N; ++i)
            Orbits.push_back(vector<key_t>(1, static_cast<key_t>(i)));
        return Orbits;
    }
    vector<bool> InOrbit(N, false);
    for (size_t i = 0; i < N; ++i) {
        if (InOrbit[i])
            continue;
        vector<key_t> NewOrbit;
        NewOrbit.push_back(static_cast<key_t>(i));
        InOrbit[i] = true;
        for (size_t j = 0; j < NewOrbit.size(); ++j) {
            for (const auto& Perm : Perms) {
                key_t im = Perm[NewOrbit[j]];
                if (InOrbit[im])
                    continue;
                NewOrbit.push_back(im);
                InOrbit[im] = true;
            }
        }
        sort(NewOrbit.begin(), NewOrbit.end());
        Orbits.push_back(NewOrbit);
    }

    return Orbits;
}

vector<vector<key_t> > convert_to_orbits(const vector<key_t>& raw_orbits) {
    // decomposes the orbit presentation of nauty into the standard form
    vector<key_t> key(raw_orbits.size());
    vector<vector<key_t> > orbits;
    for (key_t i = 0; i < raw_orbits.size(); ++i) {
        if (raw_orbits[i] == i) {
            orbits.push_back(vector<key_t>(1, i));
            key[i] = static_cast<key_t>(orbits.size() - 1);
        }
        else {
            orbits[key[raw_orbits[i]]].push_back(i);
        }
    }
    return orbits;
}

vector<vector<key_t> > cycle_decomposition(vector<key_t> perm, bool with_fixed_points) {
    // computes the cacle decomposition of a permutation with or without fixed points

    vector<vector<key_t> > dec;
    vector<bool> in_cycle(perm.size(), false);
    for (size_t i = 0; i < perm.size(); ++i) {
        if (in_cycle[i])
            continue;
        if (perm[i] == i) {
            if (!with_fixed_points)
                continue;
            vector<key_t> cycle(1, static_cast<key_t>(i));
            in_cycle[i] = true;
            dec.push_back(cycle);
            continue;
        }
        in_cycle[i] = true;
        key_t next = static_cast<key_t>(i);
        vector<key_t> cycle(1, static_cast<key_t>(i));
        while (true) {
            next = perm[next];
            if (next == i)
                break;
            cycle.push_back(next);
            in_cycle[next] = true;
        }
        dec.push_back(cycle);
    }
    return dec;
}

void pretty_print_cycle_dec(const vector<vector<key_t> >& dec, ostream& out) {
    for (const auto& i : dec) {
        out << "(";
        for (size_t j = 0; j < i.size(); ++j) {
            out << i[j] + 1;
            if (j != i.size() - 1)
                out << " ";
        }
        out << ") ";
    }
    out << "--" << endl;
}

template class AutomorphismGroup<long>;
template class AutomorphismGroup<long long>;
template class AutomorphismGroup<mpz_class>;

template class Isomorphism_Classes<long>;
template class Isomorphism_Classes<long long>;
template class Isomorphism_Classes<mpz_class>;

template class IsoType<long>;
template class IsoType<long long>;
template class IsoType<mpz_class>;

#ifdef ENFNORMALIZ
template class AutomorphismGroup<renf_elem_class>;
template class Isomorphism_Classes<renf_elem_class>;
template class IsoType<renf_elem_class>;
#endif

}  // namespace libnormaliz