1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include <cstdlib>
#include <list>
#include <sys/stat.h>
#include <sys/types.h>
#include <cmath>
#include "libnormaliz/cone.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/list_and_map_operations.h"
// #include "libnormaliz/convert.h"
#include "libnormaliz/my_omp.h"
#include "libnormaliz/collection.h"
#include "libnormaliz/full_cone.h"
namespace libnormaliz {
using namespace std;
template <typename Integer>
MiniCone<Integer>::MiniCone(const vector<key_t> GKeys, const Integer& mult, ConeCollection<Integer>& Coll) {
GenKeys = GKeys;
multiplicity = mult;
Collection = &(Coll);
// dead = false;
}
template <typename Integer>
ConeCollection<Integer>::ConeCollection() {
is_initialized = false;
}
template <typename Integer>
void ConeCollection<Integer>::initialize_minicones(const vector<pair<vector<key_t>, Integer> >& Triangulation) {
is_fan = true;
is_triangulation = true;
vector<key_t> GKeys;
Members.resize(1);
for (auto& S : Triangulation) {
add_minicone(0, 0, S.first, S.second);
for (auto& g : S.first) {
assert(g < Generators.nr_of_rows());
AllRays.insert(Generators[g]);
}
}
is_initialized = true;
}
template <typename Integer>
void ConeCollection<Integer>::set_up(const Matrix<Integer>& Gens, const vector<pair<vector<key_t>, Integer> >& Triangulation) {
Generators = Gens;
initialize_minicones(Triangulation);
}
//------------------------------------------------------------------------
template <typename Integer>
bool MiniCone<Integer>::refine(const key_t key, bool& interior, bool only_containement) {
// cout << "################################### refining minocone " << level << " " << my_place << endl;
bool has_daughters = (Daughters.size() > 0);
if (SupportHyperplanes.nr_of_rows() == 0) {
Integer dummy;
// cout << "************ " << GenKeys.size() << " " << Collection->Generators.nr_of_columns() << endl;
Collection->Generators.simplex_data(GenKeys, SupportHyperplanes, dummy, false);
}
// cout << "SuppHyps " << endl;
// SupportHyperplanes.pretty_print(cout);
// cout << "-----------" << endl;
// cout << "key " << key << " VVV " << Collection->Generators[key];
vector<key_t> opposite_facets;
for (size_t i = 0; i < SupportHyperplanes.nr_of_rows(); ++i) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
Integer test = v_scalar_product(Collection->Generators[key], SupportHyperplanes[i]);
if (test < 0) {
return false;
}
if (test == 0)
continue;
opposite_facets.push_back(static_cast<key_t>(i));
}
if (opposite_facets.size() == 1) // not contained in this minicone or extreme ray of it
return false;
interior = false;
if (opposite_facets.size() == GenKeys.size())
interior = true;
if (only_containement)
return true;
bool interior_in_daughter; // information not yet used
if (has_daughters) {
for (auto& d : Daughters) {
// cout << "Calling " << level + 1 << " " << d << endl;
Collection->Members[level + 1][d].refine(key, interior_in_daughter);
}
return true;
}
// cout << "opposite facets " << opposite_facets;
for (size_t j = 0; j < opposite_facets.size(); ++j) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
vector<key_t> NewGKey = GenKeys;
NewGKey[opposite_facets[j]] = key;
sort(NewGKey.begin(), NewGKey.end());
Integer new_mult = Collection->Generators.submatrix(NewGKey).vol();
// cout << "Mother " << my_place << endl;
Collection->add_minicone(level + 1, my_place, NewGKey, new_mult);
}
// cout << "ref " << Refinement.size() <<endl;
// dead = true; // will be replaced by refinement
return true;
}
template <typename Integer>
bool MiniCone<Integer>::contains(const key_t key, bool& interior) {
return refine(key, interior, true);
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::add_minicone(const int level,
const key_t mother,
const vector<key_t>& GKeys,
const Integer& multiplicity) {
MiniCone<Integer> MC(GKeys, multiplicity, *this);
MC.is_simplex = is_triangulation;
MC.level = level;
// cout << "level " << level << " " << Members.size() << endl;
MC.my_place = static_cast<key_t>(Members[level].size());
Members[level].push_back(MC);
if (level > 0)
Members[level - 1][mother].Daughters.push_back(MC.my_place);
/* for(auto& k:GKeys){
AllRays.insert(Generators[k]);
} */
// print();
return;
}
//------------------------------------------------------------------------
// not used at present
template <typename Integer>
void ConeCollection<Integer>::refine(const key_t key) {
if (AllRays.find(Generators[key]) != AllRays.end())
return;
// cout << "+++++++++++++++++++++++++++++++++++++++ Refine with vector " << key << endl;
if (!Members[Members.size() - 1].empty()) {
Members.resize(Members.size() + 1);
if (verbose)
verboseOutput() << "Adding new level to tree structure" << endl;
}
bool interior;
for (size_t i = 0; i < Members[0].size(); ++i) {
// cout << "RRRRRR " << i << " KKKK " << key << endl;
Members[0][i].refine(key, interior);
if (interior)
break;
}
AllRays.insert(Generators[key]);
}
//------------------------------------------------------------------------
// not used at present
template <typename Integer>
void ConeCollection<Integer>::addsupport_hyperplanes() {
for (size_t k = 0; k < Members.size(); ++k) {
for (size_t i = 0; i < Members[k].size(); ++i) {
if (Members[k][i].SupportHyperplanes.nr_of_rows() == 0) {
Integer dummy;
Generators.simplex_data(Members[k][i].GenKeys, Members[k][i].SupportHyperplanes, dummy, false);
}
}
}
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::insert_vectors(const list<pair<key_t, pair<key_t, key_t> > >& NewRays) {
if (verbose)
verboseOutput() << "Inserting " << NewRays.size() << " located vectors" << endl;
size_t nr_inserted = 0;
for (auto& H : NewRays) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (!Members[Members.size() - 1].empty()) {
Members.resize(Members.size() + 1);
if (verbose)
verboseOutput() << "Adding new level to tree structure" << endl;
}
bool dummy; // information about inerior irrelevant here
Members[H.second.first][H.second.second].refine(H.first, dummy);
nr_inserted++;
if (verbose && nr_inserted % 100000 == 0)
verboseOutput() << nr_inserted << " vectors inserted" << endl;
}
for (auto& H : NewRays) {
AllRays.insert(Generators[H.first]);
}
}
//------------------------------------------------------------------------
// finds the minicones into which Generetaors[key] must be inserted
template <typename Integer>
void ConeCollection<Integer>::locate(const key_t key, list<pair<key_t, pair<key_t, key_t> > >& places) {
places.clear();
if (AllRays.find(Generators[key]) != AllRays.end())
return;
bool interior;
for (size_t k = 0; k < Members.size(); ++k) {
for (size_t i = 0; i < Members[k].size(); ++i) {
if (!Members[k][i].Daughters.empty())
continue;
if (Members[k][i].contains(key, interior)) {
places.push_back(make_pair(key, make_pair(k, i)));
if (interior)
break;
}
}
if (interior)
break;
}
}
// goes over the matrix NewGens, adds the vectors to Generators and then locates them by using their key
template <typename Integer>
void ConeCollection<Integer>::locate(const Matrix<Integer>& NewGens,
list<pair<key_t, pair<key_t, key_t> > >& NewRays,
bool is_generators) {
/*if(verbose)
verboseOutput() << "Adding SupportHyperplanes to minicones" << endl;
addsupport_hyperplanes();*/
if (verbose)
verboseOutput() << "Locating minicones for " << NewGens.nr_of_rows() << " vectors " << endl;
for (size_t i = 0; i < NewGens.nr_of_rows(); ++i) {
if (AllRays.find(NewGens[i]) != AllRays.end())
continue;
key_t key;
if (!is_generators) {
Generators.append(NewGens[i]);
key = static_cast<key_t>(Generators.nr_of_rows() - 1);
}
else
key = static_cast<key_t>(i);
list<pair<key_t, pair<key_t, key_t> > > places;
locate(key, places);
NewRays.splice(NewRays.end(), places);
}
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::insert_all_gens() {
if (verbose)
verboseOutput() << "Inserting " << Generators.nr_of_rows() << " given generators" << endl;
list<pair<key_t, pair<key_t, key_t> > > NewRays;
locate(Generators, NewRays, true);
insert_vectors(NewRays);
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::add_extra_generators(const Matrix<Integer>& NewGens) {
assert(is_initialized);
if (verbose)
verboseOutput() << "Inserting " << NewGens.nr_of_rows() << " new generators" << endl;
list<pair<key_t, pair<key_t, key_t> > > NewRays;
locate(NewGens, NewRays);
insert_vectors(NewRays);
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::make_unimodular() {
int omp_start_level = omp_get_level();
while (true) {
list<pair<vector<Integer>, pair<key_t, key_t> > > AllHilbs;
vector<list<pair<vector<Integer>, pair<key_t, key_t> > > > Hilbs_thread(omp_get_max_threads());
if (verbose) {
verboseOutput() << "Computing Hilbert bases of simplicial cones" << endl;
}
size_t nr_hilb_comp = 0;
for (key_t k = 0; k < Members.size(); ++k) {
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel
{
int tn;
if (omp_get_level() == omp_start_level)
tn = 0;
else
tn = omp_get_ancestor_thread_num(omp_start_level + 1);
#pragma omp for
for (key_t i = 0; i < Members[k].size(); ++i) {
if (skip_remaining)
continue;
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
// cout << "Keys " << T.GenKeys;
// cout << "mult " << T.multiplicity << endl;
if (Members[k][i].multiplicity == 1) // already unimodular
continue;
if (!Members[k][i].Daughters.empty()) // already subdivided
continue;
Full_Cone<Integer> FC(Generators.submatrix(Members[k][i].GenKeys));
FC.do_Hilbert_basis = true;
FC.compute();
#pragma omp atomic
nr_hilb_comp++;
if (verbose && nr_hilb_comp % 50000 == 0) {
#pragma omp critical(VERBOSE)
verboseOutput() << nr_hilb_comp << " Hilbert bases computed" << endl;
}
// remove extreme rays -- can perhaps be done more efiiciently
for (auto H = FC.Hilbert_Basis.begin(); H != FC.Hilbert_Basis.end();) {
if (AllRays.find(*H) != AllRays.end())
H = FC.Hilbert_Basis.erase(H);
else
++H;
}
for (auto H = FC.Hilbert_Basis.begin(); H != FC.Hilbert_Basis.end(); ++H) {
Hilbs_thread[tn].push_back(make_pair(*H, make_pair(k, i)));
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
} // i
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
} // k
for (int i = 0; i < omp_get_max_threads(); ++i)
AllHilbs.splice(AllHilbs.end(), Hilbs_thread[i]);
// cout << "AllHilbs " << endl;
// for(auto& H: AllHilbs)
// cout << H;
if (AllHilbs.empty())
break;
AllHilbs.sort();
if (verbose)
verboseOutput() << "Inserting " << AllHilbs.size() << " Hilbert bais elements of simplices" << endl;
list<pair<key_t, pair<key_t, key_t> > > NewRays;
vector<Integer> last_inserted;
key_t key = static_cast<key_t>(Generators.nr_of_rows()); // to make gcc happy
for (auto& H : AllHilbs) {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (H.first != last_inserted) {
last_inserted = H.first;
key = static_cast<key_t>(Generators.nr_of_rows());
Generators.append(H.first);
}
// Members[H.second.first][H.second.second].refine(key);
NewRays.push_back(make_pair(key, make_pair(H.second.first, H.second.second)));
}
insert_vectors(NewRays);
}
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::flatten() {
// print();
size_t tree_depth = 0;
for (size_t k = 0; k < Members.size(); ++k) {
if (Members[k].size() > 0)
tree_depth++;
for (key_t i = 0; i < Members[k].size(); ++i) {
// cout << "Out " << k << " " << i << " " << Members[k][i].Daughters.size() << endl;
if (Members[k][i].Daughters.size() == 0)
KeysAndMult.push_back(make_pair(Members[k][i].GenKeys, Members[k][i].multiplicity));
}
}
if (verbose)
verboseOutput() << "Tree depth " << tree_depth << ", Number of subcones " << KeysAndMult.size()
<< ", Number of generetors " << Generators.nr_of_rows() << endl;
}
template <typename Integer>
const vector<pair<vector<key_t>, Integer> >& ConeCollection<Integer>::getKeysAndMult() const {
return KeysAndMult;
}
template <typename Integer>
const Matrix<Integer>& ConeCollection<Integer>::getGenerators() const {
/*Matrix<Integer> Copy = Generators;
Copy.remove_duplicate_and_zero_rows();
cout << "Gen " << Generators.nr_of_rows() << " Copy " << Copy.nr_of_rows() << endl;*/
return Generators;
}
//------------------------------------------------------------------------
template <typename Integer>
void ConeCollection<Integer>::print() const {
cout << "================= Number of levels " << Members.size() << endl;
for (size_t k = 0; k < Members.size(); ++k) {
cout << "Level " << k << " Size " << Members[k].size() << endl;
cout << "-------------" << endl;
for (size_t i = 0; i < Members[k].size(); ++i)
Members[k][i].print();
}
cout << "=======================================" << endl;
}
template <typename Integer>
void MiniCone<Integer>::print() const {
cout << "***** Mini " << level << " " << my_place << " Gens " << GenKeys;
cout << "mult " << multiplicity << " daughters " << Daughters;
cout << "----------------------" << endl;
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class ConeCollection<long>;
#endif
template class ConeCollection<long long>;
template class ConeCollection<mpz_class>;
#ifdef ENFNORMALIZ
template class ConeCollection<renf_elem_class>;
#endif
} // namespace libnormaliz
|