1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916
|
/*
* Normaliz
* Copyright (C) 2007-2025 W. Bruns, B. Ichim, Ch. Soeger, U. v. d. Ohe
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*
* As an exception, when this program is distributed through (i) the App Store
* by Apple Inc.; (ii) the Mac App Store by Apple Inc.; or (iii) Google Play
* by Google Inc., then that store may impose any digital rights management,
* device limits and/or redistribution restrictions that are required by its
* terms of service.
*/
#include "libnormaliz/cone.h"
#include "libnormaliz/face_lattice.h"
#include "libnormaliz/vector_operations.h"
#ifdef _MSC_VER
typedef long long ssize_t;
#endif
namespace libnormaliz{
using namespace std;
template <typename Integer>
FaceLattice<Integer>::FaceLattice() {
}
// It is assumed that the matrices in the constructor are for the pointed quotient,
// even if the names of the parameters don't indicate that.
template <typename Integer>
FaceLattice<Integer>::FaceLattice(Matrix<Integer>& SupportHyperplanes,
const Matrix<Integer>& Vert,
const Matrix<Integer>& ExtRaysRC,
const bool cone_inhomogeneous,
bool swap_allowed) {
VerticesOfPolyhedron = Vert;
ExtremeRaysRecCone = ExtRaysRC;
inhomogeneous = cone_inhomogeneous;
nr_supphyps = SupportHyperplanes.nr_of_rows();
nr_extr_rec_cone = ExtremeRaysRecCone.nr_of_rows();
nr_vert = VerticesOfPolyhedron.nr_of_rows();
nr_gens = nr_extr_rec_cone + nr_vert;
if (swap_allowed)
swap(SuppHyps, SupportHyperplanes);
else
SuppHyps = SupportHyperplanes;
dim = SuppHyps[0].size();
SuppHypInd.clear();
SuppHypInd.resize(nr_supphyps);
// order of the extreme rays:
//
// first the vertices of polyhedron (in the inhomogeneous case)
// then the extreme rays of the (recession) cone
//
bool skip_remaining = false;
std::exception_ptr tmp_exception;
int nr_simplial_facets = 0;
#pragma omp parallel for
for (size_t i = 0; i < nr_supphyps; ++i) {
if (skip_remaining)
continue;
int nr_gens_in_hyp = 0;
SuppHypInd[i].resize(nr_gens);
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
if (inhomogeneous) {
for (size_t j = 0; j < nr_vert; ++j) {
if (v_scalar_product(SuppHyps[i], VerticesOfPolyhedron[j]) == 0) {
nr_gens_in_hyp++;
SuppHypInd[i][j] = true;
}
}
}
for (size_t j = 0; j < nr_extr_rec_cone; ++j) {
if (v_scalar_product(SuppHyps[i], ExtremeRaysRecCone[j]) == 0) {
nr_gens_in_hyp++;
SuppHypInd[i][j + nr_vert] = true;
}
}
if (nr_gens_in_hyp == (int)(dim - 1))
//#pragma omp atomic
nr_simplial_facets++;
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
}
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
// if (verbose)
// verboseOutput() << "Simplicial facets " << nr_simplial_facets << " of " << nr_supphyps << endl;
}
struct FaceInfo {
// dynamic_bitset ExtremeRays;
dynamic_bitset HypsContaining; // lists the support hyperplanes containing this face
int max_cutting_out; // maximal index of a hyperplane cutting out this face from ist mother
bool max_subset; // inmdicates whether face has a maximal set of extreme ray<s passing through it
// bool max_prec;
bool simple;
};
bool face_compare(const pair<dynamic_bitset, FaceInfo>& a, const pair<dynamic_bitset, FaceInfo>& b) {
return (a.first < b.first);
}
vector<vector<key_t> > make_permutation_group(const vector<vector<key_t> >& gens){
if(gens.size() == 0)
return gens;
size_t n = gens[0].size();
set<vector<key_t> > perm_set;
for(auto& v: gens)
perm_set.insert(v);
while(true){
set<vector<key_t> > new_perms;
for(auto& p:perm_set){
for(auto& g: gens){
INTERRUPT_COMPUTATION_BY_EXCEPTION
vector<key_t> comp(n);
for(size_t i = 0; i < n; ++i){
comp[i] = p[g[i]];
}
if(perm_set.find(comp) == perm_set.end())
new_perms.insert(comp);
}
}
if(new_perms.size() == 0)
break;
perm_set.insert(new_perms.begin(), new_perms.end());
}
vector<vector<key_t> > result;
result.insert(result.begin(), perm_set.begin(), perm_set.end());
return result;
}
template <typename Integer>
void FaceLattice<Integer>::set_supphyp_permutations(const vector<vector<key_t> >& gens, const bool verb){
verbose = verb;
SuppHypPermutations = make_permutation_group(gens);
if(verbose)
verboseOutput() << SuppHypPermutations.size() <<" permutations computed" << endl;
}
template <typename Integer>
void FaceLattice<Integer>::set_extray_permutations(const vector<vector<key_t> >& gens, const bool verb){
verbose = verb;
ExtRayPermutations = make_permutation_group(gens);
if(verbose)
verboseOutput() << ExtRayPermutations.size() <<" permutations computed" << endl;
}
template <typename Integer>
dynamic_bitset FaceLattice<Integer>::normal_form(const dynamic_bitset& arg, const vector<vector<key_t> >& Perms){
dynamic_bitset normal = arg;
for(auto & p: Perms){
dynamic_bitset conjugate(arg.size());
for(size_t i = 0; i< p.size(); ++i)
conjugate[i] = arg[p[i]];
if(conjugate < normal)
normal = conjugate;
}
return normal;
}
// IMPORTANT: Use https://arxiv.org/pdf/1903.04342v1.pdf for explanations
// It contains more details than the publshed version.
template <typename Integer>
void FaceLattice<Integer>::compute(const long face_codim_bound, const bool verbose, bool change_integer_type, const bool only_f_vector) {
bool bound_codim = false;
if (face_codim_bound >= 0)
bound_codim = true;
dynamic_bitset SimpleVert(nr_gens);
size_t nr_simpl = 0;
for (size_t j = 0; j < nr_gens; ++j) {
size_t nr_cont = 0;
for (size_t i = 0; i < nr_supphyps; ++i)
if (SuppHypInd[i][j])
nr_cont++;
if (nr_cont == dim - 1) {
SimpleVert[j] = 1;
nr_simpl++;
}
}
// Note: a face can only be cosimplicial if it conatins a cosimplicial extreme ray = simple vert
if (verbose)
verboseOutput() << "Cosimplicial gens " << nr_simpl << " of " << nr_gens << endl;
bool use_simple_vert = (10 * nr_simpl > nr_gens);
vector<size_t> prel_f_vector(dim + 1, 0);
dynamic_bitset the_cone(nr_gens); // all genetrators in cone
the_cone.set();
dynamic_bitset empty(nr_supphyps); // no support hyperplane contain sthe cone
dynamic_bitset AllFacets(nr_supphyps);
AllFacets.set();
// In the structure dcefined below
//
// sthe argument is the face identiofied by the support hyperplanes containing it
//
// irst component of the value (seconmd.first) is the ""history" of the face (called beta_F below)
// see article mentioned above
//
// the second componjent is the set of szpport hyperplanes cutting out facets of the "mother"
// they are enough to find the facets of this (diamond property of the face lattice)
map<dynamic_bitset, pair<dynamic_bitset, dynamic_bitset> > NewFaces;
map<dynamic_bitset, pair<dynamic_bitset, dynamic_bitset> > WorkFaces;
WorkFaces[empty] = make_pair(empty, AllFacets); // start with the full cone
dynamic_bitset ExtrRecCone(nr_gens); // in the inhomogeneous case
if (inhomogeneous) { // we exclude the faces of the recession cone
for (size_t j = 0; j < nr_extr_rec_cone; ++j)
ExtrRecCone[j + nr_vert] = 1;
;
}
Matrix<MachineInteger> SuppHyps_MI;
if (change_integer_type){
convert(SuppHyps_MI, SuppHyps);
}
/*for(int i=0;i< 10000;++i){ // for perturbation of order of supphyps
int j=rand()%nr_supphyps;
int k=rand()%nr_supphyps;
swap(SuppHypInd[j],SuppHypInd[k]);
swap(EmbeddedSuppHyps[j],EmbeddedSuppHyps[k]);
if(change_integer_type)
swap(EmbeddedSuppHyps_MI[j],EmbeddedSuppHyps_MI[k]);
}*/
/* vector<dynamic_bitset> Unit_bitset(nr_supphyps);
for (size_t i = 0; i < nr_supphyps; ++i) {
Unit_bitset[i].resize(nr_supphyps);
Unit_bitset[i][i] = 1;
} */
long codimension_so_far = 0; // the lower bound for the codimension so far
const long VERBOSE_STEPS = 50;
const size_t RepBound = 1000;
bool report_written = false;
// statistics
size_t total_inter = 0;
size_t avoided_inter = 0;
size_t total_new = 0;
size_t total_simple = 1; // the full cone is cosimplicial
size_t total_max_subset = 0;
while (true) {
codimension_so_far++; // codimension of faces put into NewFaces
bool CCC = false;
if (codimension_so_far == 1)
CCC = true;
if (bound_codim && codimension_so_far > face_codim_bound + 1) // finished because codim bopund reached already
break;
size_t nr_faces = WorkFaces.size();
if (verbose) {
if (report_written)
verboseOutput() << endl;
verboseOutput() << "codim " << codimension_so_far - 1 << " faces to process " << nr_faces << endl;
report_written = false;
}
long step_x_size = nr_faces - VERBOSE_STEPS;
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel
{
Matrix<Integer> Test(0,dim);
Matrix<MachineInteger> Test_MI(0,dim);
size_t Fpos = 0;
auto F = WorkFaces.begin();
list<pair<dynamic_bitset, FaceInfo> > FreeFaces, Faces; // FreeFaces for mempory recycling
pair<dynamic_bitset, FaceInfo> fr;
fr.first.resize(nr_gens);
fr.second.HypsContaining.resize(nr_supphyps);
for (size_t i = 0; i < nr_supphyps; ++i) { // some blank faces to get started
FreeFaces.push_back(fr);
}
#pragma omp for schedule(dynamic)
for (size_t kkk = 0; kkk < nr_faces; ++kkk) {
if (skip_remaining)
continue;
for (; kkk > Fpos; ++Fpos, ++F)
;
for (; kkk < Fpos; --Fpos, --F)
;
if (verbose && nr_faces >= RepBound) {
#pragma omp critical(VERBOSE)
while ((long)(kkk * VERBOSE_STEPS) >= step_x_size) {
step_x_size += nr_faces;
verboseOutput() << "." << flush;
report_written = true;
}
}
#pragma omp atomic
prel_f_vector[codimension_so_far - 1]++;
if (bound_codim && codimension_so_far == face_codim_bound + 1) // finished because codim bopund reached already
continue;
Faces.clear();
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset beta_F = F->second.first;
bool F_simple = ((long)F->first.count() == codimension_so_far - 1);
dynamic_bitset Gens = the_cone; // make indicator vector of *F
for (int i = 0; i < (int)nr_supphyps; ++i) {
if (F->second.first[nr_supphyps - 1 - i] == 0) // does not define F
continue;
// beta_F=i;
Gens = Gens & SuppHypInd[i];
}
dynamic_bitset MM_mother = F->second.second;
// now we produce the intersections with facets
dynamic_bitset Intersect(nr_gens);
size_t start;
if (CCC)
start = 0;
else {
start = F->second.first.find_first();
start = nr_supphyps - start;
}
// in the next loop we find the potantial facets of F, but often more faces
for (size_t i = start; i < nr_supphyps; ++i) {
if (F->first[i] == 1) { // contains *F
continue;
}
#pragma omp atomic
total_inter++;
if (MM_mother[i] == 0) { // using restriction criteria of the paper, does not cut out a facet of the mother
#pragma omp atomic
avoided_inter++;
continue;
}
Intersect = Gens & SuppHypInd[i];
if (inhomogeneous && Intersect.is_subset_of(ExtrRecCone))
continue;
Faces.splice(Faces.end(), FreeFaces, FreeFaces.begin());
Faces.back().first = Intersect;
Faces.back().second.max_cutting_out = static_cast<int>(i);
Faces.back().second.max_subset = true;
// Faces.back().second.HypsContaining.reset();
// Faces.push_back(make_pair(Intersect,fr));
}
// Now we must decide which of the faces of F found above are really facets.
Faces.sort(face_compare);
// first we identify duplicates
for (auto Fac = Faces.begin(); Fac != Faces.end(); ++Fac) {
if (Fac != Faces.begin()) {
auto Gac = Fac;
--Gac;
if (Fac->first == Gac->first) {
// Fac->second.max_subset = false; // disabled since I don't understand it anymore
Gac->second.max_subset = false; // is duplicate
}
}
}
for (auto Fac = Faces.end(); Fac != Faces.begin();) { // first we check for inclusion
--Fac;
if (!Fac->second.max_subset)
continue;
auto Gac = Fac;
Gac++;
for (; Gac != Faces.end(); Gac++) {
if (!Gac->second.max_subset)
continue;
if (Fac->first.is_subset_of(Gac->first)) {
Fac->second.max_subset = false;
break;
}
}
}
// We have not computed all faces. So it could be that some "meximal subsets" are not facets, and
// we use the dimesnion criterion to recognize the facets.
dynamic_bitset MM_F(nr_supphyps);
for (auto Fac = Faces.end(); Fac != Faces.begin();) {
--Fac;
if (!Fac->second.max_subset)
continue;
#pragma omp atomic
total_max_subset++;
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset Containing = F->first;
Containing[Fac->second.max_cutting_out] = 1;
bool simple = false;
if (F_simple && use_simple_vert) {
if ((Fac->first & SimpleVert).any()) {
simple = true;
}
}
if (!simple) {
bool extra_hyp = false;
for (size_t j = 0; j < nr_supphyps; ++j) { // beta_F
if (Containing[j] == 0 && Fac->first.is_subset_of(SuppHypInd[j])) {
Containing[j] = 1;
extra_hyp = true;
}
}
simple = F_simple && !extra_hyp;
}
long codim_of_face = 0; // to make gcc happy
if (simple)
codim_of_face = codimension_so_far;
else {
dynamic_bitset Containing(nr_supphyps);
for (size_t j = 0; j < nr_supphyps; ++j) { // beta_F
if (Containing[j] == 0 && Fac->first.is_subset_of(SuppHypInd[j])) {
Containing[j] = 1;
}
}
vector<bool> selection = bitset_to_bool(Containing);
if (change_integer_type) {
try {
codim_of_face = Test_MI.rank_submatrix(SuppHyps_MI, bitset_to_key(Containing));
// codim_of_face = SuppHyps_MI.submatrix(selection).rank();
} catch (const ArithmeticException& e) {
change_integer_type = false;
}
}
if (!change_integer_type)
codim_of_face = Test.rank_submatrix(SuppHyps, bitset_to_key(Containing));
// codim_of_face = SuppHyps.submatrix(selection).rank();
if (codim_of_face > codimension_so_far) {
Fac->second.max_subset = false;
continue;
}
}
MM_F[Fac->second.max_cutting_out] = 1;
Fac->second.simple = simple;
Fac->second.HypsContaining = Containing;
}
for (auto Fac = Faces.end(); Fac != Faces.begin();) { // why backwards??
--Fac;
if (!Fac->second.max_subset)
continue;
bool simple = Fac->second.simple;
beta_F[nr_supphyps - 1 - Fac->second.max_cutting_out] =
1; // we must go to revlex, beta_F reconstituted below
#pragma omp critical(INSERT_NEW)
{
total_new++;
if (simple) {
NewFaces[Fac->second.HypsContaining] = make_pair(beta_F, MM_F);
total_simple++;
}
else {
auto G = NewFaces.find(Fac->second.HypsContaining);
if (G == NewFaces.end()) {
NewFaces[Fac->second.HypsContaining] = make_pair(beta_F, MM_F);
}
else {
if (G->second.first < beta_F) { // because of revlex < instead of >
G->second.first = beta_F;
G->second.second = MM_F;
}
}
}
} // critical
beta_F[nr_supphyps - 1 - Fac->second.max_cutting_out] = 0;
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
FreeFaces.splice(FreeFaces.end(), Faces);
} // omp for
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
if (!only_f_vector){
for (auto H = WorkFaces.begin(); H != WorkFaces.end(); ++H)
FaceLat[H->first] = static_cast<int>(codimension_so_far - 1);
}
WorkFaces.clear();
if (NewFaces.empty())
break;
swap(WorkFaces, NewFaces);
}
if (inhomogeneous && nr_vert != 1) { // we want the empty face in the face lattice
// (never the case in homogeneous computations)
dynamic_bitset NoGens(nr_gens);
size_t codim_max_subspace = SuppHyps.rank();
FaceLat[AllFacets] = static_cast<int>(codim_max_subspace);
if (!(bound_codim && (int)codim_max_subspace > face_codim_bound))
prel_f_vector[codim_max_subspace]++;
}
size_t total_nr_faces = 0;
for (ssize_t i = prel_f_vector.size() - 1; i >= 0; --i) {
if (prel_f_vector[i] != 0) {
f_vector.push_back(prel_f_vector[i]);
total_nr_faces += prel_f_vector[i];
}
}
// cout << " Total " << FaceLattice.size() << endl;
if (verbose) {
verboseOutput() << endl << "Total number of faces computed " << total_nr_faces << endl;
verboseOutput() << "f-vector (preliminary, possibly dualized)" << f_vector;
}
}
template <typename Integer>
void FaceLattice<Integer>::compute_orbits(const long face_codim_bound, const bool verbose, bool change_integer_type, const bool only_f_vector) {
bool bound_codim = false;
if (face_codim_bound >= 0)
bound_codim = true;
// for the time being, only a simple version
vector<size_t> prel_f_vector(dim + 1, 0);
dynamic_bitset the_cone(nr_gens); // all genetrators in cone
the_cone.set();
dynamic_bitset empty(nr_supphyps); // no support hyperplane contain sthe cone
dynamic_bitset AllFacets(nr_supphyps);
AllFacets.set();
// We use a simpler data structure for orbits
set<dynamic_bitset> NewFaces;
set<dynamic_bitset> WorkFaces;
set<dynamic_bitset> HelpNormalForms;
WorkFaces.insert(empty); // the full cone
// WorkFaces[empty] = make_pair(empty, AllFacets); // start with the full cone
dynamic_bitset ExtrRecCone(nr_gens); // in the inhomogeneous case
if (inhomogeneous) { // we exclude the faces of the recession cone
for (size_t j = 0; j < nr_extr_rec_cone; ++j)
ExtrRecCone[j + nr_vert] = 1;
;
}
Matrix<Integer> ExtremeRays;
if(VerticesOfPolyhedron.nr_of_rows() > 0){
ExtremeRays = VerticesOfPolyhedron;
ExtremeRays.append(ExtremeRaysRecCone);
}
else
ExtremeRays = ExtremeRaysRecCone;
Matrix<MachineInteger> SuppHyps_MI;
Matrix<MachineInteger> ExtremeRays_MI;
if (change_integer_type){
convert(SuppHyps_MI, SuppHyps);
convert(ExtremeRays_MI, ExtremeRays);
}
bool use_extreme_rays = false;
if(SuppHyps.nr_of_rows() > ExtremeRays.nr_of_rows())
use_extreme_rays = true;
long codimension_so_far = 0; // the lower bound for the codimension so far
const long VERBOSE_STEPS = 50;
const size_t RepBound = 1000;
bool report_written = false;
while (true) {
codimension_so_far++; // codimension of faces put into NewFaces
if (bound_codim && codimension_so_far > face_codim_bound + 1) // finished because codim bopund reached already
break;
size_t nr_faces = WorkFaces.size();
if (verbose) {
if (report_written)
verboseOutput() << endl;
verboseOutput() << "codim " << codimension_so_far - 1 << " faces to process " << nr_faces << endl;
report_written = false;
}
long step_x_size = nr_faces - VERBOSE_STEPS;
bool skip_remaining = false;
std::exception_ptr tmp_exception;
#pragma omp parallel
{
Matrix<Integer> Test(0,dim);
Matrix<MachineInteger> Test_MI(0,dim);
size_t Fpos = 0;
auto F = WorkFaces.begin();
list<pair<dynamic_bitset, FaceInfo> > FreeFaces, Faces, NormalForms; // FreeFaces for mempory recycling
pair<dynamic_bitset, FaceInfo> fr;
fr.first.resize(nr_gens);
fr.second.HypsContaining.resize(nr_supphyps);
for (size_t i = 0; i < nr_supphyps; ++i) { // some blank faces to get started
FreeFaces.push_back(fr);
}
#pragma omp for schedule(dynamic)
for (size_t kkk = 0; kkk < nr_faces; ++kkk) {
if (skip_remaining)
continue;
for (; kkk > Fpos; ++Fpos, ++F)
;
for (; kkk < Fpos; --Fpos, --F)
;
if (verbose && nr_faces >= RepBound) {
#pragma omp critical(VERBOSE)
while ((long)(kkk * VERBOSE_STEPS) >= step_x_size) {
step_x_size += nr_faces;
verboseOutput() << "." << flush;
report_written = true;
}
}
#pragma omp atomic
prel_f_vector[codimension_so_far - 1]++;
if (bound_codim && codimension_so_far == face_codim_bound + 1) // finished because codim bopund reached already
continue;
Faces.clear();
try {
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset Gens = the_cone; // make indicator vector of *F
for (int i = 0; i < (int)nr_supphyps; ++i) {
if ((*F)[i] == 0) // does not contain F
continue;
// beta_F=i;
Gens = Gens & SuppHypInd[i];
}
// now we produce ALL intersections with facets (different from the general case above)
dynamic_bitset Intersect(nr_gens);
size_t start = 0;
// in the next loop we find the potantial facets of F, but often more faces
for (size_t i = start; i < nr_supphyps; ++i) {
if ((*F)[i] == 1) { // contains *F
continue;
}
Intersect = Gens & SuppHypInd[i];
if (inhomogeneous && Intersect.is_subset_of(ExtrRecCone))
continue;
Faces.splice(Faces.end(), FreeFaces, FreeFaces.begin());
Faces.back().first = Intersect;
Faces.back().second.max_subset = true;
}
INTERRUPT_COMPUTATION_BY_EXCEPTION
Faces.sort(face_compare);
// first we sort out dupicates
for (auto Fac = Faces.begin(); Fac != Faces.end(); ++Fac) {
if (Fac != Faces.begin()) {
auto Gac = Fac;
--Gac;
if (Fac->first == Gac->first) {
Gac->second.max_subset = false; // is duplicate
}
}
}
// cout << "Duplicates found" << endl;
// size_t counter = 0;
// We use the rank criterion to identify the facets of *F
for (auto Fac = Faces.begin(); Fac != Faces.end(); Fac++) {
// counter++;
INTERRUPT_COMPUTATION_BY_EXCEPTION
dynamic_bitset Containing = *F;
if(!Fac->second.max_subset)
continue;
long codim_of_face = 0; // to make gcc happy
if(use_extreme_rays){
/* if(counter% 1000 == 0)
cout << counter << endl;*/
vector<key_t> selection = bitset_to_key(Fac->first);
if (change_integer_type) {
try {
codim_of_face = dim - Test_MI.rank_submatrix(ExtremeRays_MI, selection);
// codim_of_face = dim -ExtremeRays_MI.submatrix(selection).rank();
} catch (const ArithmeticException& e) {
change_integer_type = false;
}
}
if (!change_integer_type){
codim_of_face = dim - Test.rank_submatrix(ExtremeRays, selection);
// codim_of_face = dim - ExtremeRays.submatrix(selection).rank();
}
if(codim_of_face > codimension_so_far)
continue;
dynamic_bitset nf = normal_form(Fac->first, ExtRayPermutations);
bool is_new = true;
#pragma omp critical(INSERT_HELP)
{
if(HelpNormalForms.find(nf) != HelpNormalForms.end())
is_new = false;
if(is_new)
HelpNormalForms.insert(nf);
}
if(!is_new)
continue;
}
for(size_t i = 0; i < nr_supphyps; ++i){
if(Containing[i])
continue;
// cout << "fac " << Fac->first.size() << " Supp " << SuppHypInd[i].size() << endl;
if(Fac->first.is_subset_of(SuppHypInd[i]))
Containing[i] = 1;
}
if(!use_extreme_rays){
vector<key_t> selection = bitset_to_key(Containing);
if (change_integer_type) {
try {
codim_of_face = Test_MI.rank_submatrix(SuppHyps_MI, selection);
// codim_of_face = SuppHyps_MI.submatrix(selection).rank();
} catch (const ArithmeticException& e) {
change_integer_type = false;
}
}
if (!change_integer_type){
codim_of_face = Test.rank_submatrix(SuppHyps, selection);
// codim_of_face = SuppHyps.submatrix(selection).rank();
}
if(codim_of_face > codimension_so_far)
continue;
}
Containing = normal_form(Containing, SuppHypPermutations);
#pragma omp critical(INSERT_NEW)
NewFaces.insert(Containing);
}
} catch (const std::exception&) {
tmp_exception = std::current_exception();
skip_remaining = true;
#pragma omp flush(skip_remaining)
}
FreeFaces.splice(FreeFaces.end(), Faces);
} // omp for
} // parallel
if (!(tmp_exception == 0))
std::rethrow_exception(tmp_exception);
if (!only_f_vector){
for (auto H = WorkFaces.begin(); H != WorkFaces.end(); ++H)
FaceLat[*H] = static_cast<int>(codimension_so_far - 1);
}
WorkFaces.clear();
if (NewFaces.empty())
break;
swap(WorkFaces, NewFaces);
}
if (inhomogeneous && nr_vert != 1) { // we want the empty face in the face lattice
// (never the case in homogeneous computations)
dynamic_bitset NoGens(nr_gens);
size_t codim_max_subspace = SuppHyps.rank();
FaceLat[AllFacets] = static_cast<int>(codim_max_subspace);
if (!(bound_codim && (int)codim_max_subspace > face_codim_bound))
prel_f_vector[codim_max_subspace]++;
}
size_t total_nr_faces = 0;
for (ssize_t i = prel_f_vector.size() - 1; i >= 0; --i) {
if (prel_f_vector[i] != 0) {
f_vector.push_back(prel_f_vector[i]);
total_nr_faces += prel_f_vector[i];
}
}
// cout << " Total " << FaceLattice.size() << endl;
if (verbose) {
verboseOutput() << endl << "Total number of faces computed " << total_nr_faces << endl;
verboseOutput() << "f-vector (preliminary, possibly dualized) " << f_vector;
}
}
template <typename Integer>
vector<size_t> FaceLattice<Integer>::getFVector() {
return f_vector;
}
template <typename Integer>
void FaceLattice<Integer>::get(map<dynamic_bitset, int>& FaceLatticeOutput) {
swap(FaceLat, FaceLatticeOutput);
}
template <typename Integer>
void FaceLattice<Integer>::get(vector<dynamic_bitset>& SuppHypIndOutput) {
swap(SuppHypInd, SuppHypIndOutput);
}
#ifndef NMZ_MIC_OFFLOAD // offload with long is not supported
template class FaceLattice<long>;
#endif
template class FaceLattice<long long>;
template class FaceLattice<mpz_class>;
#ifdef ENFNORMALIZ
template class FaceLattice<renf_elem_class>;
#endif
} // namespace libnormaliz
|