File: descent.cpp

package info (click to toggle)
normaliz 3.11.0%2Bds-1
  • links: PTS, VCS
  • area: main
  • in suites: forky, sid
  • size: 40,448 kB
  • sloc: cpp: 48,104; makefile: 2,247; sh: 1
file content (1019 lines) | stat: -rw-r--r-- 38,928 bytes parent folder | download
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
/*
 * Normaliz
 * Copyright (C) 2007-2025  W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation, either version 3 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 *
 * As an exception, when this program is distributed through (i) the App Store
 * by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
 * by Google Inc., then that store may impose any digital rights management,
 * device limits and/or redistribution restrictions that are required by its
 * terms of service.
 */

#include <iomanip>

#include "libnormaliz/cone.h"
#include "libnormaliz/descent.h"
#include "libnormaliz/vector_operations.h"
#include "libnormaliz/sublattice_representation.h"
#include "libnormaliz/list_and_map_operations.h"
#include "libnormaliz/nmz_hash.h"

namespace libnormaliz {

template <typename Integer>
DescentFace<Integer>::DescentFace() {
    // simplicial = false;
    coeff = 0;
    tree_size = 0;
    dead = false;
}

template <typename Integer>
DescentSystem<Integer>::DescentSystem() {
    descent_steps = 0;
    tree_size = 0;
    nr_simplicial = 0;
    system_size = 0;
    exploit_automorphisms = false;
    facet_based = true;  // the standard case
#ifdef NMZ_HASHLIBRARY
    strict_type_check = false;
#else
    strict_type_check = true;
#endif
}

template <typename Integer>
DescentSystem<Integer>::DescentSystem(Matrix<Integer>& Gens_given,
                                      Matrix<Integer>& SuppHyps_given,
                                      vector<Integer>& Grading_given,
                                      bool swap_allowed) {
    descent_steps = 0;
    tree_size = 0;
    nr_simplicial = 0;
    system_size = 0;
    exploit_automorphisms = false;
#ifndef NMZ_HASHLIBRARY
    strict_type_check = true;
#endif

    if (swap_allowed) {
        swap(Gens, Gens_given);
        swap(SuppHyps, SuppHyps_given);
        swap(Grading, Grading_given);
    }
    else {
        Gens = Gens_given;
        SuppHyps = SuppHyps_given;
        Grading = Grading_given;
    }

    nr_gens = Gens.nr_of_rows();
    nr_supphyps = SuppHyps.nr_of_rows();
    dim = Gens.nr_of_columns();

    facet_based = true;
    if (nr_gens < nr_supphyps)
        facet_based = false;

    GradGens.resize(nr_gens);
    GradGens_mpz.resize(nr_gens);
    for (size_t i = 0; i < nr_gens; ++i) {
        GradGens[i] = v_scalar_product(Grading, Gens[i]);
        convert(GradGens_mpz[i], GradGens[i]);
    }

    multiplicity = 0;

    makeIncidenceMatrix(SuppHypInd, Gens, SuppHyps);

    SimplePolytope = true;

    for (size_t j = 0; j < nr_gens; ++j) {
        size_t NrFacetsContainingGen = 0;
        for (size_t i = 0; i < nr_supphyps; ++i) {
            INTERRUPT_COMPUTATION_BY_EXCEPTION
            if (SuppHypInd[i][j]) {
                NrFacetsContainingGen++;
            }
        }
        if (NrFacetsContainingGen > dim - 1) {
            SimplePolytope = false;
            break;
        }
    }

    OldNrFacetsContainingGen.resize(nr_gens, 1);
    NewNrFacetsContainingGen.resize(nr_gens, 0);

    OldNrFacetsContainingGen.resize(nr_gens, 1);
    NewNrFacetsContainingGen.resize(nr_gens, 0);
}

/*
#ifdef ENFNORMALIZ
template <>
DescentSystem<renf_elem_class>::DescentSystem() {
    assert(false);
}

template <>
DescentSystem<renf_elem_class>::DescentSystem(Matrix<renf_elem_class>& Gens_given,
                                      Matrix<renf_elem_class>& SuppHyps_given,
                                      vector<renf_elem_class>& Grading_given,
                                      bool swap_allowed ) {
    assert(false);
}
#endif
*/

template <typename Integer>
void DescentFace<Integer>::compute(
    DescentSystem<Integer>& FF,       // not const since we change multiplicity
    const size_t dim,                 //  dim of *this
    const dynamic_bitset& signature,  // indicates
    // (i) in the facet based case the supphyps of which *this is the intersection
    // (ii) in the generator based case the extreme rays of *this
    //
    // return values
    //
    vector<key_t>& extrays_of_this,  // will indicate the extreme rays of *this
                                     // used after return from this function to count the number of total  faces containing
                                     // the selected extreme rays
                                     // these data are used in this function for the choice of the optimal vertex // used as a
                                     // signature in the descent system
    vector<key_t>& opposite_facets,  // the indices of facets opposite to selected extreme ray (not unique),
                                     // also used for optimization
    list<pair<dynamic_bitset, DescentFace<Integer> > >& Children  // the children of *this
                                                                  // that are sent into the next lower codimension
) {
    int omp_start_level = omp_get_level();

    extrays_of_this.clear();
    opposite_facets.clear();
    Children.clear();

    size_t nr_supphyps = FF.nr_supphyps;
    size_t nr_gens = FF.nr_gens;
    size_t d = dim;

    dynamic_bitset cone_facets_cutting_this_out(nr_supphyps);  // facets of cone cutting *this out
    dynamic_bitset GensInd(nr_gens);                           // extreme rays of *this, indicated by GensInd

    if (FF.facet_based) {
        cone_facets_cutting_this_out = signature;
        GensInd.set();
        for (size_t i = 0; i < nr_supphyps; ++i) {  // find Gens in this
            if (cone_facets_cutting_this_out[i] == true) {
                GensInd = GensInd & FF.SuppHypInd[i];
            }
        }
    }
    else {
        GensInd = signature;
        for (size_t i = 0; i < nr_supphyps; ++i) {
            if (GensInd.is_subset_of(FF.SuppHypInd[i]))
                cone_facets_cutting_this_out[i] = true;
        }
    }

    for (size_t i = 0; i < nr_gens; ++i)
        if (GensInd[i])
            extrays_of_this.push_back(static_cast<key_t>(i));

    Matrix<Integer> Gens_this;

    if (extrays_of_this.size() > 3 * dim) {  //
        try {
            size_t nr_selected = 3 * dim;
            vector<key_t> selection;
            key_t j;
            size_t rk = 0;
            while (rk < dim && nr_selected <= extrays_of_this.size()) {
                selection.resize(nr_selected);
                for (size_t i = 0; i < nr_selected; ++i) {
                    j = rand() % extrays_of_this.size();
                    selection[i] = extrays_of_this[j];
                }
                Gens_this = FF.Gens.submatrix(selection);
                rk = Gens_this.row_echelon();
                nr_selected *= 2;
            }
            if (rk < dim) {
                Gens_this = FF.Gens.submatrix(extrays_of_this);
                Gens_this.row_echelon();
            }
        } catch (const ArithmeticException& e) {
            Gens_this = FF.Gens.submatrix(extrays_of_this);
            Gens_this.row_echelon();
        }
    }
    else {
        Gens_this = FF.Gens.submatrix(extrays_of_this);
        Gens_this.row_echelon();
    }

    bool must_saturate = false;

    for (size_t i = 0; i < Gens_this.nr_of_rows(); ++i) {
        for (size_t j = i; j < FF.dim; ++j) {
            if (Gens_this[i][j] == 0)
                continue;
            if (Gens_this[i][j] != 1 && Gens_this[i][j] != -1) {
                must_saturate = true;
            }
            break;
        }
        if (must_saturate)
            break;
    }

    Sublattice_Representation<Integer> Sublatt_this;
    if (must_saturate)
        Sublatt_this = Sublattice_Representation<Integer>(Gens_this, true, false);  //  take saturation, no LLL

    // Now we find the potential facets of *this.

    dynamic_bitset facet_ind(extrays_of_this.size());  // lists Gens, local variable for work
    map<dynamic_bitset, dynamic_bitset> FacetInds;     // potential facets, map from gens(potential facet)
                                                       //  to set of supphyps(C) containing these gens
                                                       // reference for gens(potential facet) is the selection via extrays_of_this
    map<dynamic_bitset, key_t> CutOutBy;               // the facet citting it out (we must choose one)

    map<dynamic_bitset, vector<key_t> > SimpKeys;  // generator keys for simplicial facets
    map<dynamic_bitset, vector<bool> > SimpInds;   // alternative: generator indices for simplicial facets (if less memory needed)
    bool ind_better_than_keys = (dim * 64 > FF.nr_gens);  // decision between the alternatives

    for (size_t i = 0; i < nr_supphyps; ++i) {
        if (cone_facets_cutting_this_out[i] == true)  // contains *this
            continue;

        // we can identify the facet(*this) uniquely only via the Gens in it
        vector<libnormaliz::key_t> facet_key;  // keys of extreme rays in current supphyp of cone
        for (size_t k = 0; k < extrays_of_this.size(); ++k) {
            if (FF.SuppHypInd[i][extrays_of_this[k]] == true)
                facet_key.push_back(static_cast<key_t>(k));
        }
        if (facet_key.size() < d - 1)  // can't be a facet(*this)
            continue;

        // now we make facet_ind out of facet_key: key for gens in potential facet
        facet_ind.reset();
        for (unsigned int jj : facet_key)
            facet_ind[jj] = true;

        // next we check whether we have the intersection already
        // not necessary for simple polytopes and in top dimension
        // Note: if P is simple, F is a face of P and H a support hyperplave of P,
        // then F\cap H is either empty or a facet of F. Moreover H is uniquely determined
        // by F\cap H. This will again be used below.
        if (d < FF.dim && !FF.SimplePolytope) {
            if (FacetInds.find(facet_ind) != FacetInds.end()) {  // already found, we need it only once
                if (facet_key.size() > d - 1)
                    FacetInds[facet_ind][i] = true;
                // but in the nonsimplicial case we must add SuppHyps[i] to the facets(C) containing
                // the current facet(*this)
                continue;
            }
        }

        // now we have a new potential facet
        if (facet_key.size() == d - 1) {               // simplicial or not a facet
            FacetInds[facet_ind] = dynamic_bitset(0);  // don't need support hyperplanes
            CutOutBy[facet_ind] = static_cast<key_t>(FF.nr_supphyps + 1);  // signalizes "simplicial facet"
            if (ind_better_than_keys) {                // choose shorter representation
                vector<bool> gen_ind(FF.nr_gens);
                for (unsigned int k : facet_key)
                    gen_ind[extrays_of_this[k]] = 1;
                SimpInds[facet_ind] = gen_ind;
            }
            else {
                vector<key_t> trans_key;  // translate back to FF
                for (unsigned int k : facet_key)
                    trans_key.push_back(extrays_of_this[k]);
                SimpKeys[facet_ind] = trans_key;  // helps to pick the submatrix of its generators
            }
        }
        else {
            FacetInds[facet_ind] = cone_facets_cutting_this_out;
            FacetInds[facet_ind][i] = true;  // plus the facet cutting out facet_ind
            CutOutBy[facet_ind] = static_cast<key_t>(i); // memorize the facet that cuts it out
        }
    }

    // if we don't have the coordinate transformation and there is a simplicial facet, we must make it
    if (!must_saturate && (SimpKeys.size() > 0 || SimpInds.size() > 0))
        Sublatt_this = Sublattice_Representation<Integer>(Gens_this, true, false);  //  take saturation, no LLL

    if (d < FF.dim && !FF.SimplePolytope) {  // now we select the true facets of *this
        if (FacetInds.size() < d * d) {
            auto G = FacetInds.end();  // by taking those with a maximal set of gens
            for (--G; G != FacetInds.begin(); --G) {
                for (auto F = FacetInds.begin(); F != G;) {
                    if (F->first.is_subset_of(G->first))
                        F = FacetInds.erase(F);
                    else
                        ++F;
                }
            }
        }
        else {
            auto G = FacetInds.begin();
            for (; G != FacetInds.end();) {
                vector<key_t> trans_key;  // translate back to FF
                vector<key_t> local_key = bitset_to_key(G->first);
                for (unsigned int k : local_key)
                    trans_key.push_back(extrays_of_this[k]);
                Matrix<Integer> RankTest = FF.Gens.submatrix(trans_key);
                if (RankTest.rank() < d - 1)
                    G = FacetInds.erase(G);
                else
                    ++G;
            }
        }
    }

    // At this point we know the facets of *this.
    // The map FacetInds assigns the set of containing SuppHyps(cone) to the facet_ind(Gens).
    // The set of containing SuppHyps is a unique signature as well.

    // Now we want to find the generator with the lrast number opf opposite facets(*this)
    vector<size_t> count_in_facets(extrays_of_this.size());
#pragma omp parallel for
    for (size_t i = 0; i < extrays_of_this.size(); ++i) {
        size_t k = i;
        for (auto& FacetInd : FacetInds)
            if ((FacetInd.first)[k] == true)
                count_in_facets[k]++;
    }

    size_t m = count_in_facets[0];  // we must have at least one facet (actually 3, since dim 2 is simplicial)
    libnormaliz::key_t m_ind = 0;

    for (size_t i = 1; i < count_in_facets.size(); ++i) {
        if (count_in_facets[i] > m) {
            m = count_in_facets[i];
            m_ind = static_cast<key_t>(i);
            continue;
        }
        if (count_in_facets[i] == m &&
            FF.OldNrFacetsContainingGen[extrays_of_this[i]] < FF.OldNrFacetsContainingGen[extrays_of_this[m_ind]]) {
            m_ind = static_cast<key_t>(i);
        }
    }

    key_t selected_gen = extrays_of_this[m_ind];  // this is the selected generator
    vector<Integer> embedded_selected_gen;
    if (must_saturate)
        embedded_selected_gen = Sublatt_this.to_sublattice(FF.Gens[selected_gen]);

    // now we must find the facets opposite to the selected generator

    vector<Integer> embedded_supphyp;
    Integer ht;

    mpq_class divided_coeff = coeff / FF.GradGens_mpz[selected_gen];

    auto G = FacetInds.begin();
    for (; G != FacetInds.end(); ++G) {
        INTERRUPT_COMPUTATION_BY_EXCEPTION

        if ((G->first)[m_ind] == false && CutOutBy[G->first] != FF.nr_supphyps + 1) {  // is opposite and not simplicial

            dynamic_bitset the_name_of_the_child;
            if (FF.facet_based)
                the_name_of_the_child = G->second;  // supphyps are the signature
            else {
                // extrays are the signature
                the_name_of_the_child.resize(nr_gens);             // in the first step we must translate
                for (size_t kk = 0; kk < G->first.size(); ++kk) {  // G->first into an indicator relative to the global
                    if ((G->first)[kk])                            // list of extreme rays
                        the_name_of_the_child[extrays_of_this[kk]] = 1;
                }
            }

            auto H = Children.insert(Children.begin(), make_pair(the_name_of_the_child, DescentFace<Integer>()));
            if (must_saturate) {
                embedded_supphyp = Sublatt_this.to_sublattice_dual(FF.SuppHyps[CutOutBy[G->first]]);
                ht = v_scalar_product(embedded_selected_gen, embedded_supphyp);
            }
            else {
                embedded_supphyp = Gens_this.MxV(FF.SuppHyps[CutOutBy[G->first]]);
                Integer den = v_make_prime(embedded_supphyp);
                ht = v_scalar_product(FF.Gens[selected_gen], FF.SuppHyps[CutOutBy[G->first]]) / den;
            }

            H->second.coeff = divided_coeff * convertTo<mpz_class>(ht);
            opposite_facets.push_back(CutOutBy[G->first]);

            if (FF.exploit_automorphisms && FF.facet_based) {      // Absolutely necessary, used in definition of IsoType
                dynamic_bitset ExtRaysFacet(FF.nr_gens);           // in the first step we must translate
                for (size_t kk = 0; kk < G->first.size(); ++kk) {  // G->first into an indicator relative to the global
                    if ((G->first)[kk])                            // list of extreme rays
                        ExtRaysFacet[extrays_of_this[kk]] = 1;
                }
                dynamic_bitset FacetCandidates = ~G->second;  // indicates the global support bhyperplanes
                                                              // intersecting this facet in a proper subset
                vector<dynamic_bitset> Intersections(FF.nr_supphyps, dynamic_bitset(nr_gens));
                vector<long> NrExtRays(FF.nr_supphyps);
                for (size_t i = 0; i < FF.nr_supphyps; ++i) {
                    if (FacetCandidates[i] == 0)
                        continue;
                    Intersections[i] = ExtRaysFacet & FF.SuppHypInd[i];
                    NrExtRays[i] = Intersections[i].count();
                }

                dynamic_bitset TheFacets;
                maximal_subsets(Intersections, TheFacets);
                H->second.FacetsOfFace = TheFacets;
                map<long, long> Counter;
                for (size_t i = 0; i < FF.nr_supphyps; ++i) {
                    if (!TheFacets[i])
                        continue;
                    Counter[NrExtRays[i]]++;
                }
                vector<long> ERC;
                for (auto& C : Counter) {
                    ERC.push_back(C.first);
                    ERC.push_back(C.second);
                }
#ifdef NMZ_HASHLIBRARY
                ostringstream VecString;
                VecString << ERC;
                H->second.ERC_Hash = sha256hexvec(VecString.str());
#else
                H->second.ERC_Hash = ERC;
#endif
            }
        }
    }

    if (SimpKeys.size() > 0 || SimpInds.size() > 0) {
        G = FacetInds.begin();
        size_t loop_length = FacetInds.size();
        size_t fpos = 0;
        bool skip_remaining = false;
        vector<mpq_class> thread_mult(omp_get_max_threads(), 0);
        Matrix<Integer> Embedded_Gens(d, d);
        Matrix<Integer> Gens_this(d, FF.dim);

        std::exception_ptr tmp_exception;

#pragma omp parallel for firstprivate(G, fpos, Embedded_Gens, Gens_this)
        for (size_t ff = 0; ff < loop_length; ++ff) {
            if (skip_remaining)
                continue;
            for (; ff > fpos; ++fpos, ++G)
                ;
            for (; ff < fpos; --fpos, --G)
                ;

            int tn;
            if (omp_get_level() == omp_start_level)
                tn = 0;
            else
                tn = omp_get_ancestor_thread_num(omp_start_level + 1);

            try {
                INTERRUPT_COMPUTATION_BY_EXCEPTION

                if ((G->first)[m_ind] == false && CutOutBy[G->first] == FF.nr_supphyps + 1) {  // is opposite and simplicial
                    if (ind_better_than_keys)
                        Gens_this = FF.Gens.submatrix(SimpInds[G->first]);
                    else
                        Gens_this = FF.Gens.submatrix(SimpKeys[G->first]);
                    Gens_this.append(FF.Gens[selected_gen]);
                    Integer det;
                    if (Sublatt_this.IsIdentity())
                        det = Gens_this.vol();
                    else {
                        Embedded_Gens = Sublatt_this.to_sublattice(Gens_this);
                        det = Embedded_Gens.vol();
                    }
                    mpz_class mpz_det = convertTo<mpz_class>(det);
                    mpq_class multiplicity = mpz_det;
                    if (ind_better_than_keys) {
                        for (size_t i = 0; i < FF.nr_gens; ++i)
                            if (SimpInds[G->first][i] && FF.GradGens[i] > 1)
                                multiplicity /= FF.GradGens_mpz[i];
                    }
                    else {
                        for (size_t i = 0; i < Gens_this.nr_of_rows() - 1; ++i)
                            if (FF.GradGens[SimpKeys[G->first][i]] > 1)
                                multiplicity /= FF.GradGens_mpz[SimpKeys[G->first][i]];
                    }
                    if (FF.GradGens[selected_gen] > 1)
                        multiplicity /= FF.GradGens_mpz[selected_gen];
                    // #pragma omp critical(ADD_MULT)
                    // FF.multiplicity+=multiplicity*coeff;
                    thread_mult[tn] += multiplicity;
#pragma omp atomic
                    FF.nr_simplicial++;
#pragma omp atomic
                    FF.tree_size += tree_size;
                }

            } catch (const std::exception&) {
                tmp_exception = std::current_exception();
                skip_remaining = true;
#pragma omp flush(skip_remaining)
            }
        }

        if (!(tmp_exception == 0))
            std::rethrow_exception(tmp_exception);

        mpq_class local_multiplicity = 0;
        for (const auto& j : thread_mult)
            local_multiplicity += j;

            /* if(!has_non_simp && test_mult != 0){
                cout << local_multiplicity << "    " << test_mult << endl;
                assert(test_mult == local_multiplicity);
            }*/
#pragma omp critical(ADD_MULT)
        FF.multiplicity += local_multiplicity * coeff;
    }
}

template <typename Integer>
void DescentSystem<Integer>::collect_old_faces_in_iso_classes(size_t& nr_iso_classes) {
    if (OldFaces.size() <= 1)  // nothing to do here
        return;

    // Isomorphism_Classes<Integer> Isos(AutomParam::rational_dual);
    map<IsoType<Integer>, DescentFace<Integer>*, IsoType_compare<Integer> > Isos;

    size_t nr_F = OldFaces.size();
    auto F = OldFaces.begin();
    size_t kkpos = 0;
    std::exception_ptr tmp_exception;
    bool skip_remaining = false;

    const long VERBOSE_STEPS = 50;
    const size_t ReportBound = 200;
    long step_x_size = nr_F - VERBOSE_STEPS;
    size_t total = nr_F;

    if (verbose)
        verboseOutput() << "Collecting isomorphism classes" << endl;

#ifdef NMZ_HASHLIBRARY
    map<vector<unsigned char>, long> CountHashs;
#else
    map<vector<long>, long> CountHashs;
#endif
    if (facet_based) {
        for (auto& X : OldFaces) {
            CountHashs[X.second.ERC_Hash]++;
        }
    }

    if (verbose && facet_based)
        verboseOutput() << "Coarse classes " << CountHashs.size() << endl;

    size_t isolanis = 0;

#ifndef NMZ_NAUTY_TLS
    int save_nr_threads = omp_get_max_threads();
    omp_set_num_threads(1);
#endif

#pragma omp parallel for firstprivate(F, kkpos) schedule(dynamic)
    for (size_t kk = 0; kk < nr_F; ++kk) {
        if (skip_remaining)
            continue;
        try {
            INTERRUPT_COMPUTATION_BY_EXCEPTION

            for (; kk > kkpos; kkpos++, F++)
                ;
            for (; kk < kkpos; kkpos--, F--)
                ;

            if (verbose && nr_F >= ReportBound) {
#pragma omp critical(VERBOSE)
                while ((long)(kk * VERBOSE_STEPS) >= step_x_size) {
                    step_x_size += total;
                    verboseOutput() << "." << flush;
                }
            }
            if (facet_based && CountHashs[F->second.ERC_Hash] == 1) {
#pragma omp atomic
                isolanis++;
                continue;
            }

            IsoType<Integer> IT;
            if (facet_based) {
                Matrix<Integer> Equations = SuppHyps.submatrix(bitset_to_key(F->first));
                Matrix<Integer> Inequalities = SuppHyps.submatrix(bitset_to_key(F->second.FacetsOfFace));
                IT = IsoType<Integer>(Inequalities, Equations, Grading, strict_type_check);
            }
            else {
                Matrix<Integer> ExtRays = Gens.submatrix(bitset_to_key(F->first));
                IT = IsoType<Integer>(ExtRays, Grading, strict_type_check);
            }
#pragma omp critical(INSERT_ISOTYPE)
            {
                auto G = Isos.find(IT);
                if (G != Isos.end()) {
                    mpz_class index_source = convertTo<mpz_class>(IT.index);
                    mpz_class index_taaget = convertTo<mpz_class>(G->first.index);
                    // At this point one could allow non-equality. Then omne needs a correction factor
                    if (index_source == index_taaget) {
                        F->second.dead = true;  // to be skipped in descent
                        G->second->coeff += F->second.coeff;
                    }
                    // cout << "--------------------------" << endl;
                    // cout << "Index Source " << index_source << " Index Target " << index_traget << " CORR " << corr << endl;
                    // cout << "coeff Source " << F->second.coeff << " Coeff Target " << G->second->coeff << endl;
                    // cout << "--------------------------" << endl; */
                }
                if (!F->second.dead) {
                    // cout << "========================" << endl;
                    Isos[IT] = &(F->second);
                    // cout << "New New New " << "Index " << IT.index << " Coeff " << F->second.coeff << endl;
                    // IT.getCanType().pretty_print(cout);
                    // cout << "========================" << endl;
                }
            }

        } catch (const std::exception&) {
            tmp_exception = std::current_exception();
            skip_remaining = true;
#pragma omp flush(skip_remaining)
        }
    }  // parallel for kk

    if (!(tmp_exception == 0))
        std::rethrow_exception(tmp_exception);

    if (verbose && nr_F >= ReportBound)
        verboseOutput() << endl;

#ifndef NMZ_NAUTY_TLS
    omp_set_num_threads(save_nr_threads);
#endif

    nr_iso_classes = Isos.size();
    if (verbose) {
        if (facet_based)
            verboseOutput() << "Coarse classes of 1 element " << isolanis << ", iso types " << nr_iso_classes + isolanis << endl;
        else
            verboseOutput() << "Iso types " << nr_iso_classes << endl;
    }
    /*for(auto& F: OldFaces){
        cout << "DDDD " << F.second.dead << " CCCC " << F.second.coeff << endl;
    }*/
}

//----------------------------------------------------------------------

template <typename Integer>
void DescentSystem<Integer>::make_orbits_global() {
    /* Cone<Integer> C(Type::extreme_rays, Gens, Type::support_hyperplanes, SuppHyps, Type::grading, Matrix<Integer>(Grading));
    C.compute(ConeProperty::Automorphisms);
    vector<vector<key_t> > GenOrbits = C.getAutomorphismGroup().getExtremeRaysOrbits();*/

    AutomorphismGroup<Integer> Aut(Gens, SuppHyps, Grading);
    Aut.compute(AutomParam::integral);
    vector<vector<key_t> > GenOrbits = Aut.getGensOrbits();

    size_t min_at = 0, min_size = 0; //values to make gcc happy
    for (size_t i = 0; i < GenOrbits.size(); ++i) {
        if (i == 0 || GenOrbits[i].size() < min_size) {
            min_size = GenOrbits[i].size();
            min_at = i;
        }
    }
    vector<Integer> fix_point(dim);
    for (size_t i = 0; i < GenOrbits[min_at].size(); ++i) {
        fix_point = v_add(fix_point, Gens[GenOrbits[min_at][i]]);
    }
    v_make_prime(fix_point);
    Integer deg_fix_point = v_scalar_product(fix_point, Grading);

    OldFaces.clear();

    vector<vector<key_t> > SuppOrbits = Aut.getLinFormsOrbits();
    for (auto& Orb : SuppOrbits) {
        dynamic_bitset orb_indicator(nr_gens);
        for (size_t i = 0; i < nr_gens; ++i) {
            if (v_scalar_product(SuppHyps[Orb[0]], Gens[i]) == 0)
                orb_indicator[i] = 1;
        }
        Integer ht_fix_point = v_scalar_product(SuppHyps[Orb[0]], fix_point);
        mpq_class coeff = convertTo<mpz_class>(ht_fix_point);
        coeff *= convertTo<mpz_class>((long long)Orb.size());
        coeff /= convertTo<mpz_class>(deg_fix_point);
        OldFaces[orb_indicator] = DescentFace<Integer>();
        OldFaces[orb_indicator].coeff = coeff;
    }
}

//----------------------------------------------------------------------
/*
template <typename Integer>
void DescentSystem<Integer>::make_orbits_global() {

    Cone<Integer> C(Type::extreme_rays, Gens, Type::support_hyperplanes, SuppHyps, Type::grading, Matrix<Integer>(Grading));
    C.compute(ConeProperty::Automorphisms);
    vector<vector<key_t> > GenOrbits = C.getAutomorphismGroup().getExtremeRaysOrbits();

    size_t min_at, min_size;
    for(size_t i = 0; i< GenOrbits.size(); ++i){
        if(i == 0 || GenOrbits[i].size() < min_size){
            min_size = GenOrbits[i].size();
            min_at = i;
        }
    }
    vector<Integer> fix_point(dim);
    for(size_t i = 0; i< GenOrbits[min_at].size(); ++i){
        fix_point = v_add(fix_point, C.getExtremeRaysMatrix()[GenOrbits[min_at][i]]);
    }
    v_make_prime(fix_point);
    Integer deg_fix_point = v_scalar_product(fix_point, C.getGrading());

    OldFaces.clear();

    vector<vector<key_t> > SuppOrbits = C.getAutomorphismGroup().getSupportHyperplanesOrbits();
    for(auto& Orb: SuppOrbits){
        dynamic_bitset orb_indicator(nr_gens);
        for(size_t i=0; i< nr_gens; ++i){
            if( v_scalar_product(C.getSupportHyperplanes()[Orb[0]],Gens[i]) == 0)
                orb_indicator[i] = 1;
        }
        Integer ht_fix_point = v_scalar_product(C.getSupportHyperplanes()[Orb[0]], fix_point);
        mpq_class coeff = convertTo<mpz_class>(ht_fix_point);
        coeff *= convertTo<mpz_class>((long long) Orb.size());
        coeff /= convertTo<mpz_class>(deg_fix_point);
        OldFaces[orb_indicator] = DescentFace<Integer>();
        OldFaces[orb_indicator].coeff = coeff;
    }
}
*/
//----------------------------------------------------------------------

template <typename Integer>
void DescentSystem<Integer>::compute() {
#ifdef NMZ_EXTENDED_TESTS
    if (!using_GMP<Integer>() && !using_renf<Integer>() && test_arith_overflow_descent)
        throw ArithmeticException(0);
#endif

    if (verbose) {
        if (SimplePolytope)
            verboseOutput() << "Polytope is simple" << endl;
        else
            verboseOutput() << "Polytope is not simple" << endl;
    }

    const size_t ReportBound = 400;
    const size_t MaxBlocksize = 1000000;

    DescentFace<Integer> top;
    top.coeff = 1;
    top.tree_size = 1;
    if (facet_based) {
        dynamic_bitset empty(nr_supphyps);
        OldFaces[empty] = top;
    }
    else {
        dynamic_bitset full(nr_gens);
        full = ~full;
        OldFaces[full] = top;
    }
    long d = (long)dim;

    Integer global_corr_factor = 1;

    if (!facet_based && exploit_automorphisms) {
        // make_orbits_global can potentially compute the Hilbert basis
        // if the extreme rays do not generate the full lattice
        // In this case we make a transformation to the smaller lattice and
        // correct the multiplicity at the end
        global_corr_factor = Gens.full_rank_index();
        if (global_corr_factor != 1) {
            Sublattice_Representation<Integer> ExtRaysLattice(Gens, false, false);  // NO SATURATION, no LLL
            Gens = ExtRaysLattice.to_sublattice(Gens);
            SuppHyps = ExtRaysLattice.to_sublattice_dual(SuppHyps);
            Grading = ExtRaysLattice.to_sublattice_dual_no_div(Grading);  // just the restriction, degrees don't change
                                                                          // no need to recompute new degrees
        }
        make_orbits_global();
        d--;
    }

    bool start = true;

    while (!OldFaces.empty()) {
        size_t nr_F = OldFaces.size();
        if (verbose)
            verboseOutput() << "Descent from dim " << d << ", size " << nr_F << endl;

        if (exploit_automorphisms && !start) {
            size_t nr_iso_classes;
            collect_old_faces_in_iso_classes(nr_iso_classes);
            system_size += nr_iso_classes;
        }
        else
            system_size += nr_F;

        start = false;

        bool in_blocks = false;
        if (nr_F > MaxBlocksize)
            in_blocks = true;
        if (in_blocks && verbose)
            verboseOutput() << "processing in blocks" << endl;

        size_t nr_remaining = nr_F;

        size_t nr_block = 0;

        while (nr_remaining > 0) {
            nr_block++;

            size_t block_size = min((long)MaxBlocksize, (long)nr_remaining);

            auto F = OldFaces.begin();

            size_t kkpos = 0;
            bool skip_remaining = false;

            const long VERBOSE_STEPS = 50;
            long step_x_size = block_size - VERBOSE_STEPS;
            size_t total = block_size;

            if (in_blocks && verbose)
                verboseOutput() << nr_block << ": " << flush;

            vector<key_t> mother_key;
            mother_key.reserve(nr_gens);
            vector<key_t> opposite_facets;
            opposite_facets.reserve(nr_supphyps);
            list<pair<dynamic_bitset, DescentFace<Integer> > > Children;

            std::exception_ptr tmp_exception;
#pragma omp parallel for firstprivate(kkpos, F, mother_key, opposite_facets, Children) schedule(dynamic) if (block_size > 1)
            for (size_t kk = 0; kk < block_size; ++kk) {
                if (skip_remaining)
                    continue;

                if (verbose && block_size >= ReportBound) {
#pragma omp critical(VERBOSE)
                    while ((long)(kk * VERBOSE_STEPS) >= step_x_size) {
                        step_x_size += total;
                        verboseOutput() << "." << flush;
                    }
                }

                try {
                    INTERRUPT_COMPUTATION_BY_EXCEPTION

                    for (; kk > kkpos; kkpos++, F++)
                        ;
                    for (; kk < kkpos; kkpos--, F--)
                        ;
#pragma omp atomic
                    descent_steps++;

                    if (F->second.dead)
                        continue;

                    // cout << "FIRST" << F->first << endl;

                    F->second.compute(*this, d, F->first, mother_key, opposite_facets, Children);
                    // if (F->second.simplicial)
                    //    continue;

                    size_t j = 0;
                    for (auto& G : Children) {
                        auto H = NewFaces.begin();
                        bool inserted = false;
#pragma omp critical(INSERT)
                        {
                            H = NewFaces.find(G.first);
                            if (H == NewFaces.end()) {
                                H = NewFaces.insert(NewFaces.begin(), G);
                                inserted = true;
                            }
                        }
                        if (inserted) {
                            for (unsigned int& i : mother_key)
                                if (SuppHypInd[opposite_facets[j]][i])
#pragma omp atomic
                                    NewNrFacetsContainingGen[i]++;
                        }
#pragma omp critical(ADD_COEFF)
                        {
                            if (!inserted)
                                (H->second).coeff += G.second.coeff;
                            (H->second).tree_size += (F->second).tree_size;
                        }
                        ++j;
                    }

                } catch (const std::exception&) {
                    tmp_exception = std::current_exception();
                    skip_remaining = true;
#pragma omp flush(skip_remaining)
                }
            }  // parallel for kk

            if (!(tmp_exception == 0))
                std::rethrow_exception(tmp_exception);

            if (verbose && block_size >= ReportBound)
                verboseOutput() << endl;

            for (size_t i = 0; i < block_size; ++i)
                OldFaces.erase(OldFaces.begin());

            nr_remaining -= block_size;

        }  // while nr_remaining >0

        OldFaces.swap(NewFaces);
        NewFaces.clear();

        OldNrFacetsContainingGen.swap(NewNrFacetsContainingGen);
        for (size_t i = 0; i < nr_gens; ++i)
            NewNrFacetsContainingGen[i] = 0;

        d--;

    }  // while

    multiplicity *= convertTo<mpz_class>(global_corr_factor);

    if (verbose) {
        if (global_corr_factor != 1)
            verboseOutput() << "Global correction factor used " << global_corr_factor << endl;
        verboseOutput() << "Mult (before NoGradingDenom correction) " << multiplicity << endl;
        verboseOutput() << "Mult (float) " << std::setprecision(12) << mpq_to_nmz_float(multiplicity) << endl;
        verboseOutput() << "Determinants computed " << nr_simplicial << endl;
        verboseOutput() << "Number of descent steps " << descent_steps << endl;
        verboseOutput() << "Number of ";
        if (exploit_automorphisms)
            verboseOutput() << "isomorphism classes of ";
        verboseOutput() << "faces in descent system " << system_size << endl;
        if (!exploit_automorphisms) {
            verboseOutput() << "Full tree size (modulo 2^64)" << tree_size << endl;
        }
    }
}

template <typename Integer>
bool DescentSystem<Integer>::set_verbose(bool onoff) {
    bool old_verbose = verbose;
    verbose = onoff;
    return old_verbose;
}

template <typename Integer>
void DescentSystem<Integer>::setExploitAutoms(bool exploit) {
    exploit_automorphisms = exploit;
}

template <typename Integer>
void DescentSystem<Integer>::setStrictIsoTypeCheck(bool check) {
#ifdef NMZ_HASHLIBRARY
    strict_type_check = check;
#else
    assert(strict_type_check);
    if (!check)
        if (verbose)
            verboseOutput() << "Attempt to disable StrictIsoTypeCheck without Hashing-Library; "
                               "leaving it enabled."
                            << endl;
#endif
}

template <typename Integer>
mpq_class DescentSystem<Integer>::getMultiplicity() {
    return multiplicity;
}

template class DescentFace<long>;
template class DescentFace<long long>;
template class DescentFace<mpz_class>;

template class DescentSystem<long>;
template class DescentSystem<long long>;
template class DescentSystem<mpz_class>;

}  // namespace libnormaliz