File: binomial.cpp

package info (click to toggle)
normaliz 3.11.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 40,448 kB
  • sloc: cpp: 48,104; makefile: 2,247; sh: 1
file content (434 lines) | stat: -rw-r--r-- 13,977 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
/*
 * Normaliz
 * Copyright (C) 2007-2025  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

#include "libnormaliz/binomial.h"

using std::cout;
using std::endl;
using std::string;
using std::to_string;

unsigned long long winf_ini_coprime = 0;
unsigned long long winf_gm_left = 0;
unsigned long long winf_tail_not_coprime = 0;
unsigned long long winf_s_poly = 0;
unsigned long long winf_red = 0;
unsigned long long winf_red_tail = 0;
unsigned long long winf_red_zero = 0;
unsigned long long winf_red_steps = 0;
unsigned long long winf_gm_steps = 0;
unsigned long long winf_entered_nodes = 0;

void reset_statistics(){
    winf_ini_coprime = 0;
    winf_gm_left = 0;
    winf_tail_not_coprime = 0;
    winf_s_poly = 0;
    winf_red = 0;
    winf_red_tail = 0;
    winf_red_zero = 0;
    winf_red_steps = 0;
    winf_gm_steps = 0;
    winf_entered_nodes = 0;
}


struct timeval OUR_TIME_begin, OUR_TIME_end;

void OURStartTime() {
    gettimeofday(&OUR_TIME_begin, 0);
}

void OURMeasureTime(bool verbose, const std::string& step) {
    gettimeofday(&OUR_TIME_end, 0);
    long seconds = OUR_TIME_end.tv_sec - OUR_TIME_begin.tv_sec;
    long microseconds = OUR_TIME_end.tv_usec - OUR_TIME_begin.tv_usec;
    double elapsed = seconds + microseconds * 1e-6;
    if (verbose)
        std::cout << step << ": " << elapsed << " sec" << std::endl;
    OUR_TIME_begin = OUR_TIME_end;
}

bool revlex(const exponent_vec& lhs, const exponent_vec& rhs) {
    assert(lhs.size() == rhs.size());
    for (size_t i = 1; i <= lhs.size(); ++i) {
        if (lhs[lhs.size()-i] > rhs[lhs.size()-i])
            return true;
        if (lhs[lhs.size()-i] < rhs[lhs.size()-i])
            return false;
    }
    return false; // equality
}

bool revlex_nonstrict(const exponent_vec& lhs, const exponent_vec& rhs) {
    assert(lhs.size() == rhs.size());
    for (size_t i = 1; i <= lhs.size(); ++i) {
        if (lhs[lhs.size()-i] > rhs[lhs.size()-i])
            return true;
        if (lhs[lhs.size()-i] < rhs[lhs.size()-i])
            return false;
    }
    return true; // equality, and we are doing nonstrict comparison
}

monomial_order::monomial_order(const bool t,
                               const exponent_vec& g) :
exponent_vec(g),
type(t) {}

monomial_order::monomial_order(const std::string& type_string,
                               const exponent_vec& g) :
    exponent_vec(g) {
    set_type(type_string);
}

void monomial_order::set_type(const std::string& type_string) {
    if ("deglex" == type_string) {
        type = false;
    } else if ("degrevlex" == type_string) {
        type = true;
    } else {
        std::cout << "Error: Monomial order \""
                  << type_string
                  << "\" unknown; possible values: \"deglex\", \"degrevlex\"."
                  << std::endl;
        exit(1);
    }
}

void monomial_order::set_weight(const exponent_vec& g) {
    exponent_vec::operator =(g);
}

bool monomial_order::get_type() const {
    return type;
}

std::string monomial_order::get_type_string() const {
    return (type ? "degrevlex" : "deglex");
}

exponent_vec monomial_order::get_weight() const {
    return (*this);
}

bool monomial_order::compare(const exponent_vec& lhs,
                             const exponent_vec& rhs) const {
    assert(size() == lhs.size());
    assert(size() == rhs.size());
    exponent_t wdeg_lhs(libnormaliz::v_scalar_product(*this, lhs));
    exponent_t wdeg_rhs(libnormaliz::v_scalar_product(*this, rhs));

    if (wdeg_lhs != wdeg_rhs)
        return (wdeg_lhs < wdeg_rhs);
    return (type ? revlex(lhs, rhs) : (lhs < rhs));
}

bool monomial_order::compare_nonstrict(const exponent_vec& lhs,
                                       const exponent_vec& rhs) const {
    assert(size() == lhs.size());
    assert(size() == rhs.size());
    exponent_t wdeg_lhs(libnormaliz::v_scalar_product(*this, lhs));
    exponent_t wdeg_rhs(libnormaliz::v_scalar_product(*this, rhs));
    if (wdeg_lhs != wdeg_rhs)
        return (wdeg_lhs < wdeg_rhs);
    return (type ? revlex_nonstrict(lhs, rhs) : (lhs <= rhs));
}


bool exp_vec_compare_componentwise(const exponent_vec& lhs,
                                   const exponent_vec& rhs) {
    assert(lhs.size() == rhs.size());
    for (size_t i = 0; i < lhs.size(); ++i)
        if (lhs[i] > rhs[i])
            return false;
    return true;
}


void binomial::set_mo_degrees(const monomial_order& mo) {
    mo_degree_pos = libnormaliz::v_scalar_product(mo, get_exponent_pos());
    mo_degree_neg = libnormaliz::v_scalar_product(mo, get_exponent_neg());
}

/*void binomial::compute_exponent_pos() const {
    for (size_t i = 0; i < size(); ++i)
        exponent_pos[i] = ((*this)[i] > 0 ? (*this)[i] : 0);
}
*/

exponent_vec binomial::get_exponent_pos() const {
    exponent_vec exponent_pos(size());
    for (size_t i = 0; i < size(); ++i)
        exponent_pos[i] = ((*this)[i] > 0 ? (*this)[i] : 0);
    return exponent_pos;
}

exponent_vec binomial::get_exponent_neg() const {
    exponent_vec neg_vec(size());
    for (size_t i = 0; i < size(); ++i)
        neg_vec[i] = ((*this)[i] < 0 ? -(*this)[i] : 0);
    return neg_vec;
}

void binomial::clear() {
    for (size_t i = 0; i < size(); ++i) {
        (*this)[i] = 0;
    }
    mo_degree_pos = 0;
    mo_degree_neg = 0;
}

// void binomial::compute_total_degrees() const {
//     total_degree_pos = std::accumulate(begin(), end(), 0,
//                                [](const exponent_t& e1, const exponent_t& e2)
//                                { return (0 < e2 ? e1 + e2 : e1); });
//     total_degrees_computed = true;
// }

// exponent_t binomial::get_total_degree_pos() const {
//     if (!total_degrees_computed)
//         compute_total_degrees();
//     return total_degree_pos;
// }

// exponent_t binomial::get_total_degree_neg() const {
//     exponent_vec neg_vec = get_exponent_neg();
//     return std::accumulate(neg_vec.begin(), neg_vec.end(), 0);
// }

bool binomial::operator ==(const exponent_vec& rhs) const {
    // for (size_t i = 0; i < size(); ++i)
    //     if ((*this)[i] != rhs[i])
    //         return false;
    // return true;
    return (static_cast<exponent_vec>(*this) == rhs);
}

binomial binomial::operator -(const binomial& rhs) const {
    assert(size() == rhs.size());
    binomial w(size());
    for (size_t i = 0; i < size(); ++i)
        w[i] = (*this)[i] - rhs[i];
    return w;
}

binomial binomial::operator *(const exponent_t rhs) const {
    binomial w(size());
    for (size_t i = 0; i < size(); ++i)
        w[i] = rhs * (*this)[i];
    return w;
}

void binomial::operator -=(const binomial& rhs) {
    assert(size() == rhs.size());
    for (size_t i = 0; i < size(); ++i)
        (*this)[i] -= rhs[i];
    mo_degree_pos = -1;
    mo_degree_neg = -1;
}

void binomial::operator *=(const exponent_t rhs) {
    for (size_t i = 0; i < size(); ++i)
        (*this)[i] *= rhs;
    mo_degree_pos = -1;
    mo_degree_neg = -1;
}

// Compare *this with the binomial rhs as follows:
// *this < rhs iff one of the following holds:
// (a) totdeg(exponent_pos) < totdeg(rhs.exponent_pos)
// (b) totdeg(exponent_pos) = totdeg(rhs.exponent_pos)
//     and    exponent_pos  < rhs.exponent_pos (lexicographically)
// (c) totdeg(exponent_pos) = totdeg(rhs.exponent_pos)
//     and    exponent_pos  = rhs.exponent_pos (lexicographically)
//     and totdeg(exponent_neg) < totdeg(rhs.exponent_neg)
// (d) totdeg(exponent_pos) = totdeg(rhs.exponent_pos)
//     and    exponent_pos  = rhs.exponent_pos (lexicographically)
//     and totdeg(exponent_neg) = totdeg(rhs.exponent_neg)
//     and        exponent_neg  < rhs.exponent_neg (lexicographically)
// bool binomial::operator <(const binomial& rhs) const {
//     assert(size() == rhs.size());
//     // if total degree of positive monomial decides,
//     // avoid lexicographic comparison
//     if (get_total_degree_pos() != rhs.get_total_degree_pos())
//         return (get_total_degree_pos() < rhs.get_total_degree_pos());
//     // Now we are in above case (b), (c) or (d).
//     // compare positive monomials (lexicographic comparison):
//     if (get_exponent_pos() != rhs.get_exponent_pos())
//         return (get_exponent_pos() < rhs.get_exponent_pos());
//     // if total degree of negative monomial decides,
//     // avoid lexicographic comparison:
//     if (get_total_degree_neg() != rhs.get_total_degree_neg())
//         return (get_total_degree_neg() < rhs.get_total_degree_neg());
//     // compare negative monomials:
//     return (get_exponent_neg() < rhs.get_exponent_neg());
// }

// bool binomial::operator <=(const binomial& rhs) const {
//     assert(size() == rhs.size());
//     return !(*this < rhs); // total order
// }
// Reduce nonnegative (!) exponent_vec to_reduce
// by binomial_list [begin, end[
// Returns true iff to_reduce is changed
// criterion_true is set to true iff "criterion tail" applies
// It is the responsibility of the caller to handle "criterion_true" !

// bool binomial::compare_mo(const monomial_order& mo,
//                           const binomial& rhs) const {
//     assert(size() == mo.size());
//     assert(size() == rhs.size());
//     if (get_exponent_pos() != rhs.get_exponent_pos())
//         return mo.compare(get_exponent_pos(), rhs.get_exponent_pos());
//     return mo.compare(get_exponent_neg(), rhs.get_exponent_neg());
// }

// bool binomial::compare_mo_nonstrict(const monomial_order& mo,
//                                     const binomial& rhs) const {
//     return !rhs.compare_mo(mo, *this); // total order
// }

// For monomials, | denotes divisibility.
// Compare exponent vectors by product order, i.e. component wise
// true iff v1[i] <= v2[i] for all i
bool binomial::operator |(const exponent_vec& rhs) const {
    assert(size() == rhs.size());
    // assert(rhs.nonnegative());
    assert(std::all_of(rhs.begin(), rhs.end(),
                       [](const exponent_t& e) { return (0 <= e); }));
    for (size_t i = 0; i < size(); ++i)
        if ((*this)[i] > rhs[i])
            return false;
    return true;
}

binomial binomial::lcm(const exponent_vec& rhs) const {
    assert(size() == rhs.size());
    binomial w(size());
    for (size_t i = 0; i < size(); ++i)
        w[i] = std::max((*this)[i], rhs[i]);
    return w;
}

bool binomial::zero() const {
    return std::all_of(begin(), end(),
                       [](const exponent_t& e) { return (0 == e); });
}

// bool binomial::nonnegative() const {
//     return std::all_of(begin(), end(),
//                        [](const exponent_t& e) { return (0 <= e); });
// }

bool binomial::normal(const monomial_order& mo) const {
    return (mo.compare(get_exponent_neg(), get_exponent_pos()));
}

void binomial::invert() {
    *this *= -1;
    std::swap(mo_degree_pos, mo_degree_neg);
    // total_degrees_computed = false;
}

void binomial::normalize(const monomial_order& mo) {
    if (!normal(mo))
        invert();
    // set_mo_degrees(mo);
    set_mo_degrees(mo);
}

//////////////////////////////////////////////////////////////////////////////
// S-pair criteria:

// Test if positive monomials have an indeterminate in common.
// For normalized input vectors this is one of the S-vector criterions
bool binomial::positive_coprime(const binomial& rhs) const {
    for (auto& i: pos_support_key)
        if(0 < rhs[i])
            return false;
    winf_ini_coprime++;
    return true;
}

bool binomial::criterion_tail(const binomial& rhs) const {
    for (auto& i: neg_support_key)
        if ( 0 > rhs[i]) {
            winf_tail_not_coprime++;
            return true;
        }

    return false;
}

//////////////////////////////////////////////////////////////////////////////

string binomial::to_polystring() const {
    // if (0 == size())
    //     return "";

    string ps_pos;
    string ps_neg;
    bool found_pos = false;
    bool found_neg = false;
    for (size_t i = 0; i < size(); ++i) {
        if (0 < (*this)[i]) {
            if (found_pos)
                ps_pos += "*";
            else
                found_pos = true;
            ps_pos += "x" + to_string(i + 1) + "^" + to_string((*this)[i]);
        } else if (0 > (*this)[i]) {
            if (found_neg)
                ps_neg += "*";
            else
                found_neg = true;
            ps_neg += "x" + to_string(i + 1) + "^" + to_string(-(*this)[i]);
        }
    }

    if (!(found_pos || found_neg))
        return "0";
    if (!found_pos)
        ps_pos = "1";
    if (!found_neg)
        ps_neg = "1";

    return (ps_pos + " - " + ps_neg);
}

void binomial::pretty_print(std::ostream& out) const {
    static_cast<matrix_t>(*this).pretty_print(out);
}

void binomial::set_support_keys(const dynamic_bitset& sat_support){
    neg_support_key.clear();
    pos_support_key.clear();
    for(int i = 0; i < size(); ++i){
        if((*this)[i] < 0 && sat_support[i])
            neg_support_key.push_back(i);
        if((*this)[i] > 0)
            pos_support_key.push_back(i);
    }
}